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The dynamics of coherent structures in the wall region of a turbulent channel flow is 
considered. The Karhunen-Loeve eigenfunctions and Galerkin procedure are used to derive 
the dynamical description. In a previous treatment of this problem by Aubry et al. [J. 
Fluid Mech. 192, 115 ( 1988)] the analysis required an inhomogeneous pressure term to be 
supplied from outside the theory. In the first part of this paper this theory is 
reconsidered on the basis of the construction of wall eigenfunctions that have a full channel 
validity. As a result of the methods developed here, a well-posed Hermitian theory is 
developed and convergence questions do not arise. Among a number of important 
consequences is the fact that no exterior pressure is required by the present theory. 
In the second part of this paper it is shown that the behavior of the resulting model equations 
include intermittency, quasiperiodic, and chaotic solutions. In the final part of this paper 
three-dimensional effects are introduced into the dynamics in order to produce a physically 
more realistic dynamical theory. It is felt that the bursting and ejection events in 
turbulent boundary layers is given a more satisfactory explanation within this framework. 

I. INTRODUCTION 

Coherent structures are generally accepted as playing 
an important role in the wall region of a turbulent bound- 
ary layer. The major dynamic behavior of these structures 
have been described by bursting, ejections, and sweeps.‘-’ 
Loosely speaking, a bursting event consists of a gradual 
liftup of the longitudinal, streamwise streaks, a sudden os- 
cillation, and a breakup. As a result an ejection, i.e., a 
relatively violent upward motion of low-velocity fluid takes 
place. Continuity then requires a sweep event that is the 
compensatory downward motion of high-speed fluid to- 
ward the wall. These events are the major contributors to 
the turbulence-producing process as well as heat transfer 
near a wall. In this study we model a turbulent boundary- 
layer flow with a low-dimensional system of ordinary dif- 
ferential equations in order to gain a better understanding 
of these events. 

The Karhunen-Loke (KL) procedure has been used 
extensively to study coherent structures in a variety of 
flows*-” and related systems.18 This method has a long 
history (see Preisendorfer” and Sirovich and Everson”). 
It was used by Lorenz,21 Kutzbach,** and ObukhovZ3 for 
analyzing meteorological data, and LumleyZ4 suggested 
that it might provide a rational approach to coherent struc- 
tures. In this procedure one starts with a known velocity 
field, which has been obtained either numerically or exper- 
imentally, and then calculates the eigenfunctions and the 
eigenvalues of the two-point correlation kernel formed 
from the velocity field by time averaging the tensor product 
of the velocity at two points. The eigenfunctions are used 
as a basis set to represent the velocity field. Although other 
basis functions may be used to expand the velocity, the 
eigenfunctions are optimal, in the sense that the series for 
the velocity field converges optimally fast by well-defined 

criteria. The coefficients of the series are time dependent 
and statistically orthogonal while the eigenvalues them- 
selves are equal to the average kinetic energy of the corre- 
sponding modes. 

In order to capture the main features of a flow with a 
low-dimensional dynamical system, one would suppose 
that a rapidly convergent series for the velocity field is 
required. This is meant in the sense that the first few modes 
(i.e., eigenfunctions) should capture most of the kinetic 
energy. The hope then is that by analyzing the resulting 
low-dimensional dynamical system in detail we will deepen 
our understanding of the basic flow mechanisms. 

In an experimental study of the flow in the wall region 
of a turbulent pipe flow, Herzog’ found that relatively few 
of the KL modes capture a significant amount of the ki- 
netic energy. On this basis a low-dimensional dynamical 
description was sought by Aubry et al.” (henceforth 
called the Cornell group). They used a low-dimensional 
model to study the dynamics of the coherent structures in 
the wall region of a turbulent boundary-layer using the KL 
eigenfunctions obtained in the pipe flow experiment of 
Herzog. Due to homogeneity the velocity eigenfunctions 
factor into Fourier modes in the streamwise and spanwise 
directions but take on a more complicated form in the wall 
normal direction. For each mode, one streamwise wave 
number, k,, one spanwise wave number, k3, and one ver- 
tical quantum number, q, enter. In this terminology the 
Cornell model is obtained by truncating the expansion for 
the velocity so as to include the mode for which k,=O, 
q=l, and k,=1,2,3,4,5. (The Cornell group and Herzog 
use another terminology different than ours in referring to 
modes and eigenfunctions.) A low-dimensional system is 
then derived from the Navier-Stokes equations via the 
Galerkin projection. The model equations are regarded as 
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representing the dynamical behavior of the large coherent 
eddies found in a turbulent boundary layer. Using methods 
drawn from dynamical systems theory it is shown that the 
equations exhibit intermittent behavior. This is then re- 
lated to the bursting events. As a consequence of its deri- 
vation, the Cornell model requires the pressure at the outer 
edge of the boundary layer to appear in the dynamical 
system (see Sec. III). If this term is neglected they found 
that the duration between bursts increases without bound, 
and the Cornell group found it necessary to impose pres- 
sure fluctuations in order to preserve bursting. An earlier 
treatment of the Ginzburg-Landau equation by such a dy- 
namical truncation proved to be highly successful.” 

The Cornell model neglects the variation in the stream- 
wise direction. In a real turbulent channel flow, the coher- 
ent structures observed are fully three dimensional, and 
thus have streamwise variation. Indeed, turbulence is gen- 
erally accepted as being an essentially three-dimensional 
phenomenon. In numerical studies of turbulent channel 
flow at Reynolds numbers of 3000 and 4250,26Y27 analysis 
revealed the presence of propagating waves in the turbulent 
flows, with each propagating wave related to a mode with 
streamwise variation. This analysis further suggested that 
the interaction of these waves with the energy bearing 
streamwise constant modes appears to be essential to the 
local production of turbulence. The existence of wavelike 
structures was also found experimentally, by Morrison,28 
for the case of the wall region of fully developed pipe flow 
over a range of Reynolds numbers. These results suggest 
that further studies of dynamical systems approximations 
for well-bounded turbulence should include modes with 
streamwise variations. 

