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Results of numerical simulations of plane turbulent channel flow are presented in which a 
forcing is introduced which derives from the randomization of selected Fourier modes. 
In all cases, the randomization is introduced uniformly throughout the channel. The properties 
of the resulting turbulence are strongly dependent on both the wave numbers whose 
phases are randomized and the ‘forcing frequency. Two principal wave-number bands have 
been selected. The first includes a selected subset of the largest length scales of the 
turbulence. Forcing in this band results in a fully sustained maximum mass flux increase 
above that of normal turbulence of 30%, which translates into a drag reduction of 58%. Many 
of the statistical properties of the simulated drag-reduced turbulence generated in this ’ 
manner are in good qualitative agreement with the statistical properties of turbulence observed 
in experiments in which drag reduction is achieved through the introduction of small 
concentrations of long-chained polymers into the flow. In a second set of simulations, the 
phases of the intermediate and smallest wavelengths were randomized. Forcing at 
these scales of motion results in a drag increase. Speculations on the mechanism of the drag 
reduction by phase randomization are offered. 

1. INTRODUCTION 

In this paper we demonstrate, by direct numerical sim- 
ulation, that a significant drag reduction can be obtained in 
turbulent channel flow by introducing a periodic random- 
ization of the’phases of selected Fourier modes of the ve- 
locity field. Motivation for the current investigation is due 
in part to the recent discovery’*2 of propagating modes in 
turbulent channel flow, and to prior random phase calcu- 
lations in homogeneous3’4 turbulence. In the work cited 
above, it was determined that the interaction of the wave- 
like modes with streamwise oriented roll modes generate a 
significant fraction of the bursting activity in channel flow 
turbulence. The roll modes themselves, which represent 
streamwise oriented vortices, are found to contain a large 
fraction of the turbulent energy that is released during 
bursting events. 

These observations prompted us to determine the 
length and time scales of the turbulence which may be 
most important in determining turbulence production and 
the subsequent generation of drag. That is, we seek to de- 
termine if the perturbation of the wavelike modes can pro- 
duce significant changes in the turbulence. Here we use the 
method of phase randomization, to be described below, 
which allows for the selective perturbation of the turbu- 
lence in a manner which does no work on the flow. We 
indicate below that a randomization of the phases of se- 
lected Fourier components of the velocity field is equiva- 
lent to a velocity-dependent forcing in physical space. This 

*%hsent address: ORMAT Turbines Ltd., New Industrial Area, P.O. 
Box 68, Yavne 70650, Israel. 

forcing in no way violates the fundamental governing equa- 
tions. A further objective here is to give guidance to exper- 
imentalists who seek new methods of modification and 
control of turbulence rather than to suggest specific phys- 
ical experiments. In this sense, no matter what method is 
chosen to perturb the turbulence (i.e., wall movement, 
acoustic excitation, suction, or blowing), knowledge of the 
length and time scales which are active in generating drag 
is of critical importance. 

An unexpected result of our work is that a phase ran- 
domization of the wavelike modes produces drag-reduced 
turbulence with many of the characteristics observed in 
experiments516 in which drag reduction is produced by in- 
troducing small concentrations of high molecular weight 
polymer into the flow. We describe below the similarities 
and some differences between the phase-randomized tur- 
bulence and the polymer case. We emphasize that even 
though the similarities between these two cases are remark- 
ably close, we in no way imply that the physical mecha- 
nism(s) by which polymers reduce drag are the same as in 
the phase-randomized case. Nevertheless, given the lack of 
a complete understanding of polymer-induced drag reduc- 
tion, which is reflected in the existence of several compet- 
ing theories, we maintain that a direct comparison between 
the polymer case and the forced turbulence may lead to a 
better understanding of both. Our intent here is not to 
imply that polymers literally randomize the phase of se- 
lected wavelike modes but that some form of analog, be- 
tween the two cannot be ruled out. In any case, the striking 
similarities between these two cases warrants a comparison 
which we give in Sec. IV. 
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II. NUMERICAL METHODS 

