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Minimal channel flow is analyzed by means of the Karhunen–Loe´ve ~KL ! decomposition. It is
shown that the most energetic modes are streamwise rollers followed by outward tilted
quasi-streamwise vortices. Both of these mode types have a strong similarity to structures seen in
physical experiments. Temporal plots of roll energy, propagating energy, bulk velocity, and
representational entropy have been obtained. Study of the evolution of these variables shows a
consistent pattern of growth and decay in which entropy plays a key role in describing the events in
the turbulent process. The roll and propagating modes are also shown to make independent
contributions to the Reynolds stress with the roll modes dominating the profile near the walls and
the propagating modes having larger values towards the channel center. A comparison of the KL
dimension of this flow and a full channel flow shows that the dimension scales with box size, i.e.,
it confirms the assertion that dimension is an extensive variable. ©1997 American Institute of
Physics.@S1070-6631~97!00503-5#
i
e
ur
s
r
th
t
o
s,
on
w
-
n
ll

y
u
n
rb
ha
a
.
un
e
e
w
th
th
xt
r-

ic
ici

u-
lled
re
ntly
is

rtex
s a
ant
of
n.
e

her
d
e

evi-
city
n
e of
be-
ed
ext
.
ce-

sce-
ted.
in
,

I. INTRODUCTION

The fundamental physics of wall bounded turbulence
conveniently studied through channel flow, i.e., flow b
tween two parallel plates and driven by a uniform press
gradient. The simplicity of the channel flow geometry allow
for direct numerical simulations at low Reynolds numbe
which provide an abundance of accurate flow data. In
work, we will defineminimal channelto be the narrowes
channel for fixed length in which turbulence is maintained
both walls. Jime´nez and Moin, who first studied such flow
found that channels of narrower extent produced either
walled turbulence or in extreme cases the flo
relaminarizes.1 The minimal channel flow was originally de
signed to establish ‘‘a significantly simpler and more ma
ageable ‘laboratory’ in which to study the mechanics of wa
bounded flows.’’1 In this work, we intend to use this
‘‘laboratory’’ to further study wall-bounded turbulence b
decomposing the flow into its dominant modes. For the p
poses of the current study, we consider the minimal chan
flow to possess all the dynamics needed to produce tu
lence with the least repetition of structure. We anticipate t
this flow takes place on a lower dimensional attractor th
other turbulent channel flows at a given Reynolds number
this regard we may expect the clearest identification of f
damental turbulent mechanisms. Here we use the Karhun
Loéve procedure to produce an optimal basis set which b
represents the turbulent activity of the minimal channel flo
Using these functions, we intend to study the birth, grow
and destruction of turbulent structures by examining the
evolution of these KL modes. To place this work in conte
we now briefly review the current view of wall-bounded tu
bulence.

In the last several decades, a relatively simple phys
picture has emerged which attempts to describe the vort
1054 Phys. Fluids 9 (4), April 1997 1070-6631/97/9(4
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dynamics responsible for maintaining wall-bounded turb
lence. We should preface the description of the so ca
standard modelby remarking that details of such models a
not universally accepted, and many of the ideas are curre
undergoing revision and rethinking. In one scenario, which
typical of a class of models that have been developed, vo
dynamics plays a central role. One first observes that a
result of the mean streamwise velocity profile, at any inst
in time, the wall region can be thought of as an ensemble
vortex lines aligned principally in the spanwise directio
The turbulence will naturally induce random kinks in th
spanwise oriented vortex lines, some of which~the kinks!
possess a curvature which induces lift into a region of hig
streamwise velocity. This will result in the stretching an
therefore the intensification of the vorticity. At this point, th
configuration of the vortex line is that of ahairpin, the legs
of which are oriented in the streamwise direction.2 Near the
tip of the hairpin, sometimes referred to as thehead, there is
a strong upwardejectionof fluid on the inner part of the tip,
and an equally strong wallwardsweepon the outer part. This
configuration generates a spanwise shear-layer, which is
denced by an inflexional instantaneous mean velo
profile.3 The flow is then thought to undergo an instability o
account of the strong mean shear layer which is the sourc
a violent generation of small scale turbulence, the event
ing termed aburst. The small scale turbulence generat
during such a burst can then initiate the start of the n
cycle. A schematic of the scenario is presented by Hinze4

Several remarks are now in order about this generic s
nario which may be termed theejection-burst-sweepcycle.
Though there may be disagreements on details of the
nario, certain views appear to be nearly universally accep
The first is the observation that the flow is quasi-periodic
the spanwise (x3) direction with a characteristic wavelength
)/1054/13/$10.00 © 1997 American Institute of Physics
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l1, of approximately 100dt , where the wall unit,
dt5n/ut , n is the kinematic viscosity, andut is the viscous
velocity based on wall shear stress and density. Flow vis
ization studies5,6 reveal elongated near-wall streaks who
streamwise extent can often exceed 1000dt . In addition, the
temporal duration of aburstand the time between them hav
been well characterized.7 In studying the life of these streaks
Bernard, Thomas, and Handler8 identify what they call
quasi-streamwise vortices which are shorter than the str
and are tilted away from the wall. Extensive experiments a
simulations have established the peak of the root m
square departure from the mean streamwise velocity to
located approximately atx2

1'15,9,10wherex2
15x2ut /n and

x2 is the wall normal coordinate. Finally, for fully develope
wall turbulence, the mean velocity profile exhibits four d
tinct regions; sub-layer, buffer region, log-layer, and a turb
lent core,11 with maximal turbulence production occurring
x2

1'13.5.
A difficulty in identifying coherent structuresfor wall-

bounded turbulent flows, e.g., the quasi-streamwise vort
mentioned above, lies in the imprecision and subjectivity
defining it. In a very broad way, however, the term refers
some flow structure perhaps formed by the concentratio
vorticity, the structure itself undergoing a stereotypical te
poral evolution involving birth, growth, and eventual deca
This description, however, is almost certainly inadequate
of little practical value, in the sense that each turbulent fl
seems to possess its own kinds of coherent structures w
become evident upon close examination of the flow. In a
event, the idea that coherent structures are closely tied to
kinematic notion of a concentration of vorticity seems ine
capable, along with the idea that such structures are fo
throughout the flow at any given instant and seem to h
temporal lifetimes longer than one would associate with r
dom background vorticity.