There are three parts in our study. The first part, 
which concentrates on the formulation, starts with eigen- 
functions calculated from a numerical simulation of a 
channel ~Iow.~*~~ These are used to construct eigenfunctions 
that are concentrated in the wall region but defined for the 
full channel. As a result, we are able to present a well- 
posed formulation in which no inhomogeneous pressure 
term appears. The second part of our study focuses on five 
complex ordinary differential equations that form the 
counterpart in our formulation of the Cornell model. We 
use an eddy viscosity to reflect the dissipation due to ne- 
glected modes. For a range of parameter values our results 
show intermittency, i.e., the solutions are comprised of 
spikes, similar to that found for the Cornell model. The 
third part of our study is motivated by the desire to pro- 
duce a more realistic three-dimensional model. Since prop- 
agating structures were found in a full simulation, it is of 
interest to see if such structures can exist in a smaller 
dynamic model. Experimentally, such wavelike structures 
exist, and the hope is that a low-dimensional model can 
model such structures. In this context it should be men- 
tioned that Aubry and Sanghi3’ have extended the Cornell 
model to include three-dimensional modes. From our in- 
vestigation, we find that the intermittent, quasiperiodic, 
and chaotic solutions persist as modes with streamwise 
variations included. Propagating waves that appear in the 
full simulation are also present in our relatively small dy- 
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FIG. 1. The geometry of the flow. 

namic systems. Most importantly, we have confirmed the 
view that the propagating waves play a more important 
role to bursting and sweeping events than the pressure tluc- 
tuations. We have also examined the power spectra of the 
reconstructed velocity, we find that the there exist pre- 
ferred frequencies, which appear to be similar to what has 
been observed in experiments.31 

II. FORMULATlON 

In the interest of brevity and clarity the following de- 
velopment is restricted to channel flow. The geometry is 
that shown in Fig. 1, where the flow is driven by a constant 
pressure gradient, -k. The last can be used to define the 
friction velocity u* in the usual way, 

t+=kH/p, (1) 
where His the half channel width. This, in turn, defines the 
friction Reynolds number 

Re, = Hu*/Y= H/I, , (2) 

which, as the last expression indicates, can be regarded as 
the number of wall units, I*, to the channel centerline. 

If velocity is normalized by u* and distances by H, it 
then follows that the mean flow equation is given by 

d- 1 &u 
yg V2”~ z+ 1, 

2 * 2 
(3) 

where ulu2 and U are the normalized Reynolds stress and 
mean velocity, respectively, and x2, the normalized wall 
normal coordinate. If perturbed quantities are denoted by 
lowercase letters, then by using (3) these satisfy 

v-u=o, (4) 

Ni(u) =& uf+ U$ UPS. 
1 

+U@j+Vp-& V'Ui=O, 
* 

where U’ =dU/dx,. In (5) time has been made dimension- 
less with H/u* and position by H. In the following we may 
approximate u1u2 by the spatial average 
( 1/LIL3)S(uIu2)dxI dx3, and then calculate U(x,> by in- 
tegrating (3) twice. 
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For purposes of exposition it is useful to postulate the 
existence of a vector set of orthonormal functions 
{V’“’ (x) ), each of which has the divergence-free property 
(4), 

V.V’“‘=O* (6) 

For the moment we turn our back on completeness, bound- 
ary conditions, and convergence and expand the velocity 
field as follows: 

UC c a,(t)W(x). (7) 

The coefficients, a,(t) , are determined by projecting along 
the corresponding direction, Vcn), 

a (t)=(Pu)= n , 
I 

V(“)** u dx 7 (8) 
V 

with V the domain of the flow, the asterisk complex con- 
jugation, and the ordinary vector dot product appearing 
under the integral sign. 

The Navier-Stokes equations (5) can be reduced by 
applying the Gale&in procedure to (5) under the expan- 
sion (7). In brief, this is obtained by first approximating II 
by a finite number of modes chosen from the set, {V’“‘}. 
Criteria for distinguishing these modes will be discussed 
later. If the so distinguished modes are numbered from 1 to 
N then we write 

uzq?f= $, a,(t)V(“)bd, (9) 

and uN will be referred to as the projection of u onto the 
subspace. Next, the NS equations are projected onto this 
space, 

(V(“),N(UN))=O, n= l,...N. (10) 
This yields a dynamical system that, in general, is cubic in 
arr [since from (3)) U is quadratic in the a,], has inhomo- 
geneous boundary terms if V is not a domain including 
both walls of the channel, and ignores projections from 
outside the distinguished set. We deal with all these issues 
in the next section. 

III. BASIS FUNCTIONS AND BOUNDARY CONDITIONS 

For the choice of a basis set we can use the KL pro- 
cedure to determine the empirical eigenfunctions. This ap- 
proach was first used with remarkable success for the 
Ginzburg-Landau equation” and later improved on.32 It 
was also used in order to create a model of intermittency 
for the turbulent boundary layer by the Cornell group. To 
obtain this basis set we first form the correlation matrix 

K,i(x,Y>=(Ui(X)uj(Y)), (11) 
where angle brackets indicate a time average. The eigen- 
functions are then determined by 

s K&,Y) ViWdy=WW. 
V 

(12) 

The set so generated forms a complete orthonormal set 
over the domain V, under the reasonable assumption of the 
square integrability of u. The resulting eigenfunctions then 
have optimal convergence properties.33 (See Aubry34 and 
Sirovich and Everson2’ for a recent review of the KL pro- 
cedure. > 

As a result of homogeneity in the streamwise, x1, and 
spanwise, x3, directions it follows that the empirical eigen- 
functions are sinusoidal in these directions, and that they 
have the factorable form 

Gn)=@)(k,x2)exp 2 [ Ti(p+p)], (13) 

where the wave number k= (kl,k3) and q is the vertical 
quantum number. The latter indexes the vertical part of 
the eigenfunctions and L1 and L3 denote the streamwise 
and spanwise dimensions of the periodic box in which the 
turbulent flow takes place. Further properties of the em- 
pirical eigenfunctions that bear mention is that they are 
divergence-free, 

V*V’“‘=O , (14) 
for all n, a property that follows from (4). In addition, 

V(“)(X2’O) =O=V’“‘(2) 2 (15) 

which follows from the boundary conditions on u. 