We have performed direct numerical simulations of 
turbulence in a periodic channel with rigid no-slip walls. 
Following earlier treatments7’* a fully spectral code is used, 

c in which the velocity field is approximated by Fourier 
modes in the streamwise (x) and spanwise (z) directions 
and Chebyshev polynomials in the wall-normal (y) direc- 
tion. In the present instance the turbulent flow is driven by 
a constant streamwise pressure gradient. For all simula- 
tions reported here we have used 65 x 64 x 48 grid points in 
they, z, and x directions, respectively. The channel dimen- 
sions are L,,=2h, L,=5h, and L,=lOh, where h is the 
channel half-width. In our simulations, the velocity field 
u= (u,u,w) where U, v, w are the streamwise, wall normal, 
and spanwise components, respectively, is given by 

N/Z- 1 M/2-1 ,P 

u(w) = c c c a,,TP(y)ei(kfi+kd’, 
II=-N/2 m=-M/2 p=O 

(1) 

where T,(y) denotes the Chebyshev polynomials, and the 
wave numbers are defined by k,=2vn/L, and 
k,=2rm/L, 

The effect of the above-mentioned phase randomiza- 
tion is equivalent to a forcing term in the Navier-Stokes 
equations as follows: 

Du 
p ~+Vp-@~u= c F,[ulG(t--tJ, n 

(2) 

where p is the density and ,u is the viscosity. In addition we 
enforce the incompressibility constraint: 

v*u=o, (3) 

and the boundary conditions 

u=O, y/h.= f 1. (4) 

Several forms for the function F,[u] were used and in all 
cases the force is workless 

F,*u=O. (5) 

For the cases reported on here selected coefficients anmp, at 
the discrete times, t,,, were given a random phase shift, 

hnp-+ ei+nmantnp , (6) 

where +,, is independent of y. Kinematical consistency 
requires that the transformation (6) be applied to the vor- 
ticity field simultaneously. Clearly (6) preserves continuity 
and shifts the turbulent eddies or waves with respect to 
each other without in any way changing the energy of the 
tlow. The no-slip boundary conditions (4) are also pre- 
served by (6). Although the times, t,, were chosen to be 
uniform this is unnecessary and a shot-noise distribution of 
intervals should not change our results. The workless na- 
ture of the forcing described in (2) has been emphasized 
only to underline the fact that the forcing is nonintrusive. 
More intrusive forcing mechanisms, some of which hav’e 
been mentioned in the Introduction, may in fact be equally 
effective. In fact, two experiments based on the results of 

these simulations are now in progress. One uses acoustic 
excitation and the other vibrating ribbons to achieve the 
desired forcing. 

Before applying random phasing we integrated for- 
ward in time until a steady state was established. This was 
shown to satisfy the averaged form of the streamwise mo- 
mentum equation for statistically steady turbulence: 

y ii v do 
h=U*2-U*2dy’ (7) 

Since the right-hand side of (2) averages to zero (7) re- 
mains valid. Here, y=O is the channel centerline, u* 
=d-r r p is the friction velocity, r, is the wall shear stress, 
Y is the kinematic viscosity, 0 is the mean velocity, and 
z is the Reynolds stress. Equation (7) was verified by 
averaging the flow over a time interval 
ATu*~/v= AT+ =4687. We estimate that for this flow the 
large eddy turnover time, T,, is measured by 2h/u’ where 
u’ is a typical root mean square fluctuation level. The mag- 
nitude of the peak streamwise velocity fluctuation, u’/u*, 
is about 2.6 and for our flow, the driving pressure gradient 
is chosen so as to achieve a friction Reynolds number, 
R*=u*h/v, of 125. These values give T,~*~/v=T$=96 
so that the ratio of total run time to the eddy turnover time 
for this simulation, which we refer to as normal turbulence, 
is about 50. Once we have established a steady-state tur- 
bulence in this way the phase randomizations are turned 
on. 

111. RESULTS: LOW-WAVE-NUMBER PHASE 
RANDOMIZATION 

For the first set of simulations we apply phase random- 
ization only to the band of low-wave-number modes for 
which 

l<n<ll; lrn1<6. 

This band represents, approximately, an isotropic random- 
ization such that 

where k,,, = 32x (27r/L,) is the largest wave number in 
the simulation. In doing this the intention is to interfere, 
and produce incoherence in the propagating modes which 
have been shown to trigger the bursting events that are at 
the heart of drag production. The streamwise homoge- 
neous modes, n=O, 1 m  I<6 are excluded since these 
modes, referred to as kinematically degenerate modes, do 
not propagate. In fact these modes correspond to the 
streamwise rolls or streaks.‘,” The result of including the 
roll modes and further discussion appears in the following 
sections. Five simulations for this wave-number band have 
been performed ( runs LK l-LK5 ) . 