In the case of wall-bounded turbulence, there is alm
universal agreement that such coherent structures do e
The question that arises immediately is whether one can
advantage of their existence in the computation, model
and understanding of the flow. In more precise terms,
Navier–Stokes equations are infinite dimensional but emp
cal evidence suggests that the system can be described
finite, and possibly small number of degrees of freedom
low-order dynamical system. A first step in the determinat
of such a system, if one actually exists, is to identify
optimal coordinate systemin which to describe the turbu
lence. A method was proposed by Lumley12 based on the
classical work of Karhunen13, and Loéve.14 ~The method
goes back to Schmidt;15 see Ref. 16 for a history.! The idea
is that the flow field itself~velocity, vorticity, etc.! be used to
define this coordinate system in a precise mathematical w
This procedure, termed the Karhunen–Loe´ve ~KL ! decom-
position, has found broad use in pattern recognition,17 and in
geophysics18 and has been alternately called the proper
thogonal decomposition~POD, Ref. 14!, the empirical or-
thogonal function~EOF, Ref. 19! analysis, and empirica
eigenfunction analysis~EEF, Ref. 20!.

The geometrical simplicity of channel flow makes
ideal for the application of Karhunen–Loe´ve analysis. From
Phys. Fluids, Vol. 9, No. 4, April 1997
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the translational invariance of the flow, all eigenfunctions a
sinusoidal in the streamwise and spanwise directions. Fur
symmetries recognized by Sirovich21 show, among other
properties, that modes are even or odd around the horizo
midplane. The earliest application of KL analysis to nume
cally obtained channel flow data was performed by Moin a
Moser22 with attention paid to the construction of a domina
eddy of the flow. In a separate study by Sirovich, Ball, a
Keefe,23 various structures are identified along with their b
havior over time. The most energetic modes are found
have no streamwise dependence. In addition, a set of m
were discovered which moved at steady and predicta
speeds at oblique angles to the streamwise direction. Rel
papers by Ball, Sirovich, and Keefe24 and Sirovich, Ball, and
Handler25 show how these mode types make unique con
butions to the flow statistics over time. That work also su
gests that these ‘‘propagating’’ modes play an essential
in the bursting process found in wall-bounded turbulence

Recent attempts to develop low-order dynamical syste
for these flows using the Karhunen–Loe´ve eigenfunctions as
a basis set have given rise to models which mimic in so
important respects the original Navier–Stokes system. In
first use of the empirical eigenfunctions to obtain a dynam
cal system, Sirovich and Rodriguez26 obtained excellent re-
sults for the Ginzburg–Landau model. It is important, ho
ever, to place this preliminary success in the context of a
fluid calculation,27 which showed that wall-bounded turbu
lence is governed by a strange attractor whose dimens
even for low Reynolds numbers, is sobering~viz. for a fric-
tion Reynolds number of 80 the dimension is about 78!.
This result alone might suggest an end to the pursuit o
low-order description of wall-bounded turbulence and oth
open turbulent flows. However, it is not obvious that o
needs to accurately represent all modes to gain insight
the principal underlying dynamics.28 In this respect, these
models should be viewed as idealizations—Sirovich a
Zhou29 describe them asimpressionistic. Models can be
thought of as test-beds for trying out novel methods of act
turbulence control, and for understanding the mechanis
involved in turbulent drag reduction by riblets30 and by poly-
mer addition.31 For example, recent simulations32 have
shown that perturbation of the wave-like modes describ
above, significantly reduces drag in fully developed turbul
channel flow and produces turbulence statistics remarka
similar to those found in polymer-induced drag reductio
Based on the KL analysis of the minimal channel flow, to
presented in this paper, we find reason for optimism t
concepts from dynamical systems theory will yield a mo
fundamental understanding of wall-bounded turbulence
perhaps even the means to control it.

The minimal channel used in this work, with a spanwi
width of L35128dt , can also be viewed in the framework o
the wide channel25 which has a spanwise width o
L35640dt . In natural coordinates the largest wavelength
the spanwise direction isL3, and corresponds to the sinu
soidal wave numbern51. Suppose we perform a numeric
experiment in the large channel such that the initial condit
contains only the spanwise wave numbern55, then the
Navier–Stokes system respects this symmetry and the
1055Webber, Handler, and Sirovich
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wave numbers which will emerge in the evolutio
of the flow are multiples ofn55, i.e. n50,65,610,
615, . . . . This result follows from an examination of th
triad interactions of the Navier–Stokes equations~see Ref.
29 for a more complete explanation!. Thus, the same solutio
could also have been achieved by studying a channel flow
width L35128dt , one fifth the original spanwise width, an
the usual spanwise periodic conditions. Thus the minim
channel is seen to be that slice of the wide channel for wh
just one roll pair appears. An important distinction betwe
the narrow and full channels appears if one compares t
eigenvalue spectra. For example, the mode which co
sponds with the streak spacing for the large channel~n 5 5!
appears fourth in rank~see Table I! whereas the same mod
~n 5 1! for the minimal channel appears first. As mention
in Ref. 29, the streamwise independent modes represe
form of two dimensional turbulence, and thus can be
pected to undergo an inverse cascade. Therefore there
tendency for then 5 5 mode to migrate to smaller wave num
ber modes, and this is borne out by the eigenvalue spect
This observation underlines the fact that the narrow chan
is only a model of the full flow, and that it is inaccurate
regard to important dynamical effects. On the other ha
since dimension is an extensive quantity, the narrower ch
nel has an attractor dimension which is roughly one fifth
dimension of the wide channel, if both had the same len
These considerations lead to the conclusion that the min
channel is a significantly simpler system to use in explor
the dynamics of wall bounded turbulence.

II. NUMERICAL METHODS

A. Turbulence simulation

We simulate the flow in a channel by solving the inco
pressible Navier–Stokes equation in rotation form given

]U

]t
5U3V2

1

r
“P1

1

Rt
¹2U11e1 , ~1!

¹•U50, ~2!

and the boundary condition is

U50, x2561 ~3!

where U(x,t) is the velocity, V is the vorticity, P5p
1 1

2ruU–Uu2, p is the pressure, andr is the density. We use
the notation (x1 ,x2 ,x3) to denote the streamwise, wall no
mal, and spanwise coordinates, respectively. Velocity
scaled by the friction velocityut5Atw /r wheretw is the
viscous shear at the wall,x is scaled by the half width of the
channel,h, time is scaled byh/ut , and Rt , the friction
Reynolds number, is given byRt 5 uth/n, wheren is the
kinematic viscosity. We can refer to velocity, length, a
time in local wall units expressed asu15u/ut , x

15x/dt ,
andt15tut /dt . For the remainder of the paper, it is unde
stood that quantities with the superscript (1) are reported in
wall units. In our calculations, the applied pressure grad
remains constant and is given by 1e1 wheree1 is the unit
vector in the streamwise direction.
1056 Phys. Fluids, Vol. 9, No. 4, April 1997
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To solve Eqs.~1!–~3!, we use the numerical method
developed by Kim, Moin, and Moser10 in which the velocity
field is approximated by a Fourier–Chebyshev expans
which can be written as

U~x,t !5 (
m52M /2

M /221

(
n52N/2

N/221

(
p50

P

amnp~ t !