A. Review of the Cornell model 

In their approach the Cornell group focuses attention 
on the region near the wall, given by 

VW: O< x; =xz/l.& 42; - cx) <x1, x3 < co, (16) 

where we follow customary practice and measure the dis- 
tance from the wall in wall units xf . This includes the 
buffer zone. We regard this as being of nominal extent and 
for purposes of comparison we will use the same region in 
our deliberations. To obtain dynamical equations, as out- 
lined in Sec. II, we substitute the expression ( 13) for V(“) 
in (9) and this into (5), and thus consider 

(V(n),N(u))vw= s, V’n’**N(u)dx=O, n= l,... . 
w 

(17) 
The functions Vcn) that appear in ( 17) are those ob- 

tained from the KL procedure, (12) applied to the re- 
stricted domain ( 16). To distinguish these from the full 
channel eigenfunction we henceforth use a circumflex, 
{?‘“‘) to denote the wall eigenfunctions, and formally 
write 

Ii= c a^,(t>W(x). (18) 
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For example, the time derivative appearing in ( 17) yields 

A 
( 1 $n) if!! =aa, 

pat, at’ lo 
(19) 

where the subscript N has been temporarily neglected. 
As mentioned earlier, a pressure inhomogeneity arises. 

To see this, consider the pressure term of ( 17), 

( W,Vp) v = lo s 
+‘)*-Vp dxz 

VW s V*( +)*p)dx. 
VlO 

(20) 

The last is obtained since the eigenfunctions are 
divergence-free. From periodicity and the vanishing of Vcn’ 
at x2=0, we obtain 

(W,Vp) v = ,,I s x2’ =42 
?p)*p dxl dx3, 

which indicates that the fluctuating pressure must be sup- 
plied at the outer (geometrical) boundary of VW viz., 
x2+ =42. 

There is another, related, feature of the Cornell ap- 
proach that merits attention, and we illustrate it by con- 
sidering the viscous contribution to (17), viz., 

(W,V2u) y = 
s 

%“)*472u dx. w VlO 
(22) 

In the Cornell approach this is evaluated by taking the 
projection 

UN=PNU= p, u^,(r)6’n)(X>, (23) 

and substituting (23) directly into the right-hand side of 
(22) for u, so that 

n=l 

or equivalently by writing 

N 

v2uN= 2 iin v2w. 

(24) 

(25) 
n=l 

Term by term, differentiation is taken for granted. 
The approach described above places no restriction on 

the Auid velocity at the upper (fictitious) boundary of 
x$ =42. The customary three conditions on u at a bound- 
ary have been replaced by a single boundary condition, 
viz., p given on the boundary. This we claim produces an 
ill-posed problem. To illustrate this in simple terms, con- 
sider the related problem of fluid flow in a slab say, 
yY: x,) x2> xP If we carry over the recipe used by the 
Cornell group to this problem the implication is that we 
can solve the NS equations in the slab by prescribing the 
pressure on the boundaries of the slab. As an example of 
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this formatting of the tlow problem, consider the Stokes 
problem, which may be regarded as a special case of the 
general problem, 

v-u=0 (26) 

au m+vp=$ v2u, 
* (27) 

for XEV~ and p given on dV, On taking the divergence of 
the momentum equation (27)) we obtain 

vp=o. (28) 

Since p is given on aV, p is therefore determined in V, 
This still leaves us with the problem of finding the solution, 
u, to (27) with Vp now regarded as a known function. As 
elementary considerations demonstrate, this is not a solv- 
able problem without the prescription of boundary condi- 
tions for the velocity, u. 

These deliberations cast doubt on the convergence of 
the term-by-term differentiated series (25). In Foias 
et a1.,35 it is demonstrated that the series expansion for 
u( x,t) (9) ln terms of the empirical eigenfunction is rap- 
idly convergent. In fact for nt CO the coefficients descend to 
zero, on average, exponentially with n. In this case term- 
by-term differentiation is permitted. (The above discussion 
is not contradicted since each Vin) satisfies the correct 
boundary conditions.) 

It is of interest to point out that the basis of the expo- 
nential falloff estimates comes from the study of the Stokes 
eigenfunction theory. Since, as we just showed, the Stokes 
problem is ill posed, no comparable a priori estimate can be 
given for the wall (or slab) expansion. 

Generally, in cases where the convergence of a devel- 
opment is in question, it is prudent to use a transform 
approach rather than a series development. In regard to 
the dissipative term this entails, replacing it by 

(G’“‘,V2u> vu= (v2v(n),u) vw+B+ (l&Vu>, (29) 

where the linear term 

Bf= 
(30) 

represents the contribution from the boundary, and from 
which it is clear that an appropriate combination of u and 
its derivatives must be specified on the boundary. 

As (29) clearly indicates, the Laplace operator is 
clearly not Herrnitian if the wall zone is considered. For- 
matting the development in the form shown in (29) is 
more forgiving in regard to the convergence issue and 
clearly indicates the need for boundary terms. However, it 
is not clear that this alteration in the procedure will lead to 
convergence. As is well known the slow convergence of the 
Laplacian [The left-hand side of (29 )] is improved upon if 
the right-hand side of (29) is used. 

In the next section we present a formulation that fo- 
cuses on the wall region, is well posed and Hermitian, and 
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avoids the convergence issues that have been raised. In all 
cases relatively few modes enter, and the question of con- 
vergence should not be a genuine concern. On the other 
hand, the issue of the presence of a pressure term takes on 
a conceptual importance. 

IV. ALTERNATIVE WALL EIGENFUNCTIONS 

We now present an alternative approach that not only 
concentrates attention on the wall region but also avoids 
the difficulties raised in the previous section. In brief, we 
introduce a linear transformation T of the full channel 
eigenfunctions so that they represent the wall eigenfunc- 
tions in the wall region, 

Gcn)(x) = E T,J’“)(x). (31) 
m 

Note that we use the same notation as earlier for the wall 
eigenfunctions, even though these now have a full channel 
interpretation. Since this is the case we can use the full 
channel inner product. From this it follows that ( 1) no 
inhomogeneous pressure appears, and therefore (2) V2 is 
Hermitian under the inner product. To specify the trans- 
formation Tn,n we begin with the observation that the full 
channel eigenfunctions have the form of (13), and from 
this that the wall eigenfunctions must have a similar form, 

~“)==~~n)(kl,k3,x2)exp[2~i(klxl/Llfk3x3/L3)], 
(32) 

since translational invariance is still applicable. Substitu- 
tion of (13) and (32) into (31) yields 

#%k3,x& = c T,m@jm’(k,,k3,x2). 
m 

(33) 