In each run, the time interval between phase random- 
izations, AT? = ATgP2/v, where AT, is the time interval 
between phase randomizations in computational units, has 
been changed; ATf was varied from 4.69 to 23.44, where 
AT: =4.69 represents 60 computational time steps. A 
summary of these and other results is given in Table I. 
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TABLE I. Summary of global properties for all simulations. 

Run AT+ AT; R, 3 Rb/Ro, DR(%) 

Normal turbulence 4 687 00 1850 125.0 1.0 0.0 
LKl 10 156 4.69 2353 124.9 1.27 +52 
LK2 10 156 9.38 2414 127.2 1.30 $58 
LK3 10 156 14.06 2244 125.7 1.21 +a 
LK4 10 156 18.75 2153 125.0 1.16 +30 
LK5 10 156 23.44 2030 124.3 1.10 +18 
LKO 5 078 4.69 1953 124.5 1.06 +11 
NO’ 5 078 4.69 1829 123.0 0.99 -2 
HKl 5 078 4.69 1760 124.4 0.95 -9 
HK2 5 078 23.44 1831 125.2 0.99 -2 
HK3 5 078 4.69 1921 126.0 1.04 i-7 
Laminar ilow 5208 125.0 2.74 +483 

Each simulation was run for 130 000 time steps which cor- 
responds to AT+ = 10 156, and took approximately 45 h 
on’ a Cray-YMP. Each run represents approximately 100 
large eddy turnover times, and, for example, run LKl rep- 
resents 2 160 phase randomizations. Complete realizations 
of the velocity field were stored every 3250 time steps. For 
each simulation we have used identically the same initial 
condition which is taken to be a fully developed realization 
of the normal turbulence simulation mentioned above. 

in Fig. 1 we display, for run LKl, the dependence of 
the mass flux Reynolds number, Rb= U&I/Y [where 
Ub= 1/2hJfjho(y>dy] and R* versus time, T+ =tu*2/v, 
where t is the computational time. It is evident that, im- 
mediately after turning on the phase randomization, the 

Rb 
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R* 
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2 

u.0 1.0 5.4 3.” 4.0 5.0 6.0 7-o 8.0 9.0 10.0 
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T+ 

FIG. 1. Mass flux and friction Reynolds numbers versus time for drag 
reduced turbulence. Results are for ATz=4.69 (run LKI). (a) Rh vs 
T+; steady-state result for normal turbulence, R,= 1850 (- - -). (b) R* 
vs T+; steady-state result for constant pressure gradient turbulence, 
R*=125 (...). 
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drag drops rapidly, as indicated by the results for R*, and 
reaches a minimum value in about ten large eddy turnover 
times. Since the flow is driven by a constant pressure gra- 
dient, it must achieve the same value of R*=125 that it 
will achieve had there been no random forcing. Figure 
1 (b) traces the recovery of R* back to its expected value. 
The mass flux Reynolds number increases sharply during 
the period of reduced drag. This is expected since during 
this time interval there is an imbalance between the driving 
pressure gradient and the wall shear leading to an acceler- 
ation of the liow. From Fig. 1 (a) it appears that the 
steady-state mass flux for run LKl is substantially higher 
than the steady-state mass flux for normal turbulence. The 
flow in this case reaches nearly a statistically steady state at 
about Tf =4000. The data obtained subsequent to this 
time (which differs from case to case) is used in all runs to 
determine all turbulence statistics which we present in this 
paper. In all runs we have verified that the flow is statisti- 
cally steady by determining that (7) is satisfied to within 
3% in all cases. 

In Table I we summarize the overall properties of the 
flow in each simulation. In run LKI we note that R6, 
where the overbar denotes averaging only during the 
steady state, is 27% larger than in normal turbulence, 
whose mass flux Reynolds number, Rt= 1850. (We note 
that the experimental correlation of Dean” predicts 
Rg= 1824 for normal turbulence which is in good agree- 
ment with our result.) It is also possible to estimate the 
drag reduction, 