3Tp~x2!e
ik1x1eik3x3, ~4!

where Tp(x2) denotes the Chebyshev polynomia
k152pm/L1, and k352pn/L3, whereL1 and L3 are the
domain lengths in thex1 andx3 directions, respectively. The
initial conditions were obtained from previous simulations
fully developed turbulence performed by Handler, He
dricks, and Leighton.33 In our simulations, the box length
were set toL15p andL350.33p, and the resolution was
129348324 in the wall normal, streamwise, and spanw
directions, respectively. The friction Reynolds number w
set to 135.5 which was so chosen as to maintain a b
Reynolds number,Reb53Ubh/2n, of 3000 as determined
from the results of Dean34 where the bulk velocityUb is the
average velocity across the cross-section of the duct,

Ub~ t !5
1

AEAU~x,t !dA, ~5!

andA is the cross-sectional area. It is known from the sim
lations of Jime´nez and Moin that this domain should lead
a self sustaining turbulence which is confirmed in our sim
lations.

B. Karhunen–Loe´ve decomposition

In applying the Karhunen–Loe´ve or proper orthogona
decomposition~POD! to turbulent channel flow, we firs
separate the velocity field,U, into a mean and fluctuating
portion,u, as follows:

U~x1 ,x2 ,x3 ,t !5U~x2!e11u~x1 ,x2 ,x3 ,t !, ~6!

whereU(x2) is the mean obtained by averaging over t
horizontal (x1 ,x3) plane and time. It is important for ou
subsequent deliberations to recognize that averaging ov
horizontal plane does not yield a time independent statis
unless that area can be made to approach infinity. Virtu
all simulations produce aUb(t), ~5!, which is time depen-
dent. Henceforth, it is understood that the eigenfunctions
obtained from the fluctuating portion only.

The velocity field,u(x1 ,x2 ,x3 ,t) is homogeneous in the
x1 andx3 directions so that the data set can be enlarged
including an additional flow fieldu(x11 l 1 ,x2 ,x31 l 3 ,t) for
each value ofl 1 and l 3, that is the velocity field is transla
tionally invariant in the horizontal plane. This implies sin
soidal dependence in the horizontal plane and allows fo
direct KL analysis onû(x2 ,m,n) which is the Fourier trans-
form of u in the x1 andx3 directions. The effective size o
the data set can be increased by a factor of four by includ
reflectional symmetries around the midplane,x250, and the
vertical plane,x35L3/2, and a 180° rotational symmetr
around the channel center,x250,x35L3/2.

21 It follows that
Webber, Handler, and Sirovich
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for each wave number index pair, (m,n), the empirical
eigenfunctions,c, and eigenvalues,l, are determined from
the equation

E
2h

h

k i j ~x2 ,x28 ,m,n!c j~x28 ,m,n!dx285l~m,n!c i~x2!,

i , j51,2,3, ~7!

where k i j (x2 ,x28 ,m,n) is the two point spatial correlation
tensor or covariance matrix formed from

k i j ~x2 ,x28 ,m,n!5^ûi~x2 ,m,n! û̄ j~x28 ,m,n!&, ~8!

where the expectation is taken over all realizations and s
metries, and the bar denotes the complex conjugate. In o
to solve the eigenvalue problem, a discretization must firs
performed in thex2 direction.24 Our geometry uses 12
points resulting in 387 (33129) eigenvalues and eigenfun
tions for each wave number index pair. Using the quant
numberq to specify an eigenfunction for a wave numb
index pair, the tripletk5(m,n,q) completely specifies an
eigenfunction.

The three dimensional eigenfunction is a complex v
ued vector field which can be written as

fk~x1 ,x2 ,x3!5ck~x2 ,m,n!e2p imx1 /L1e2p inx3 /L3. ~9!

It is important to note some properties retained by the eig
functions. First, because the eigenfunctions are derived f
physical flow fields, they are themselves flow fields and
tain the incompressibility property,¹•fk50. The eigen-
functions also satisfy the no slip boundary conditio
fk50 atx256h. It follows from the Hermitian property of
k i j (x2 ,x28 ,m,n) that the eigenfunctions are orthonormal,

E
D

fk
•f̄ldx5dkl , ~10!

and the eigenvalues must all be real. This allows any velo
field to be decomposed as a linear superposition of the ei
functionsu(x,t)5(ka

k(t)fk(x), where the coefficients ar
obtained from

ak~ t !5E
D
u~x,t !•f̄„x…kdx. ~11!

It is straightforward to show that the eigenvalues,l, which
represent the energy in each KL mode, can be obtained f
the coefficients by

lk5K U E
D
u•f̄kdxU2L 5^ak~ t !āk~ t !&. ~12!

It follows from the flow symmetries discussed earli
and the reality of the flow that all eigenfunctions can
found from the solutions calculated in wave number sp
m>0,n>0. From this, it is easy to show that an eigenva
lq(m,n) is equal to eigenvalues in the other quadra
lq(2m,n), lq(m,2n), andlq(2m,2n). Degeneracy,dk,
denotes the multiplicity of such eigenvalues. Degenerac
equal to four ifm Þ 0 andn Þ 0, equal to two if one but no
both m,n are equal to 0, and equal to one ifm50 and
n50. In order to account for all wave number index pai
Phys. Fluids, Vol. 9, No. 4, April 1997
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the energy,ek5dklk, is calculated and this represents t
energy in all corresponding eigenfunctions. An energy fr
tion, f k5ek/(k8e

k8, determines the portion of energy in an
mode, and after ordering the modes from largest to smal
a cumulative energy can be calculated,

sp5(
k

p

f k, k5~m,n,q!, f k. f k11, ~13!

which represents the portion of energy in the most energ
group ofp modes.

Along with these time averaged quantities, the deco
position properties are used to compute some important t
poral statistics. It will be useful in what follows to defin
E(t) equal to twice the fluctuating kinetic energy from th
relation

E~ t !5E
D
u~x,t !•u~x,t !dx5(

k
ak~ t !āk~ t !. ~14!