The two sets of eigenfunctions satisfy the equations 

I 
2 

0 
Kij(kl,k3,xZ,x;)~~“‘(kl,k3,xa)dx~ 

=A(“)(kl,k3)$;n)(k,,k3,x2) 
and 

(34) 

s 

6 

0 
Kti(kl,k3,x=x-;)~~“)(k,,k3,x;)dxl 

=il”z’(k,,k3)$!n)(kl,k3,x2), 1 (35) 

respectively. Here S is the thickness of the wall layer, 
which, according to ( 16)) is taken to be 42 wall units. The 
kernel KU is given by 

K#&,w:) = (U?:(k,,k3,X2)~(kl,k3,XS)). (36) 

The angle brackets indicate an ensemble average and the 
asterisk indicates a complex conjugation. The Fourier 
transformed velocities are given by 

qm’(kl,k3,x2) = c r: @%,X2,X3) 
Xl x3 

Xexp[2?ri(klxv’L1+k3xJL3)1, 

(37) 
where the superscript denotes the sampling times, 

@)(x1 x2 x3) =u.(x, x2 x3 mht) , , I’,> , (38) 

so that the ensemble average of a typical quantity is given 
by 

(*)$ z fP, (39) 
n-1 

where M denotes the number of members in the ensemble. 
To find the equation for T,,, we appeal to the spectral 

decomposition of the kernel KU (Mercer’s theoremJ6), 

Kij(kl,k3,x2,x;) = 2 A”‘JI!“(k,,k3,x,)1C;(“*(k,,k31X;). 
I 

(40) 

This may be truncated in view of the very rapid falloff in 
A”’ (see Foias et aL35 for an argument that these vanish 
exponentially) and substitute this and (33) into (35), to 
obtain 

7 tcli”‘(x2) [ c (A(‘) s,” ~~“*(x;)~~m’(x;)dx;) 1 T,,, 
m 

=a’“’ 7 Tnp,$‘) (x2). (41) 

This equation is valid for the entire channel, over which 
f #)(x2) ) are orthonormal, thus we obtain an eigenvalue 
problem for Tnm, 

AC’) 1 G,mT,,m=/2-~n~T,,I, 
m 

where 

(42) 

Gm = s 
’ lli*(‘)(x;)Il;!m)(x;)dx~. (43) 

0 

In matrix notation, (42) can be written as the eigenprob- 
lem 

A@(n) -&‘“‘t’“’ , (44) 

where A is the diagonal matrix with entries A’” and 
Tn,= tj”). The problem can be symmetrized under the 
transformation 

t=A’“s , 

i.e., 

A”2GA’/2s =As. (45) 

In view of the rapid falloff to zero of A”‘, we can comfort- 
ably truncate the infinite eigenvector problem posed by 
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tions and apply the Gale&in projection across the entire 
channel. In particular, we write 

;I. , 1 
0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400 .o 

woLL units 

(bl 

0 

c-4 1 

-L- 
tn 
‘: --- 7 ---, -- II-7 0.0 50.0 100.0 150.0 ZOO.0 250.0 300.0 350.0 400.0 

woLL units 

FIG. 2. A comparison of a channel eigenfunction and a waU eigenfunc- 
tion, the streamwise component, k, =0, k3= 1, q= 1. (a) Wall eigenfunc- 
tion; (b) channel eigenfunction. 

(45) [for each pair (k&s)]. In our calculations we took G 
to be a 32 x 32 matrix. Choosing larger matrices produced 
corrections of less than 0( 10w6). Inversely, if we go from 
a 16 x 16 matrix to the 32 X 32 case the wall eigenfunctions 
change 0( 10m4). 

It is important to keep in mind that in fitting a wall 
eigenfunction by 32 full channel eigenfunctions this is done 
for each wave number pair. For example, for the system of 
16 complex modes that we consider later, roughly 2” full 
channel eigenfunctions are used to represent the wall eigen- 
functions. 

Figures 2 (a) and 2 (b) show examples of a full channel 
eigenfunction and the analogous wall eigenfunction. 

V. EMPIRICAL DYNAMIC EQUATIONS AND 
SYMMETRY CONSIDERATIONS 

To derive the dynamic equations we follow the proce- 
dure outlined in Sets. II and III. We use the wall eigen- 
functions (31) developed in the last section as basis func- 
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where k= (kl,k3) and 

$n)=#jn)(k,xz)exp 2 i [ T (%+%)I. 

The Galerkin procedure is then given by 

(47) 

= s,“’ JoL’ J: Nj(uN)#jn)* exp[ -2n-i(klxl/L1 

+x3/L3)]dx2 dx, dx3=0, (48) 

where Nj is the Navier-Stokes operator (5) and j= 1,2,3. 
From (48) we then obtain the following dynamical system: 

; g,,(k) d,p, dt 

-I- 2 c Qbw,Wdd&%~kt 
nq k’ 

-Re, c c C(p,q,r,k’,n,k)a~)a~‘a~‘*, 
,w.r k’ 

(49) 

with coefficients 

g,mW = s ,‘&“%~.?*(k)dx,, (50) 

here and in the following, the argument x2 is suppressed in 
the #js, 

L(m,n,k,Re,) =L(‘)(m,n,k,Re,) +L~2)(m,n,k,Re*), 
(51) 

L(l) (m,n,k,Re,) 

=( -gmn(W[ e)it(F)‘] 

+ 0 s ’ @~“‘(k)$~“)*(k)dx2 (52) 
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Lc2) (?n,n,k,Re,) 

=Re, 

2rrikl x2(2-x2) -- 
Ll 2 

Q(P,q,k’,n>k)=-( l-&s) s 
,‘4y’(k’)fij(k-k’) 

X#q’(k-k’)#!“‘*(k)dx,, I I 

C(~,w,k’,~,k) 

= 

2nfkl 2 
+ Ll --s 

o q$“‘*(k)&‘(k) 
s 

f2 &‘(k’) 

x&‘*(k’)dx; dx2, 

(53) 

(54) 

(55) 

here fij(k - k’) = 2ni(kj - kj)/Lj if j=1,3, and 
Q(k-k’) =D=d/dxz. 