DR= (ri -rc)/re, 

where r1 is an estimate of the wall shear stress for normal 
turbulence with the mass flux in the simulated flow, and re 
is the wall shear for normal turbulence. (From Dean” we 
have r cc Ui’4.) For run LKl, the drag reduction is 52% on 
this basis. Results for Rb and R* for run LK5, for which 
the randomization time is AT: =23.44, are shown in Fig. 
2 and Table I. It is evident that in this case the drag re- 
bound, after the initial drag decrease, is somewhat stronger 
than for run LKl. It is also apparent that the fluctuations 
iii both Rb and R* are both larger in amplitude and larger 
in time scale than for run LKl. In this case the mass flux 
increase is 10% and the corresponding drag reduction is 
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FIG. 2. Mass flux and friction Reynolds numbers versus time for drag 
reduced turbulence. Results are for AT: =23.44 (run LK5). (a) R, vs 
Tt; steady-state result for normal turbulence, Rb= 1850 (- - -). (b) R* 
vs Tf; steady-state result for constant pressure gradient turbulence, 
R*=125 (a..). 

18%. These results clearly demonstrate that a substantial 
fully sustained drag reduction can be obtained by a phase 
randomization of a relatively small subset of the available 
Fourier modes and that the active modes are the ones rep- 
resenting the largest length scales, excluding, as mentioned 
above, the longest streamwise modes. Furthermore, the 
largest drag reduction obtained in this manner (58% in 
run LK2) is comparable to the percent drag reduction 
observed experimentally5’6 which can be on the order of 
60% for the largest polymer concentrations. We note that 
these drag reductions have been achieved without in any 
way attempting to optimize the effect except insofar as we 
have varied AT,f and the wave-number band in which the 
random force acts. 

IV. COMPARISON WITH POLYMER ADDITIVE DRAG 
REDUCTION 

It is of interest to compare the details of the turbulence 
statistics we have obtained with those obtained from poly- 
mer drag-reduced flows. Before proceeding, we caution 
that although our results resemble, in many respects, the 
kind of turbulence observed experimentally in polymer 
flows, certain differences do exist. These differences, which 
will be pointed out below, indicate to us that the mecha- 
nism of drag reduction obtained by phase randomization is 
likely to differ in certain respects from the polymer mech- 
anism. It is difficult to compare our results directly with 
those from polymer experiments for several reasons. First, 
the more recent experiments12713 were performed at Rey- 
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nolds numbers that were five times larger than our direct 
simulations. Second, it is not possible at the present time to 
determine the correspondence, if any, between the random- 
ization frequency in our simulations and the polymer con- 
centration. Finally, it may be the case that many drag- 
reduced flows have common statistical features. (On the 
other hand, a recent numerical simulation’4 shows that this 
is not always true.) If this is the case, then our simulations 
provide a range of new statistical measures for such drag- 
reduced flows. As an aid in making such a comparison we 
briefly summarize the more widely accepted polymer- 
induced effects on turbulence statistics and structure. 

The introduction of polymers increases the size of the 
buffer layer of the turbulent mean velocity profile which 
exists in normal turbulence in the region 5<y+<30, where 
y+ =yu*/v. The logarithmic layer, which exists in our nor- 
mal turbulence calculation in the region 3O<y+<lOO, and 
which obeys the law 0’ = VK ln(y+ ) + B where K is von 
K&man’s constant, and u+ = o/u*, is preserved in drag- 
reduced polymer turbulence. It has been conjectured5’6 
that the persistence of the log layer in the polymer case is 
evidence that the polymers have no significant effect on the 
energy containing eddies. Experiments” suggest that drag 
reduction is induced only when polymer molecules are in- 
jected into the buffer layer, though recently it has been 
found, and apparently now disputed, that drag reduction 
may also occur with injection only at the centerline.‘6’8 It 
is clear,” however, that no drag reduction occurs when the 
polymer is confined to the sublayer (Y+‘“‘5). 
Experiments 12*13 also indicate that the peak value of u’, the 
root mean square value of the streamwise velocity compo- 
nent, is larger in polymer turbulence compared to Newton- 
ian turbulence. Also, this peak value is located farther from 
the wall in the polymer case. The wall-normal component, 
v’, has been found to be damped12*i3 throughout the flow 
and w’ is reduced near the wall.“) It has also been 
established12*13 that G is reduced in polymer turbulence 
and the position of its peak value shifts farther from the 
wall. 