Using this, we define the probability

pk~ t !5akāk~ t !/E~ t !, ~15!

for each mode. This probability represents the portion
energy in any mode,k. Finally, a representational entropy
S(t), is computed which calculates the degree to which
energy is distributed over the modes:

S~ t !52(
k

pk~ t !ln~pk~ t !!. ~16!

A small value ofS indicates that few modes contain the bu
of the energy while a large value ofS indicates that the
energy is distributed over many modes. While the flow c
be decomposed into any orthonormal basis set, it has b
shown by Sirovich35 that the empirical eigenfunctions are th
basis set which minimizes the representational entropy
the time averaged probabilities.

III. RESULTS

A. Turbulence statistics

Using the methods and parameters defined in Sec. II,
have simulated turbulence in a minimal channel for a time
approximately 29h/ut or t

154000. At this Reynolds num-
ber and box size, Jime´nez and Moin1 find fully developed
turbulent activity on both walls. Our results agree with the
with both walls maintaining activity through the majority o
the simulation. At a lower bulk Reynolds number or box si
they find turbulent activity on only one wall, which switche
in an intermittent fashion from one wall to the other. W
note that the turbulent activity on one wall tended to dom
nate over the other through some portions of the simulat
but this effect did not cause a noticeable asymmetry in
mean velocity profile or any other statistics that we exa
ined. Another point of interest is that we drive the flow wi
a constant pressure gradient while Jime´nez and Moin used a
constant mass flux condition. With the exception of the me
velocity profile, as we will discuss below, this difference
driving mechanisms did not affect the statistics in any s
nificant way compared to those found by Jime´nez and Moin.
1057Webber, Handler, and Sirovich
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With the given pressure gradient used in our simulatio
we achieve a time averaged bulk Reynolds number ofRe
5 3

2 (Ubh/n) and a centerline Reynolds numbe
Recl5Uclh/n, of 2489. These values are close to the cor
lations of Dean34 with our bulk Reynolds number exceedin
Dean’s prediction by 3%. We note in Fig. 1, that the me
profile exceeds the classical law of the wall results, and
should be noted that Jime´nez and Moin find similar results
They observe that the difference seems to occur in the ce
of the channel and could be related to the formation of lar
structures. As additional support, we observe that the ar
ment leading to the log law follows from the assumptio
x2

1@1 andx2
1!Rt . Next we note that the minimal channe

has the additional restriction that the width of the channe
roughly 128dt . An individual roll is half this, or 64dt . This
last estimate imposes the estimate thatx2

1!64 which makes
it unlikely that a log layer will appear even ifRt↑`.

The root mean square velocity fluctuation
u185^u1

2&1/2, u285^u2
2&1/2, u385^u3

2&1/2, are shown in Fig. 2
along with empirical results of Wei and Willmarth at a Rey
nolds number ofRecl52970. It is evident that our results
compare quite well with those of Wei and Willmarth. Energ

FIG. 1. Mean streamwise velocity near the wall. Solid line
U/ut52.5lnx2

115.5, point values are results of the minimal channel sim
lation.

FIG. 2. Root mean squared fluctuations. Solid line,u18/ut : small dots,
u28/ut : large dots,u38/ut , Recl52489. Symbols are data from Wei and
Willmarth9 at Recl52970. Wei and Willmarth did not measureu38 .
1058 Phys. Fluids, Vol. 9, No. 4, April 1997
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spectra, shown in Figs. 3 and 4, show decays of 3 to 5 ord
of magnitude indicating the flow to be well resolved sp
tially.

The results of Figs. 1–4 clearly show that our resu
compare well with classical experimental results and thos
Jiménez and Moin, and as such, the minimal flow unit pr
vides a sound basis for the study of wall-bounded turbulen
The minimal channel turbulence is fully self-sustaining, tw
walled, and produces accurate statistics while isolating
dominant flow structures. We believe that this allows for
clear examination of the relevant structures.

B. Decomposition of the minimal channel flow

We identify the dominant structures by applying th
Karhunen–Loe´ve decomposition, as described in Sec. II,
the minimal channel flow examined above. A listing of th
first fifteen modes is presented in Table I along with a co
parison to the full channel flow calculated by Sirovich, Ba
and Handler25 at nearly the same Reynolds number. The c
mulative energy sum for the two flows, as described in~13!,
are also compared in Fig. 5. A first conclusion that can
drawn from these results is that the minimal channel is

-
FIG. 3. Power spectra of the velocity vs the streamwise index,m, on the
planex2

1514.5. The solid line representsu1, the small dots representu2,
and the bold dots representu3.

FIG. 4. Power spectra of the velocity vs the spanwise index,n, on the plane
x2

1514.5. The solid line representsu1, the small dots representu2, and the
bold dots representu3.
Webber, Handler, and Sirovich
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lower dimension with fewer modes needed to account
any fraction of the energy. This result supports the expe
tion that the minimal channel has less structural repetit
than the full channel making the fundamental turbule
mechanisms easier to identify.

In order to evaluate the dimension of a flow, which a
lows it to be compared to other flows, we use the nomi
KL dimension as defined by Sirovich.35 The KL dimension,
DKL, denotes the number of modes, including degenerac
which are needed to account for 90% of the energy in
flow. We will examine the relationship betweenDKL and box
size by comparing the results of the minimal channel flow
those of the full channel flow. For the minimal chann
DKL5658 while the full channel has a KL dimension
4186. In order to compare box size, we calculate the volu
of each box in viscous units,dt

3 . The minimal channel, with
a half height of 135.5dt , has a height of 271dt between the
two walls. This same channel has a streamwise length

FIG. 5. Cumulative energy sum,sp. The solid line is from the minimal
channel flow, the dots are from the full channel flow calculated by Sirov
Ball, and Handler.

TABLE I. Energy content of the first 15 eigenfunctions of the minim
channel flow and the full channel flow.