The system (49) can be reduced on the basis of phys- 
ical symmetries of the flow. In particular, 

ap;=ay 

and 

(56) 

#“‘(-k)+“‘*(k) .I J ’ (57) 

since the velocity is real valued. Since the flow is invariant 
under streamwise and spanwise translations, Xj~Xj+aj, 
j= 1,3, it follows that the dynamical system (49) is invari- 
ant under the rotational transformations, 

(n) 
=k -+ a?) exp ( iklal + ik3a3). (58) 

The problem also remains invariant under spanwise reflec- 
tion: 

(xI,x2,x3,%%~3) -+ (xI,xZ,--x3,~I,~Z,--u3), (59) 

and we find that” 

$;“‘(kl,-k,) =$$j’%,kd, (60) 

where I,=I,= 1, 13= -- 1. This leads to the invariance of 
(49) under 

af) +a$~,--k,j. (61) 

To see this we use relation (60), and can show that 

L(m,n,k*,Res) =L(m,rz,k,Re*), (62) 

Q(p,q,k’*,n,k*) =Q(p,q,k’,d4, (63) 

C(p,q,r,k’*,n,k*) =C(p,q,r,k’,n,k). (64) 
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Here k*= (k,, -k3). Thus Eq. (49) is invariant under 
(61) and reflection symmetry is maintained. 

VI. LOW-DIMENSIONAL MODEL EQUATIONS 

To model a real flow by a low-dimensional system re- 
quires ignoring all but a few modes. This has the effect of 
neglecting the dissipative drain of the missing modes. It 
should be clear that without this energy sink the retained 
modes will behave far too energetically, a state of affairs 
that is typical in insufficiently resolved numerical simula- 
tions. Usually this is accounted for, at least qualitatively, 
by the introduction of an eddy viscosity model, which as- 
sumes that the higher-order stress is proportional to the 
lower-order rate of strain, 

7; = -e(ui;+uJ5). (65) 

The proportionality constant e, is the eddy viscosity. Here 
< denotes the sum over all resolved modes (k,,k,,n), such 
that 1 k, I< kl,, 1 k,l <k,,, n<nd and > denotes the sum 
over all the modes (kl,k3,n), such that 1 k,l > lklcl or 
I k, 1 > k,, or n > its, where (kl,,k3,,n,) marks the cutoff 
mode. 

This is analogous to the approach by the Cornell 
group, who introduce the eddy viscosity through the 
Heisenberg energy transfer model. They then relate the 
eddy viscosity to the cutoff eigenvalue. However, a free 
parameter is still on the loose. The resulting equations, 
shown below, are the same in both instances and for the 
full formal treatment we refer to the work by the Cornell 
group. 

In order to facilitate comparisons with the results of 
the Cornell group, we adopt the severe truncation chosen 
by them, viz., n- 1, k= (0,k) in Eq. (46). For this specific 
truncation, there is only one nonzero index k3 = k in k and 
gm,( k) =g, r (k) = 1. On letting Ak = a:, we have 

d& x=L(k,Re,)Ak+ c Q.k~,k-k&tAk-k~ 
k’ 

--Re, c C(k’,kMklAk12, (66) 
k’ 

where k= 1,2,..., 5,Avk =/i&and 

L(k,Re,) =Lt2’(k,Re*) + (l+e)L(‘)(k,Re,), (67) 

LC2)(k,Re,) > 0 is the driving term, proportional to Re,, 
L”‘(k,Re,) <O is the damping term, proportional to 
l/Re,, and e comes from the eddy viscosity model. In 
what follows we will keep Re, fixed but vary e. 

An additional symmetry in the reduced equation (66) 
resides in the coefficient matrix for cubic terms. This fol- 
lows from 

C( k,k’) = 
s 

1 ~!“(k’)~:1’*(k’)~~1’*(k)~~1)~k)dx2. 
(68) 
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It is straightforward to see that C( k,k’ ) is Hermitian. Fur- 
ther, since k, -0, we can deduce from (57) and (60) that 
$jq’(k) 0’=1,2) h as o t b e real to satisfy the spanwise re- 
flection symmetry.9’10 Therefore, C(k,k’) is real symmet- 
tic. To see that this symmetry does not depend on the 
normalization of the eigenfunctions, we consider 

TABLE I. Results of our five-mode model equations. 

Behavior Eddy viscosity 

14.0>e>4.6 Intermittency 
4.5>e>4.1 Transition from intermittency to quasiperiodic 

4.2>e > 2.2 
solution 
Quasiperiodic solutions, chaos 

4jq’(k) -+&)(k)#jq)(k), (69) 
2.l>e>O Equilibrium, periodic, quasiperiodic, and chaotic 

solutions 

where a(Q)(k) represents normalization constants. It then 
follows that 

C(W) --t (ak ak# (l) (1))2C(k,k’), 

which remains symmetric. 

(70) 

VII. NUMERICAL STUDIES OF THE FIVE-MODE 
MODEL EQUATIONS 

found that they display intermittent, quasiperiodic, and 
chaotic behavior. The results are briefly summarized in 
Table I. 

It should be noted that the five-mode model is onlv 

We have carried out a careful and extensive numerical 
integration of our five-mode model equations and have 

composed of roll-like structures aligned in the streamwise 
direction. Thus, the amplitudes governed by the five-mode 
equations describe what is happening to the admixture of 
these rolls. In essence, we are observing spanwise shifts of 
the rolls. 
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FIG. 3. Regular intermittency, five modes, e=4.6. (a) real(A,); (b) reaI(A,); (c) real(A3); and (d) real(&). 
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mG. 4. Irregular intermittence, five modes, e=5. (a) real(A,); (b) real&); (c) real(A,); and (d) real(A,). 

Equation (66) can display two types of intermittent 
solutions for 4.6~ c< 14. (For large e, the system is frozen 
to the steady state.) The first of these we call regular and 
is shown in Fig. 3. The second, which we call irregular, is 
shown in Fig. 4. The distinction between the two classes 
can be seen in the time histories of the A1 mode. The time 
traces of at are comprised of short and tall spikes falling 
above and below the null state. If we characterize by + 1 a 
positive spike and by - 1 a negative spike, then we have a 
periodic sequence { . . . . l,l,-1,-l,l,l,-1,-l,... } in the 
regular case, and an aperiodic sequence {..., 1, - 1, - 1, 
- l,l,l,- 1, l,...) in the irregular case. The actual solution 
in the regular case need not be periodic, although it is the 
case shown in Fig. 3. Whether the intermittency is regular 
or irregular depends on the parameter e, and the initial 
conditions. Otherwise stated, regular and irregular spike 
solutions have different basins of attractions. Figure 5(a) 
shows the interspike intervals for a regular spike solution 
and Fig. 5(b) shows this for an irregular solution. The 
parameter e is the same for both these figures, but the 
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initial conditions are different. Clearly the regular solution 
is not periodic in this case. 