In Fig. 3 we plot i?+ for simulations LKl-LKS. It is 
evident that phase randomization, in agreement with the 
polymer case, enlarges the buffer layer. In contrast to ex- 
periments, however, the logaritmic layer appears to have 
been eliminated in our simulations. We recall that in the 
polymer case, however, the logarithmic layer persists. 
However, for our normal turbulence calculation, the loga- 
rithmic layer is seen to be of limited spatial extent as a 
result of the relatively low Reynolds number of the simu- 
lation. Thus it would be premature to attach any signifi- 
cance to this feature of the calculation. Clarification of this 
issue must await simulations at higher Reynolds numbers 
where we can expect a larger and more clearly defined 
logarithmic layer. 

In Fig. 4 we show the turbulence intensity profiles for 
runs LKl and LK5. It is evident in both cases, that the 
peak value of U’ is significantly larger than in normal tur- 
bulence and also that its distance from the wall has in- 
creased. These results are clearly consistent with results for 
polymer flows. For run LK5 we find that both v’ and w’ 
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FIG. 3. Mean velocity profiles. Steady-state profile for normal turbulence 
simulation (-). Steady-state profile for AT: =4.69 (---). Steady- 
state profile for AT: =9.38 (- - -). Steady-state profile for AT: = 14.06 
(- . -). Steady-state profile for AT: = 18.75 (A). Steady-state profile for 
hTz=23.44 (f). Law of the wall, i?/u*=2.5 hr(y+)+5.5 and 
U/u*=y+ (.-.). (The results shown here and in subsequent figures were 
obtained by averaging data from both sides of the channel.) 

are significantly reduced throughout the entire domain, 
which is also in harmony with known polymer results. For 
the intermediate cases, LK2-LK4, the intensity profiles are 
all qualitatively similar to run LK5. In run LKl, the case 
corresponding to the highest forcing frequency, it is evi- 
dent that the peak values for v’ and w’ occur at the channel 
centerline and are well above normal turbulence levels 
there. Of the five simulations, run LKl is the only one 
which gives v’ results that differ qualitatively from polymer 
results. In Fig. 5 results for the Reynolds stress and the 
turbulence production, G( do/~!y), for both runs L.Kl and 
LK5 are shown. In both cases, E is reduced and the loca- 
tion of its peak shifts from the wall to the core region 
which is consistent with the previously cited experimental 
results. It should be observed that in the case of polymer 
additives Rq. (5) is replaced by 

- 
UV vdo ~7, 

-uy”+u*2dy=---j;pII*2’ (8) 

where 7, represents the stress contribution from the vis- 
coelastic effect. As noted above, our results obey (7), 
whereas in the polymer case the additional stress r, is 
significant.‘3 It is also apparent that phase randomization 
reduces the peak value of the production and shifts it far- 
ther from the wall. Recent experiments” clearly indicate 
the shift away from the wall but only a weak decrease in 
the peak value of the production. The experiments do 
show, however, a reduction in the channel-average produc- 
tion of U. 

lo 
i 

0 
; 

0 
x ~~~ r--“~- --T r--- 

0.0 25.0 50.0 75.0 100.0 125.0 

Y+ 

FIG. 4. Root mean square turbulence statistics. (a) Run LKL, 
AT: ~4.69; (b) run LK5, AT,f =23.44. Normal turbulence: z//u* (U); 
u’/u* (A); w’/u* (X). Drag-reduced turbulence simulation: u’/u* 
(---); d/u* (---); id/u* (.-.). 

V. FURTHER RESULTS 

In Fig. 6 the time history of the mass flux Reynolds 
number is shown for all runs. A particularly interesting 
behavior is noted in runs LK2, LK3, and LK4. In these 
cases, the initial rise in the mass flux is sustained for a 
remarkably long time period (on the order of 4700 viscous 
times for run LK2) before decreasing rapidly as the flow 
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Y+ 

FIG. 5. Reynolds stress and turbulence production of the streamwise 
velocity component. (a) Run LKl, ATT=4.69; (b) run LK5, 
AT: =23.44. Reynolds stress, $u**; normal turbulence (-); drag- 
reduced turbulence (-- -). Turbulence production, 5 X l(do/dy) 
X (v/u*“); normal turbulence (A); drag-reduced turbulence simulation 
(+I. 

approaches a statistically steady state. We also note that 
the peak value of Rb in runs LK2 and LK3 is quite high 
( -3300) when we consider that for the same pressure 
gradient Rb=5208 for laminar flow. Further understand- 
ing of this phenomenon is achieved by referring to Fig. 7 
where we plot R* versus time for run LK2. It is evident 