Index

Minimal channel
Rt5135.5

Full channel
Rt5125

Mode
(m,n,q)

Energy
fraction

Energy
sum

Mode
(m,n,q)

Energy
fraction

Energy
sum

1 ~0,1,1! 0.13275 0.13275 ~0,3,1! 0.04282 0.04282
2 ~0,1,2! 0.10473 0.23748 ~0,1,1! 0.03990 0.08272
3 ~1,1,1! 0.04863 0.28611 ~0,4,1! 0.03266 0.11539
4 ~1,1,2! 0.04807 0.33418 ~0,5,1! 0.02866 0.14405
5 ~0,1,3! 0.02937 0.36355 ~0,4,2! 0.02288 0.16693
6 ~0,1,4! 0.02170 0.38525 ~0,1,2! 0.02097 0.18790
7 ~1,1,3! 0.01899 0.40425 ~0,3,2! 0.02064 0.20855
8 ~1,1,4! 0.01721 0.42145 ~0,2,1! 0.01967 0.22822
9 ~0,0,1! 0.01700 0.43845 ~0,2,2! 0.01878 0.24700
10 ~2,1,1! 0.01651 0.45496 ~0,6,1! 0.01381 0.26082
11 ~0,2,1! 0.01376 0.46872 ~0,5,2! 0.01310 0.27392
12 ~1,0,1! 0.01348 0.48220 ~1,3,1! 0.01252 0.28645
13 ~0,0,2! 0.01338 0.49586 ~1,2,1! 0.00948 0.29593
14 ~1,2,1! 0.01328 0.50886 ~1,4,1! 0.00837 0.30430
15 ~1,2,2! 0.01289 0.52175 ~1,5,1! 0.00829 0.31258
Phys. Fluids, Vol. 9, No. 4, April 1997
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p3135.5dt or 426dt and a spanwise width o
0.33p3135.5dt or 128dt resulting in a volume of
1.473 107dt

3 . A similar calculation of the full channe
shows its volume to be 9.773107dt

3 . The ratio ofDKL for
the two flows is 0.157 while the ratio in volumes is 0.15
the two ratios differing by only 4%. The fact that these rati
are in such close agreement indicates that the KL dimen
scales in proportion to volume which is in agreement w
the assertion that dimension is an extensive variable. T
suggests that a minimal channel version of the Keefeet al.27

calculation would lead to a Lyapunov dimension of;260
instead of;780.

With the empirical eigenfunctions in hand, we use the
to decompose and reconstruct the flow fields for storage
examination of the flow. A direct way to store a flow field
by its representation in physical space, for example, th
components of velocity stored at each spatial point. Inste
we can use the empirical eigenfunctions to calculate the
efficientsak(t) as described in Eq.~11! and store these a
discrete times. While the space needed to store all co
cients is the same as that needed to store the flow fiel
physical space, we choose to store the 3025 most ener
modes which account for 96.4% of the energy. This requ
only 0.4% of the space needed for pointwise storage
represents a significant data compression. We note that a
time storage of the ‘‘library’’ of eigenfunctions is also ne
essary. To reconstruct the velocity field,u(x,t), an eigen-
function,f(m,n,q)(x), will make its contribution to the flow,
u(m,n,q)(x,t), through as many as four degeneracies~fewer if
eitherm or n is zero! which is written as

u~m,n,q!~x,t !5a~m,n,q!~ t !f~m,n,q!~x!

1a~m,2n,q!~ t !f~m,2n,q!~x!

1a~2m,n,q!~ t !f~2m,n,q!~x!

1a~2m,2n,q!~ t !f~2m,2n,q!~x!. ~17!

Since this represents the summation of complex conjug
functions,u(m,n,q)(x,t) fulfills the reality condition. In addi-
tion, since the eigenfunctions are derived from an actual
compressible flow, the reconstructed flow fiel
u(m,n,q)(x,t), is incompressible and satisfies the no-s
boundary conditions, as well as periodic boundary conditio
in the streamwise and spanwise directions. For a full rec
struction of the flowu(x,t), summation must be performe
over the Fourier and quantum numbers,

u~x,t !5(
m

(
n

(
q

u~m,n,q!~x,t !. ~18!

In addition to reconstructing the flow from all modes, insig
can be gained by consideration of various groups of mod
such as the 100 most energetic modes, or even a si
mode.

In Fig. 6, we show two surfaces~one positive and one
negative! of constant streamwise vorticity at an instant
time. This is a reconstruction from all 3025 stored modes a
can be considered to be a true flow realization. The vortic
field shows significant small scale activity making the ide
tification of dominant structures difficult. By examining
,

1059Webber, Handler, and Sirovich
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field which is reconstructed from fewer than all modes, sm
scale detail can be filtered out and the dominant structu
identified more clearly. Figure 7 shows the same vortic
field produced from the 100 most energetic modes and s
gests that the upper wall is dominated by long streamw
vortices while the shorter, outward tilted vortices play
larger role on the lower wall. These same structures are
viously more difficult to identify from the original flow field
which demonstrates one use of partial flow reconstruc
using KL modes.

In examining the individual modes, we begin with th
most energetic mode, one which contains 13.3% of the fl
energy. This mode is characterized by the triplet, (m,n,q)
5 (0,1,1). It is clear that this mode has no streamwise dep
dence and its spanwise length-scale is the width of the b
At a specific time,t8, we construct the flowu(0,1,1)(x,t8) as
described in~17! producing a real valued, incompressib
flow field satisfying all boundary conditions. Visualization
this mode is seen in Fig. 8 which shows two surfaces~one

FIG. 6. Surfaces of constant streamwise vorticity from minimal chan
reconstructed from all 3025 modes. The light surfaces are positive stre
wise vorticity and dark surfaces are negative streamwise vorticity. The
slip planes are on the top and bottom, and the streamwise direction is
left to right.

FIG. 7. Surfaces of constant streamwise vorticity from minimal chan
reconstructed from the 100 most energetic modes. The light surface
positive streamwise vorticity and dark surfaces are negative streamwise
ticity.
1060 Phys. Fluids, Vol. 9, No. 4, April 1997

Downloaded¬23¬May¬2008¬to¬10.1.150.90.¬Redistribution¬subject¬t
ll
es
y
g-
e

b-

n

w

n-
x.

positive and one negative! of constant streamwise velocity
From further examinations, the flow field clearly consists
two counter rotating vortices~we use the term vortex in a
loose way to imply rolls! which span the length and width o
the channel producing a streak spacing ofl15128 which is
in reasonable agreement with the streak spacing fo
experimentally.6 Negative streamwise velocity is found i
the regions where the two vortices act to pump fluid aw
from the wall while positive streamwise velocity is foun
where the vortices are bringing fluid from the outer flo
toward the wall as suggested by Bakewell and Lumley.36 The
magnitude of the streamwise velocity from this mode is la
est atx2

1515. It is interesting to observe that in experimen
and numerical studies, the peak value of the root m
squared streamwise velocity fluctuation,u18 , is also found at
x2