Equation (66) exhibits quasiperiodic and chaotic solu- 
tions when 2.2~ eG4.2. A transition from quasiperiodic to 
a chaotic solution is shown in Fig. 6. For two torus motion 
the situation can be conveniently viewed in three space. 
For this reason we have chosen to look at the three com- 
ponents of fluid velocity at some fiducial point, the location 
of which is unimportant. Since this carries more physical 
content than viewing the amplitudes, we will continue to 
adopt this picture, when possible, in what follows. As we 
see in Fig. 6 the quasiperiodic solutions appear on a twisted 
torus. As the parameter, e, changes, the torus becomes fat 
and can rotate by 180”, and collapses before chaos sets in. 
For each torus in Figs. 6(a)-6(c), there are just two fre- 
quencies: fi and fF For each frequency, f, in the power 
spectrum of such solutions, there are integers (iz,,n,), such 
that f=nIfi+nzfi, but the frequencies (fi,f2) change 
with the tori. The power spectra shift as a torus is stretched 
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number of spikes 

(b) 

7 I 0.0 25.0 -i&o 75.0 100.0 125.0 150.0 
number of spikes 

FIG. 5. The interspike intervals for the regular and irregular intermit- 
tency at one parameter e= 14, five modes. (a) Regular one, initial con- 
ditions are (0.4,0X), (-0.5,0.19), (0.78,-1.2), (-0.34,1.3), and 
(1.1,0.3); (b) irregular one. 

or rotated. Chaos appears to result from an unstable two- 
frequency quasiperiodic solution. 

The full range of solutions becomes quite complicated 
for O<e<2.1. We find equilibrium, periodic, quasiperiodic, 
and chaotic solutions. These solutions depend on the eddy 
viscosity e and on initial conditions. An interesting transi- 
tion occurs at e= 1.383 33. At this value we find a steady- 
state solution going into a quasiperiodic solution. There- 
fore, there appears to be a double-Hopf bifurcation, i.e., 
two pair of complex eigenvalues simultaneously crossing 
the imaginary axis. The same initial conditions in Fig. 5 (a) 
are chosen. 

A. Heteroclinic loop and effect of noise 

The solutions shown in Figs. 3-5 bear some similarity 
to those found by the Cornell group, who suggest that a 
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heteroclinic loop accompanied by noise is responsible for 
this behavior. In two subsequent studies, the equations for 
the two spanwise modes Al and A, were investigated in 
greater detai1,37 and the concept of “noise induced inter- 
mittency” was introduced.38 

For purposes of further discussion, we demonstrate 
here how a heteroclinic loop is involved in the problem. 
(For full discussions of heteroclinic loops see Guckenhe- 
imer and Hohnes39 and Wiggens.40) Equation (66) has 
equilibria for 1 Ait =const#O, with i=2,4 and Ai= with 
j=1,3,5. These equilibria are saddle points having one pos- 
itive and eight negative eigenvalues. Due to the rotational 
symmetry, there is also a zero eigenvalue. Corresponding 
to these eigenvalues there are unstable, stable, and center 
manifolds respectively. Suppose there exists a stable het- 
eroclinic loop, which consists of cycles connecting two of 
the equilibria, then asymptotically, a solution will remain 
close to the heteroclinic loop if no other stable solutions are 
present. The solution then stays close to the stable mani- 
fold of one equilibrium point for some time and runs away 
from the neighborhood of the equilibrium point along the 
unstable manifold of that point. The solution then is at- 
tracted close to the stable manifold of the other equilibrium 
point, and then undergoes similar behavior. Figure 7(a) 
shows a heteroclinic loop. When the solution runs away 
from the neighborhood of the unstable manifolds of the 
equilibria, spikes appear. Since there are two opposite di- 
rections on an unstable manifold, the spikes on the time 
history can be above or below the null state. As before, we 
have plotted the three components of velocity in Figs. 
7(a)-7(d) and the curves that are seen result from the 
numerical integration. For the periodic case the curves 
have no thickness. However, as tori set in the curves 
thicken. 

Our current study confirms that noise can have an 
important influence on a stable heteroclinic loop. For ex- 
ample, the regular intermittency obtained with O(lO-“) 
precision becomes irregular if the precision is reduced to 
0( 10e9). However, the existence of regular spike solutions 
suggest that the role of noise needs further investigation. If 
it were always noise that triggered a spike when a solution 
is near to an equilibrium point, it would push the solution 
randomly to either one of the two opposite directions of the 
unstable manifold, and only irregular spike solutions on 
the time traces would be seen. Obviously, this is not the 
case. Since it is our contention that some neglected mode 
with streamwise variations, which lie high above the noise 
floor, actually dominate the triggering process, whether 
spikes in our solutions are triggered by noise is not impor- 
tant. 

VIII. A DlSCUSSlON OF THE ORIGIN OF THE BURSTS 

The Cornell group suggest that the intermittent solu- 
tions of their five complex modes are related to bursts that 
are seen in the boundary layer. In the course of their study 
they found that the burst (spike) interval increases with- 
out bound, but if a small disturbance is introduced (e.g., 
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(4 

FIG. 6. A transition from quasiperiodic to chaos, five modes. (a) e=2.8; (b) e=2.75; (c) e=2.7; and (d) e=2.65. 

pressure fluctuations at the outer edge of the boundary fluctuations are two orders of magnitude smaller than the 
layer), then the interval between spikes can be made to maximum amplitudes of the variables A, As we will see in 
become bounded. Since the pressure fluctuations were ne- the next section, neglected modes with streamwise varia- 
glected in their model, they argue that the fluctuating pres- tions are the same order of the modes we kept so far and 
sures from the outer boundary layer trigger the bursts. play a more important role. 