FIG. 6. Mass flux Reynolds number versus time for all simulations. 
AT:=4.69 (run LKl)w, ATF=9.38 (run LK2):...; AT:=14.06 
(run LK3):---; AT,f=18.75 (run LK4):- . -; AT,f=23.44 (run 
LK5):---; AT:=4.69 (run LKO): A; AT:==4.69 (run HKl): +; 
AT:=23.44 (run HK2): X; AT:=4.69 (run HK3): 0; AT:=4.69 
(run NO): V; steady-state result for normal turbulence, R,,= 1850: H. 

that R* remains well below its steady-state value until, at 
tf 54500, it rapidly rises to a peak in only a few hundred 
viscous time units. We have found that during the period in - 
which R* is near its minimum value, v’, w’, and uv are 
approximately one order of magnitude smaller than in nor- 
mal turbulence, though U’ is near normal levels. This be- 
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x- 4 __ ._ __ _. _. 

9 
E- -3 

;~~--~ I- .,~~ ,-..- 1~ ~~1 ~.. T-, 
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FIG. 7. Friction Reynolds number versus time for run LK2. Steady-state 
result for normal turbulence, R*= 125 (. . .). 
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havior leads us to conjecture that the flow is in fact relam- 
inarizing. The subsequent rise in wall shear and rapid drop 
in mass flux indicates that the flow is undergoing a transi- 
tion back to a fully turbulent state. Subsequent to this 
transition the flow approaches a steady state though we 
appear to observe another weaker transition toward the 
end of run LK2. 

We have also performed one calculation (run LKO) in 
which we have included the kinematically degenerate 
modes (i.e., the modes for which n=O), in the randomiza- 
tion scheme. Here we randomize in the region O<n<ll, 
1 m I<6 where we have included the modes for which n =O. 
Run LKO differs only in this respect from run LKl. It is 
evident in Fig. 6 that inclusion of these modes reduces the 
drag reduction dramatically from 52% in LKl to 11% in 
LKO. The modes for which n=O are the principal energy 
bearing modes of the tluctuating flow field.‘Y2122 As ob- 
served earlier they correspond to the rolls or streaks that 
have been observed in experiments. An accepted scenario 
for the drag producing bursting and sweeping events is that 
these rolls lift up, and somewhat violently, as hairpins (or 
parts of hairpins), thereby injecting slow moving fluid into 
the free stream and inducing high momentum fluid to 
move to the boundaries. These simulations give some sup- 
port to this view. Perturbing the modes for which n=O 
destroys the coherence of rolls and it is our contention that 
this enhances the ejection process-hence decreasing the 
drag reducing effect of randomizing the wavelike modes 
alone. This, however, cannot be considered a complete ex- 
planation for this effect since, when only the roll modes 
(n=O, [ m 1~6) are randomized in run NO, only a small 
drag increase of 2% is obtained. 

In runs HKl and HK2 we randomize only the inter- 
mediate and high wave numbers in the region 11 <n<24, 
1 m 1~32; O(n< 11, 5~ I m [ ~32. This region is essentially a 
direct complement of the region used in runs LKl-LK5 
and represents, approximately, the isotropic region 
I k ( >k,,$6. (In run HK3 we did nob randomize the 
modes n=O, 5< I m I ~32 in the region described above. 
For this run we achieve a drag reduction of 7%.) It is 
evident from Fig. 6 and Table I that randomization of 
these modes actually leads to a drag increase of 9% in HKl 
and 2% in HK2. It is apparent that we can achieve a 
significant drag reduction only by perturbing the energy 
containing region of the spectrum. 

In Fig. 8 we summarize our drag reduction results by 
plotting the steady-state mass flux Reynolds number 
against randomization frequency for all runs. For runs 
LKl-LK5 we have placed a best-fit curve through the - 
data. It is clear that as AT: -+ CO, that Rb -+ 1850, the 
steady-state value for normal turbulence, since in this limit 
the turbulence has time to relax to its normal state between 
randomizations. For AT: -+ 0 we expect g -+ 1850 again, 
since the point at AT: =0 represents a randomization at 
every time step and the flow could not evolve from its 
initial condition. From this argument we should expect 
some value of ATf for which the mass flux is a maximum 
and for our simulations this appears to be at AT: N 7. We 
mention in passing that Lumley5,6 estimates the time scale 
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FIG. 8. Steady-state mass flux Reynolds number versus randomization 
frequency. Run LKl (0); run LK2 (A); run LK3 ( + ); run LK4 ( X ); 
run LK5 (0); run LKO (V); run HKl ([XI); run HK2 (*); run HK3 
(4); run NO (a). Steady-state result for normal turbulence, R,=1850 
(---). (See also Table I.,) 