1515.9,10

The next most energetic mode is characterized
(0,1,2) and represents 10.5% of the flow energy. It show
structure similar to the first but with opposite parity, viz. th
streamwise velocity of this mode is odd in the wall norm
direction. Because all modes with spanwise but no stre
wise dependence appear as a collection of long rolls, we
hereafter refer to them asroll modes. The analysis of full
channel flow25 also shows the roll modes to be the mo
energetic ones. The first and second modes in this study h
the same size and structure as the (0,5,1) and (0,5,2) m
from the full channel study as explained earlier. Along w
roll modes, the only other modes without streamwise dep
dence arenet flux modesfor which ~m,n) 5 (0,0). These
modes vary only in the wall normal direction which va
only in the wall normal direction and are the only mode
along with the mean, which enter into the calculation of t
bulk velocity. The net flux modes along with the roll mod
together form the entire group of modes without streamw
dependence and are referred to askinematically degenerate
modes.24

The third most energetic eigenfunction for whic
(m,n,q) 5 (1,1,1)does show streamwise dependence. S
streamwise dependent modes have been shown to move
predictable speed24 and have been termedpropagating

l
m-
o
m

l
re
or-

FIG. 8. Surface of constant streamwise velocity from reconstruction of
First Eigenfunction. The light surfaces are positive streamwise velocity
the dark surfaces are negative streamwise velocity.
Webber, Handler, and Sirovich
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modes.The third mode has a fourfold degeneracy, as sho
in ~17!, which add to form a real valued, incompressible flo
field satisfying all boundary conditions. Each such eige
function leads to a ‘‘plane wave’’ moving at an obliqu
angle to the constant driving pressure gradient.23 While an
individual eigenfunction moves at an oblique angle, the s
of all four, as shown in~17!, produces a structure whic
moves straight down the channel. Surfaces of cons
streamwise velocity for a reconstruction of this mode
shown in Fig. 9. These structures are tilted away from
wall by an angle of 30°~a plot for streamwise vorticity
shows an angle of 18°!. Similar structures have been notice
in experiment37 and are defined as quasi-streamwise~out-
ward tilted! vortices.38 These structures could also be d
scribed as an admixture of two types of vortices observed
Bernard, Thomas, and Handler.8 The first type being the
longest vortices whose upstream ends are near the wall
downstream ends are in the outer flow domain and the
ond being the relatively new vortices which have formed
the wall.

In summary, the minimal channel is a lower dimension
flow than the full channel as expected. More specifically,
KL dimension is directly proportional to computational vo
ume, confirming that dimension is an extensive quantity.
ing the KL transform, we are able to directly identify th
structures that are thought to be most vital to turbulence
maintenance. This is consistent with the results of Remp
and Fasel39 who found the KL procedure to reveal importa
dynamical structures in the evolving boundary layer. T
most energetic mode appears as two counter rotating vor
with a spanwise width on the same order as the streak s
ing found in experiment. The largest magnitude of strea
wise velocity for this mode occurs atx2

1515, the same po-
sition whereu18 is observed to be maximum experimental
To complement the roll modes, the KL process also ide
fies a set of propagating modes with a structure similar to
outward tilted or quasi-streamwise structures that m
straight down the channel at a steady speed. In additio
examination of the individual modes, the KL reconstructi
techniques have proven to be valuable in filtering out sm

FIG. 9. Surface of constant streamwise velocity from reconstruction of
third eigenfunction. The light surfaces are positive streamwise velocity
the dark surfaces are negative streamwise velocity.
Phys. Fluids, Vol. 9, No. 4, April 1997
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scale structures, leading to the identification of the domin
wall vortices.

C. Flow dynamics and entropy events

Having obtained the dominant KL modes, we now e
amine how the structures interact over time and what t
can reveal about the detailed dynamics of the flow. Using
empirical eigenfunctions from the initial simulation, the flo
data from a second simulation is projected onto these eig
functions yielding time dependent coefficients,ak(t). These
coefficients are employed in the formation of a set of d
namic quantities including energy, entropy, and bulk veloc
described in Sec. II which are then used along with a co
puter animation to examine the flow.

The functionE(t) ~14!, which measures the fluctuatin
energy of the flow, can be calculated directly from the tim
dependent coefficientsak(t). A plot of E(t) is shown in Fig.
10 based on 3025 modes. Most noticeable are the two s
peaks near the timest151000 andt154000, in addition to
a number of smaller spikes. Data are presented in the ra
0<t1<10,000 for the purpose of clarity. The second sim
lation is actually carried out tot1540 000 and similar spik-
ing activity was found throughout the calculation so that t
peaks under discussion are typical. The events occurrin
t151000 andt154000 indicate, respectively, a sharp ri
and fall in turbulent activity which are examined in great
detail below. We will hereafter refer to these events as ev
1 and event 2.

We also study the degree to which the fluctuating ene
is distributed over the modes by monitoring the represen
tional entropy,S(t), ~16!. ~Entropy can be sensitive to th
number of modes included. To ensure the accuracy of
trends indicated in Fig. 11 we studied this sensitivity by d
termining the entropy based on 96.4% and 90.3% of
fluctuating energy. This provided convincing confirmation
the behavior shown in Fig. 11.! Entropy, shown in Fig. 11,
shows two noticeable events near the times also
t151000 andt154000, with other minor events at othe
times. A detailed examination of these events shows that
representational entropy drops to its lowest levels early in
event cycle while the energy is growing rapidly. This ind
cates that during the energy growth portion of the cycle,
energy is distributed over relatively few modes and the fl

e
d

FIG. 10. Energy in the fluctuating portion of the minimal channel flow. T
vertical lines denote representative times of event 1 and event 2.
1061Webber, Handler, and Sirovich
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is well organized. A sharp rise in entropy then occurs wh
energy is still high. This indicates that the energy is red
tributed over many modes in a very short time after whi
the energy decreases. The temporal evolution of the b
velocity is shown in Fig. 12, and is seen to grow early in t
event cycle, reaching its largest values at the times as
entropy is growing rapidly. A suggestion as to how the o
served energy redistribution is related to the bulk veloc
decrease is presented in Sec. III D.

Because various types of modes~roll and propagating!
act in distinctive ways, individual energy contributions f
each group are now calculated separately. The roll m
energy represents the contribution to the energy from mo
with spanwise but no streamwise dependence and is ca
lated from the equation

Er~ t !5 (
n525
nÞ0

5

(
q51

25

a~0,n,q!~ t !ā~0,n,q!~ t !, ~19!

wherem50 is the streamwise index. A plot of the roll mod
energy is seen in Fig. 13 which again shows a spike bot
events 1 and 2. A comparison of the roll mode energy a
total energy during both events shows that the two quanti
rise simultaneously, indicating that the roll modes are

FIG. 11. Representational entropy of the minimal channel flow,S(t). The
vertical lines denote representative times of event 1 and event 2.