In view of the results presented thus far the origin of 
the bursts requires further investigation. In this regard two 
remarks deserve mention. First, it is clear from our delib- 
erations in Sets. II and III, that both the fluctuating pres- 
sure and the velocity at the outer edge of the wall region 
can affect the flow. Specifying the pressure alone at the 
outer edge of the wall region is not sufficient to solve the 
flow problem in the wall region. Two additional boundary 
conditions are required for a well-posed formulation. Sec- 
ond, as will be seen in Sec. X, adding modes with stream- 
wise variations to the model equations changes the behav- 
ior in an essential way. If bursting needs a trigger there are 
sound reasons to believe that it is furnished by certain 
neglected modes with streamwise variations. In the Cornell 
model, it was noted that maximum amplitudes of pressure 

IX. PROPAGATING AND NONPROPAGATING MODES 

In examining the structures in the full simulation of 
turbulent channel flows, it was found that two classes 
emerged; propagating modes and nonpropagating 
modes.26’27 This we now briefly review. As discussed ear- 
lier, the eigenfunctions factor into Fourier components in 
the streamwise and spanwise directions due to homogene- 
ity, but take on a more complicated form in the wall nor- 
mal direction. For each mode, one streamwise wave num- 
ber, k,, one spanwise wave number, k,, and one vertical 
quantum number, 4, enter. The projection of a Bow along 
a channel eigenfunction, 

2865 Phys. Fluids A, Vol. 4, No. 12, December 1992 X. Zhou and L. Sirovich 2865 

Downloaded 29 May 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



FIG. 7. A demonstration of a heteroclinic cycle and the transition to quasiperiodic solution, five modes, the same initial conditions as in Fig. 5 are 
chosen. (a) e=4.6, heteroclinic loop and equilibrium points. (b) e=4.5, (c) e=4.45, (d) e=4.3. 

,4iq’ = (Vf$l, , (71) 

furnishes a time history of the mode amplitude, and its 
phase is defined by 

8Lq)=tan-‘[Im(Aiq))/Re(Aiq))] , 

and from it the frequency is given by 

(72) 

miq’ = lim Oiq)/t. (73) 
t-m 

It was then determined from the simulation that for all 
significant modes, 

d&#Q kl#O (74) 

and 

(q) -0. 
@0,k3 - (75) 
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The modes corresponding to (74) are termed propagating 
and the modes in (75) nonpropagating or degenerate. The 
contribution of the propagating modes to the fluctuating 
velocity can then be written as 

@‘=@‘(t)Ij. 
/ 

jq)ei(oF)t+k*x’) 
9 (76) 

here x’ =2rr(x1/L1,x3/L3) and bLq’ (t) is the amplitude of 
ALq’. Clearly, (76) has the form of a propagating plane 
wave when (74) holds. The coefficient, biq) (t), exhibits the 
irregular temporal behavior that is typical of variables 
found in turbulent flows. 

In the cited references, arguments were presented, 
which indicate that the propagating modes act as triggers 
in the bursting process. 
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X. EMPIRICAL DYNAMICAL SYSTEMS WITH 
PROPAGATION 

Our goal in this section is to produce more realistic 
models based on the inclusion of propagating modes and 
by virtue of this to include three-dimensionality. 

We begin with the general ordinary differential equa- 
tions (49) and continue to adopt the eddy viscosity model. 
To obtain reduced systems, we only add the quantum num- 
bers equal to one mode (q= 1). The relation 
g,,,,(k) =gt 1 (k) = 1 remains true. If we set Ak = a:, the 
equations take the form 

dfh 
x=L(k,Re,)Ak+ c t?(k’,k)&Ak--kt 

k’ 

-Re, c C(k’,k)& I&, 1 2. 
k’ 

In the numerical studies, we focus on a 16-mode model, in 
which the modes with k,=O, k3= 1,...,5 and k,= 1, k3=0, 
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TABLE II. A summary of numerical integrations. 

Eddy viscosity Behavior 

14.0 > e > 4.6 
4.6>e>4.2 

-4.2>e>O 

Tntermittency 
Transition from intermittency to chaotic 
and quasiperiodic solutions 
Chaos, quasiperiodic solutions 

*1 ,..., f 5 are included. For comparison, we also include 
results from a 27-mode model, in which the modes with 
k,=O, k,=l,..., 5 and k,=1,2, k3=0, kl,..., h5 are in- 
cluded. The propagating modes included in these group- 
ings correspond to the most important found in Refs. 26 
and 27. The importance here is not solely based on energy 
content, but the ability to interact with the main energy 
bearing modes, which corresponds to k,=O. These impor- 
tant propagating modes are best able to interact with the 
energy modes. 

Through numerical integration, we have found that 
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FIG. 8. Irregular intermittency, 16 modes, e=4.6. (a) real(&); (b) real(&); (cl rea1L-W; (d) real&d; (e) real(A,,); (0 realCAl+-,); (g) 
velocity; (h) the power spectrum of (g); and (i) three velocity components. 
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our model equations display intermittent, quasiperiodic, 
and chaotic behavior. A summary of the numerical inte- 
grations of the 16-mode equations is given in Table II. 

For large enough values of e, all propagating modes 
are damped to zero. As before, we chose to stop at e= 14. 
When 14)e)4.6, intermittent solutions occur; the time 
history of mode A,, is comprised of spikes, as before; A,, 
oscillates between two nonzero steady states, and so forth. 
The propagating modes all vibrate chaotically. Figures 8 
show the results. The time trace of Aor resembles what was 
earlier called irregular intermittency. However, the propa- 
gating modes are clearly chaotic, and the power spectrum 
shown in Fig. 8 (h) verifies this. (If the eddy viscosity is 
increased to e=5 the picture closely resembles the case of 
regular intermittency discussed earlier.) In Fig. 9 we show 
a more violently chaotic case and in Fig. 10 we show a 
transition from a quasiperiodic to a chaotic solution, which 
appears to follow the Ruelle-Takens-Newhouse route,41 

(01 
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i.e., first there is a torus, then it becomes unstable and 
chaos appears. 

The power spectra of the intermittent and chaotic so- 
lutions have two peak frequencies [see Figs. 8 (h), 9 (h), 
and 10(d)]. We term the high-frequency peak thepreferred 
coyeyy, which results from the presence of propagating 

If we compare the numerical results of 16 modes and 5 
modes, it is clear that adding the propagating modes to the 
five-mode equations changes the solutions in an essential 
way. It is interesting to observe that the propagating modes 
change the regular intermittency to an irregular one (com- 
pare Figs. 3 and 8). Comparison of the phase spaces shown 
in Figs. 7(a) and 8 (i) shows that a dramatic change occurs 
when the propagating modes are added to the model. 