for the flow at maximum dissipation to be AT,f N 10 and 
uses this to argue in favor of a time scale theory for poly- 
mer drag reduction. The agreement between our time scale 
for maximum drag reduction and the Lumley time scale 
may not be coincidental though we cannot justify this con- 
jecture at this time. 

FIG. 9. Spanwise wave-number spectrum for the streamwise component 
of velocity at y+ = 14.8. Normal turbulence simulation (-); run LKl 
(---); run LK2 (---); run LK3 (...); run LK4 (- . -); run LK5 (0). 
Arrow indicates wave number below which modes are randomized. 
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Finally, we present results for the energy spectra for 
runs LKl-LK5 in Fig. 9. The spanwise spectra, +(k,), at 
y’=14.7 for the streamwise component of velocity .are 
shown. We choose to examine this particular spectrum 
since it is well known that near the wall (y+ z 15) a 
streaky structure with a spanwise wavelength of about 
lOOy/u* is evident in flow’visualizations and is also evident 
as a peak in the spanwise spectrum at the appropriate wave 
number. This peak is evident in the spectrum for normal 
turbulence shown in Fig. 9. Below the-cutoff wave number 
(i.e., the wave number below which randomization is em- 
ployed) the spectra for all cases show a significant increase 
in energy and a clear shift in their peak values toward 
lower wave numbers. This suggests that the spanwise 
wavelength of the roll modes which produce the streaks 
have become larger. Interestingly, in the polymer case23 
this is also observed. With the exception of run LKl it is 
evident that, above the cutoff wave number, all spectra 
appear to collapse onto the normal turbulence spectrum. 
This result is of some significance since we have apparently 
achieved significant drag reductions without affecting the 
small-scale structure of the turbulence and apparently leav- 
ing the basic Kolmogorov cascade unaffected. In polymer 
experiments, 24 however, there app ears to be a damping of 
small-scale structure in addition to the increased energy of 
the large scales which we observe. We note, however, that 
in runs HKl and HK2, where only the small scales were 
randomized, we have observed a strong damping of the 
small-scale structures above the cutoff wave number and 
little change in energy below it. 

VI. CONCLUSIONS 

We have determined that phase randomization of a 
relatively small subset of the available Fourier modes in 
channel flow turbulence gives rise to a fully sustained drag 
reduction of about the same magnitude as found in the 
polymer case. We have pointed out many similarities and 
some differences between these two cases which lead us to 
speculate on a mechanism for drag reduction by phase 
randomization. In one theory that has been proposed to 
explain polymer-induced drag reduction516 (although alter- 
nate theories exist”‘26 ), the polymers induce a higher ef- 
fective viscosity in the bulk of the flow which drives the 
peak in the dissipation spectrum to smaller wave numbers 
(larger length scales). The energy containing scales are 
assumed to remain unchanged. As a result, the distance 
above the wall at which the turbulence can be self- 
sustaining through an energy cascade becomes larger. Con- 
sequently, the mean shear at the wall decreases under the 
assumption that the viscosity in the sublayer’ remains un- 
changed. 

In our simulations, the relatively small log layer dis- 
appears and there is a lack of significant changes in the 
dissipation scales. Thus drag reduction due to phase ran- 
domization may be due to a different mechanism. We spec- 
ulate, in view of the recent discovery of plane waveslp2 in 
turbulent channel flow, that phase randomization leading 
to drag reduction may be destroying the coherence of the 
turbulence producing structures near the wall. The so- 

called bursting mechanism may be inhibited by a phase 
randomization of the wavelike modes. In future investiga- 
tions we hope to clarify the mechanism of drag reduction 
described in this work by localizing the randomization. For 
example, we may perform simulations in which only the 
region near the wall is forced in the manner described 
above. In addition, we are now performing physical exper- 
iments in which acoustic excitation and vibrating ribbons 
will be used to perturb the turbulence at the length and 
time scales identified by these numerical simulations. 
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