FIG. 12. Bulk velocity of the minimal channel flow,Ub(t) scaled witha* .
The vertical lines denote representative times of event 1 and event 2.
1062 Phys. Fluids, Vol. 9, No. 4, April 1997

Downloaded¬23¬May¬2008¬to¬10.1.150.90.¬Redistribution¬subject¬t
e
-

lk

he
-
y

e
es
u-

at
d
s
e

primary contributors to the early growth in the energy.
addition to the roll mode energy, the propagating mode
ergy,Ep(t), is calculated by

Ep~ t !5 (
m525
mÞ0

5

(
n525

5

(
q51

25

a~m,n,q!~ t !ā~m,n,q!~ t !. ~20!

A plot of the propagating mode energy shown in Fig. 14 a
shows spikes at the time of the two events. A comparison
the temporal evolution of the roll energy and propagat
mode energy shows that the propagating mode energy m
mum occursafter the the roll mode energy maximum. W
also note for the two events, that the roll mode energy r
begins at a time when propagating mode energy is at
minimum. Both of these observations regarding the pro
gating modes support the findings of Sirovich, Ball, a
Handler.25

A clearer picture of the first event can be seen in Fig.
which shows the temporal behavior of both roll and prop

FIG. 13. Energy in the roll modes of the minimal channel,Er(t). The
vertical lines denote representative times of event 1 and event 2.

FIG. 14. Energy in the propagating modes of the minimal channel,Ep(t).
The vertical lines denote representative times of event 1 and event 2.
Webber, Handler, and Sirovich
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gating mode energies in the time range 800<t1<1400. We
have also made observations of the bulk velocity and re
sentational entropy through this period. Fromt15800, when
both roll mode and propagating mode energies are small
roll mode energy rises untilt151025 while the propagating
mode energy remains low implying that strong streamw
rolls are formed on the walls. During this same period,
tropy steadily decreases reaching its minimum n
t151025 while the bulk velocity rises. The roll mode ener
remains large untilt151135 at which time the bulk velocity
reaches its peak. Following this time, a number of eve
occur simultaneously. The roll mode energy energy goes
a sharp decline while the propagating mode energy incre
rapidly. ~An extensive and detailed energy budget, which
work in progress, confirms that indeed roll energy acts a
source term for the propagating modes.! This indicates that
the near wall vortices begin to play a smaller role while t
outward tilted, quasi-streamwise modes dominate the ac
ity. In this period, the representational entropy undergoe
sharp increase implying that the energy is redistributed o
a large number of modes. The bulk velocity also begins
decrease which suggests that the propagating modes
more effective than the roll modes at transporting mom
tum to the wall. As time proceeds, the total energy decrea
because the smaller scale propagating modes decay
faster rate than the roll modes. We have examined m
periods in which the bulk velocity reaches a maximum a
find similar activity in virtually all cases. We now have
description of a cyclical process as seen through roll mod
propagating modes, and representational entropy.

During the time span 800<t1<1400, a computer ani
mation has been produced which provides a more gra
description of this cyclical process and its related quantit
The animation is generated by viewing surfaces of cons
streamwise velocity of the fluctuating flow fieldu(x,t) com-
puted from 3025 modes which account for 96.4% or the to
energy. In the time period 800<t1<1025 two sets of tubes
form on the upper and lower wall, as shown in Fig. 16,

FIG. 15. Energy in roll and propagating modes during the first eve
800<t1<1400. The solid line represents the roll mode energy and the
represent the propagating mode energy. The vertical lines represen
times that flow realizations are presented.
Phys. Fluids, Vol. 9, No. 4, April 1997
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example of the animation taken att15973. The image
shows two tubes on the upper wall with the lower wall stru
tures still in the beginning stages of development. The tu
remain dominant untilt151135 while the propagating mod
energy slowly grows. A similar plot of streamwise veloci
at this time is seen in Fig. 17 which shows well develop
structures on the top and bottom walls. We also see wa
like disturbances which propagate down the channel
shown by animation. At this time the bulk velocity is near
maximum, the entropy is at its minimum, and the roll a
propagating modes are on the verge of an energy excha
As seen in Fig. 15, the propagating mode energy imme
ately rises increasing the magnitude of these wave-like st
tures which is a phenomena similar to that reported by R
noldset al.5 just before the destruction of the rolls. The fin
realization is taken att151184 and can be seen in Fig. 1
This plot shows a surface extending away from the roll. E
dently we are witnessing the breakup of rolls into smal
scale structures. These small scale structures experien
larger degree of viscous dissipation than the well organi

t,
ts
theFIG. 16. Surfaces of constant streamwise velocity from the fluctuating
locity field at t15973. The light surfaces are positive streamwise veloc
and the dark surfaces are negative streamwise velocity.

FIG. 17. Surfaces of constant streamwise velocity from the fluctuating
locity field at t151136. The light surfaces are positive streamwise veloc
and the dark surfaces are negative streamwise velocity.
1063Webber, Handler, and Sirovich
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wall structures leading to a decrease in total energy.
interpretation is that Fig. 17 shows a highly energetic a
organized wall-bounded structure shortly before its break
and we associate this breakup with what has been term
burst.

D. Reynolds stress decomposition

In addition to the temporal behavior of the roll mod
and propagating modes, we investigate the independent
tributions they make to the average Reynolds stress~see the
Appendix!. By averaging the Navier–Stokes equations o
the two homogeneous directions along with time, we see
the pressure gradient is balanced by the viscous shear s
(1/Rt)(d

2/dx2
2) U, and the gradient of Reynolds stres

(d/dx2) u1u2(x2). Here, we investigate how the variou
groups of modes contribute to the transport of moment
averaged over time, and what this reveals about momen
transport at various stages of the events.

A plot of the roll mode contribution to the Reynold
stress~A5!, the propagating mode contribution to the Re

FIG. 18. Surfaces of constant streamwise velocity from the fluctuating
locity field at t151184. The light surfaces are positive streamwise veloc
and the dark surfaces are negative streamwise velocity.

FIG. 19. The average Reynolds stress in the minimal channel scale
ut
2. The solid line represents the entire Reynolds stress, the large dots
resent the Reynolds stress from the roll modes, and the smaller dots r
sent the Reynolds stress from the propagating modes.
1064 Phys. Fluids, Vol. 9, No. 4, April 1997
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nolds stress~A6!, and their sum is shown in Fig. 19. From
this result, we see that the roll modes dominate the Reyn
stress in the buffer layer reaching their peak atx2

1523. On
the other hand, the propagating modes show a greater p
ence in the region further from the wall reaching a peak
x2

1552, well into what would in a normal channel be the lo
layer.