Figure 11 shows some statistical results, which follow 
from our 16 model equations, at e=4.1, and compare this 
with the data from the original full simulation.‘5 The max- 
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7 , I I I f I 1 1 
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FIG. 9. Chaos, 16 modes, e=4.1. (a) real(&); (b) real(&); (c) velocity, real(&); (d) real(&); (e) real(A,,); (f) real(A,,-,); (g) velocity; and 
(h) the power spectrum of (g). 
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FIG. 9. (Continued.) 

imum of the Reynolds stress, - ii& appears at x~N~O+, 
and the maximum of the I(,~, root of mean square velocity 
of the streamwise component, appears at x2=15+. The 
location of the peaks fall almost exactly on the values from 
the original full direct numerical simulation. The maxi- 
mum of a,, itself, however, is larger than the correct value 
and v,, is below the exact curve; the Reynolds stress, 
- Uv, is also smaller than the correct values. This occurs 
since the streamwise components of the KL eigenfunctions 
involved are much larger than the normal components, 
and only relatively few modes are included. The instanta- 
neous Reynolds stress is plotted in Fig. 12. 

Modes for which k,= 1 show propagation in all the 
cases we consider. In Fig. 13 we plot the time courses of 
the magnitudes and phases ofA, with k= (l,k,). Although 
the amplitudes change with time chaotically, the phase 
shows a secular linear decrease. The difference between the 
curve and a strict straight line is too small to be seen. 
Contributions of such modes to the fluctuating velocity can 

thus be expressed as (76), i.e., they are propagating modes. 
As mentioned above,26Y27 these propagating wave struc- 
tures appear in large-scale simulations of wall bounded 
turbulent flow. 

The frequency associated with one of the propagating 
modes (k, = 1 ), defined by (73), exhibits itself in the spec- 
trum as the preferred frequency. To illustrate this we plot 
the power spectrum for the five-mode dynamic system in 
Fig. 14 for comparison with Figs. 8(h), 9(h), and 10(d). 
It can be seen that the preferred frequency disappears in 
Fig. 14. To further indicate that the frequencies of propa- 
gating waves show themselves in the power spectra as pre- 
ferred frequencies, we also show the result of integrating a 
27-mode system, in which the modes with streamwise wave 
number k,=2 are also included. As shown in Fig. 15, an- 
other preferred frequency appears. The ratio of two fre- 
quencies is roughly two. It is anticipated that as more 
propagating modes are included in the dynamic equations, 
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FIG. 10. A transition from quasiperlodic solution to chaos, 16 modes. (a) Quasiperiodic solution at e=4.07; (b) the power spectrum of u2; (c) chaos 
at c=4.09; and (d) the power spectrum of u2. 

more peaks will appear on power spectra. An indication of explain some results from the full simulations in Refs. 26 
this has been observed in experiments31 and 27. The investigation will be presented elsewhere. 

Xl. CONCLUSIONS 

By developing a method for the construction of “wall” 
eigenfunctions with full channel validity, it has been pos- 
sible to avoid the unknown inhomogeneous terms. The 
methodology is not restricted to the channel flow, and we 
can envision employing the procedures presented here in a 
variety of other turbulent flows. 

Our investigation of the five mode system appears to 
confirm the presence of heteroclinic cycles. From the study 
of 16 and 27-mode model equations, we find that propa- 
gating and nonpropagating modes, which appear in the full 
simulations,26,27 also exist in these much smaller systems. 
This result has inspired us to further investigate dynamical 
equations including any number of modes and discover 
general periodic solutions. The discovery can be used to 

By enriching the model with the addition of key prop- 
agating modes the bursting process is altered in an essential 
way. The resulting ccsmall” systems comprised of 16 and 27 
modes show remarkable qualitative agreement with full 
simulations. It appears that the propagating modes lie 
more at the heart of the triggering mechanism for the 
bursting process than does the idea of pressure fluctua- 
tions. One can now hope to deal with the mechanisms for 
bursting, as found in small systems. For example, the no- 
tion of control can be considered within this framework. 

The idea of propagating waves can also be associated 
with ideas from transition theory. As mentioned in Refs. 
26 and 27, propagating modes, the most significant of 
which propagate at an angle of roughly 65” to the stream 
direction, bear a strong resemblance to the secondary 
waves of stability theory, which are known to trigger in- 
stability in laminar flows.4244 Therefore there is a strong 
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WOLL uni.t 

WILL unit 

FIG. 11. A comparison of the statistics with the full simulation; data 
from the original simulation are marked; the solid lines are from 16 modes 
at e=4.6. (a) Average Reynolds stress --uu; (b) root mean square ve- 
locity of streamwise component, u,,, and normal component, u,. 

physical suggestion that oblique waves are a necessary 
mechanism in the process. Both the 16- and 27-mode dy- 
namical systems contain these traveling waves and gener- 
ate behavior closer to reality. Five-mode theory, on the 
other hand, lacks this essential feature since it contains no 
streamwise variation. 
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APPENDIX: NUMERiCAL COEFFICIENTS 

The numerical values of coefficients in (66) are the 
following: 
Linear terms, 

L”‘= -(0.308,0.524,1.037,1.640,2.447), 

L(2)=(7.07,12.34,16.19,19.91,20.66); 

quadratic terms, 

(Q-12,Q-23,Q-34,Q-4~) = (0.837,1.392,2.225,2.779), 

(Q-1s,Q13,Q22) = (2.240,~0.878,--0.676), 

(Q14,Qz3) = ( - 1.279, -0.992); 

and cubic terms, 
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the phase of the A,, mode; and (d) the amplitude of the A,, mode. 
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FIG. 15. A power spectrum of u2, 27 modes, e=4.1. 
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Note, all the numerical integrations of ordinary differ- 
ential equations (ODE’s) were done on the Cray of Pitts- 
burgh Supercomputing Center. A sixth-order Runge- 
Kutta method with step size 0.01 is employed. The results 
are taken after the first 20 000 steps. If not otherwise 
stated, the initial values for the integrations are Ak 
= [cos(0.5*k),sin(0.5*k)], with k= 1,2 ,..., Ic The values of 
the parameters are from the original simulation, i.e., 
Re,=u*H/Y=180, L,=~T, and L,=4?r/3. 
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