We now will examine the total Reynolds stress profil
which are calculated at specific times with averaging done
the streamwise and spanwise directions. Figure 20 sh
two profiles, the first att151125, just before the energ
transfer from roll to propagating modes of event 1, and
second att151210, immediately after the transfer. We no
that these profiles represent the entire Reynolds stress,
no separation into various groups of modes has occurred
t151125, the bulk velocity is rising and the majority o
energy is in the roll modes. At this time the Reynolds stre
near the wall is greater than the time averaged values,
the magnitudes in the channel center are less than the
averaged values. The profile calculated att151210, when
the propagating mode energy has reached its first p
shows that the Reynolds stress is more active in the cente
the channel which results in a decline in bulk velocity. Th
result shows that the propagating modes are more effectiv
transporting momentum to the channel walls thereby red
ing the bulk velocity. Similar profiles are found at event
4000<t1<4600.

IV. CONCLUSIONS

We have simulated a minimal channel flow using a co
stant driving pressure gradient which has yielded flow sta
tics which are similar to empirical results. The computed K
dimension (DKL5658) for the minimal channel was smalle
than the KL dimension of the full channel (DKL54186) by
about the same factor as the ratio of the two channel v
umes, confirming that dimension is an extensive variable

The most energetic flow modes identified by the KL pr
cess have a strong similarity to structures seen in the exp
ment. A reconstruction of the most energetic mode show
two counter rotating vortices with a streak spacing
l15128, one box width of the channel, which is close to t
standard streak spacing ofl15100. The largest magnitud

-

by
ep-
re-

FIG. 20. The full Reynolds stress profile scaled byut
2 before and after the

energy exchange. The solid line represents the profile att151125 and the
dots represent the profile att151210.
Webber, Handler, and Sirovich
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of streamwise velocity for this mode is atx2
1515, which

agrees with experimental and other numerical simulatio
The propagating modes are tilted away from the wall at
angle, in a manner similar to quasi-streamwise vortices s
in both experiment and numerical simulation, and tra
straight down the channel.

The minimal channel flow in combination with the K
procedure is extremely effective for revealing flow activ
through the examination of the dynamic quantities. T
minimal channel will have at most one pair of counter rot
ing vortices on each wall going through the process of f
mation, growth, or destruction. A larger channel, on the ot
hand, will have multiple vortices at various stages of t
process. The dynamic quantities calculated from the mini
channel will therefore present a clearer picture of the life
these vortices. The temporal evolution of roll mode ener
propagating mode energy, representational entropy, and
velocity show interesting and consistent patterns during
riods of turbulent bursts. We observed that representatio
entropy growth occurs simultaneously with the transfer
energy from the roll to the propagating modes all at a time
peak bulk velocity. The bulk velocity rises at times of lo
propagating mode energy and begins to decrease afte
energy has been transferred from the roll modes to the pr
gating modes. An animation performed at this same ti
shows the formation and destruction of strong wall-bound
rolls.

Finally, this work has demonstrated how roll and prop
gating modes make independent contributions to the R
nolds stress with the roll modes dominating the profile n
the walls and the propagating modes generating larger va
towards the channel center. Reynolds stress profiles ca
lated at specific times before and after the exchange of
ergy from roll to propagating modes of the events show t
the Reynolds stress goes from a wall dominated quantity
center quantity during the exchange causing the bulk ve
ity to begin its decrease.
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APPENDIX: STRESS ANALYSIS

By averaging the Navier–Stokes equations over the
homogeneous directions as well as time, we are left with
relationship

0512
d

dx2
u1u2~x2!1

1

Rt

d2

dx2
2U~x2!. ~A1!

The first term, 1, is a product of the driving pressure gradi
and is counteracted by the viscous shear stress, (1Rt)
3(d2/dx2

2) U(x2), and the gradient of the Reynolds stres
(d/dx2) u1u2(x2). We note that the viscous shear stress i
product of the mean flow and the Reynolds stress is a p
uct of the fluctuating portion of the flow.

To analyze the Reynolds stress by Fourier wave p
(m,n) we first decompose the fluctuating flow field into su
pairs,

u~x1 ,x2 ,x3 ,t !5 (
m52M /2

M /221

(
n52N/2

N/221

û~x2 ,m,n,t !

3e2p imx1 /L1e2p inx3 /L3. ~A2!

Next, we recognize that the flow field is real allowingu2 to
be written as

u25 (
m852M /2

M /221

(
n852N/2

N/221

û2e
2p im8x1 /L1e2p in8x3 /L35u2

5 (
m852M /2

M /221

(
n852N/2

N/221

û̄2e
22p im8x1 /L1e22p in8x3 /L3.

~A3!

Using these expansions, the Reynolds stress is calculate
the equation
u1u25
1

TL1L3
E
0

TE
0

L1E
0

L3
u1~x1 ,x2 ,x3 ,t !u2~x1 ,x2 ,x3 ,t !dx3dx1dt

5
1

TL1L3
E
0

T

(
m52M /2

M /221

(
n52N/2

N/221

(
m852M /2

M /221

(
n852N/2

N/221

û1û2E
0

L1E
0

L3
e22p ix1~m2m8!/L1e22p ix3~n2n8!/L3dx3dx1dt

5
1

TE0
T

(
m52M /2

M /221

(
n52N/2

N/221

(
m852M /2

M /221

(
n852N/2

N/221

û1~x2 ,m,n,t !û2~x2 ,m8,n8,t !dmm8dnn8dt

5 (
m52M /2

M /221

(
n52N/2

N/221
1

TE0
T

û1~x2 ,m,n,t !û2~x2 ,m,n,t !dt. ~A4!
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Although Reynolds stress is computed from a nonlin
product, each wave pair~m,n! makes an independent contr
bution to it. In addition, the groups of wave pairs, roll mod
and propagating modes, will each make independent co
butions which collectively account for the entire Reynol
stress. The roll mode contribution to the Reynolds stres
calculated by the equation

u1u2r5 (
n52N/2
nÞ0

N/221
1

TE0
T

û1~x2,0,n,t !û2~x2,0,n,t !dt, ~A5!

and the propagating mode contribution is calculated by

u1u2p5 (
m52M /2
mÞ0

M /221

(
n52N/2

N/221
1

TE0
T

û1~x2 ,m,n,t !

3û2~x2 ,m,n,t !dt. ~A6!

Using the continuity equation and boundary conditions,
can show thatû2(x2,0,0,t)50, therefore the net flux mode
make no contribution to the Reynolds stress.
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