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Minimal channel flow is analyzed by means of the Karhunenved&L) decomposition. It is
shown that the most energetic modes are streamwise rollers followed by outward tilted
quasi-streamwise vortices. Both of these mode types have a strong similarity to structures seen in
physical experiments. Temporal plots of roll energy, propagating energy, bulk velocity, and
representational entropy have been obtained. Study of the evolution of these variables shows a
consistent pattern of growth and decay in which entropy plays a key role in describing the events in
the turbulent process. The roll and propagating modes are also shown to make independent
contributions to the Reynolds stress with the roll modes dominating the profile near the walls and
the propagating modes having larger values towards the channel center. A comparison of the KL
dimension of this flow and a full channel flow shows that the dimension scales with box size, i.e.,
it confirms the assertion that dimension is an extensive variable19€y American Institute of
Physics[S1070-663197)00503-3

I. INTRODUCTION dynamics responsible for maintaining wall-bounded turbu-
lence. We should preface the description of the so called

The fundamental physics of wall bounded turbulence isstandard modeby remarking that details of such models are
conveniently studied through channel flow, i.e., flow be-pot yniversally accepted, and many of the ideas are currently
tween two parallel plates and driven by a uniform pressurgngergoing revision and rethinking. In one scenario, which is
gradient. The simplicity of the channel flow geometry allowsyicq) of a class of models that have been developed, vortex
for_direct n_umerical simulations at low Reynolds n“mber_sdynamics plays a central role. One first observes that as a
which provide an abundance of accurate flow data. In thigeg it of the mean streamwise velocity profile, at any instant

work, we will defineminimal channelto be the narrowest in time, the wall region can be thought of as an ensemble of

channel for ﬁ.X?d lengthin V\.'hiCh turbulence i_s maintained MNyortex lines aligned principally in the spanwise direction.
both walls. Jimaez and Moin, who first studied such flows, The turbulence will naturally induce random kinks in the

found that channels of narrower extent produced either Ongpanwise oriented vortex lines, some of whighe kinkg

walled turbulence or in extreme cases the flow . g . .
L - . possess a curvature which induces lift into a region of higher
relaminarizes. The minimal channel flow was originally de- . . S . .
streamwise velocity. This will result in the stretching and

i lish “a signifi ly simpl - . . - ; :
zglgaet()jle}?laebsc:?;tcl)sry’ “? \;L?S;l |::Oars1;[uy djlmg zeiﬂgnrizzrgf :Invgn_therefore the intensification of the vorticity. At this point, the
bounded flows.* In this work we intend to use this configuration of the vortex line is that oftairpin, the legs
“laboratory” to further study wall-bounded turbulence by of which are oriented in the streamwise directfoNear the

decomposing the flow into its dominant modes. For the purliP Of the hairpin, sometimes referred to as tiead there is
poses of the current study, we consider the minimal channét Strong upwarejectionof fluid on the inner part of the tip,
flow to possess all the dynamics needed to produce turb@"d an equally strong wallwasdveepon the outer part. This
lence with the least repetition of structure. We anticipate thafonfiguration generates a spanwise shear-layer, which is evi-
this flow takes place on a lower dimensional attractor thargen‘Feg by an inflexional instantaneous mean velocity
other turbulent channel flows at a given Reynolds number. [#Profile.” The flow is then thought to undergo an instability on
this regard we may expect the clearest identification of fun@ccount of the strong mean shear layer which is the source of
damental turbulent mechanisms. Here we use the Karhuner@-violent generation of small scale turbulence, the event be-
Loeve procedure to produce an optimal basis set which bedfd termed aburst The small scale turbulence generated
represents the turbulent activity of the minimal channel flow.during such a burst can then initiate the start of the next
Using these functions, we intend to study the birth, growthcycle. A schematic of the scenario is presented by Hfnze.
and destruction of turbulent structures by examining the the ~ Several remarks are now in order about this generic sce-
evolution of these KL modes. To place this work in context,nario which may be termed thgjection-burst-sweepycle.
we now briefly review the current view of wall-bounded tur- Though there may be disagreements on details of the sce-
bulence. nario, certain views appear to be nearly universally accepted.
In the last several decades, a relatively simple physical he first is the observation that the flow is quasi-periodic in
picture has emerged which attempts to describe the vorticitthe spanwiseXs) direction with a characteristic wavelength,
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A", of approximately 108,, where the wall unit, the translational invariance of the flow, all eigenfunctions are
8,=vlu,, v is the kinematic viscosity, and, is the viscous sinusoidal in the streamwise and spanwise directions. Further
velocity based on wall shear stress and density. Flow visualymmetries recognized by Sirovichshow, among other
ization studie® reveal elongated near-wall streaks whoseproperties, that modes are even or odd around the horizontal
streamwise extent can often exceed 18Q0n addition, the  midplane. The earliest application of KL analysis to numeri-
temporal duration of durstand the time between them have cally obtained channel flow data was performed by Moin and
been well characterizedn studying the life of these streaks, Mosef?with attention paid to the construction of a dominant
Bernard, Thomas, and Handleidentify what they call eddy of the flow. In a separate study by Sirovich, Ball, and
quasi-streamwise vortices which are shorter than the streakgeefe?® various structures are identified along with their be-
and are tilted away from the wall. Extensive experiments andhavior over time. The most energetic modes are found to
simulations have established the peak of the root meahave no streamwise dependence. In addition, a set of modes
square departure from the mean streamwise velocity to beere discovered which moved at steady and predictable
located approximately at; ~15°>'°wherex; =x,u,/v and  speeds at oblique angles to the streamwise direction. Related
X, is the wall normal coordinate. Finally, for fully developed papers by Ball, Sirovich, and Keéfeand Sirovich, Ball, and
wall turbulence, the mean velocity profile exhibits four dis- Handlef® show how these mode types make unique contri-
tinct regions; sub-layer, buffer region, log-layer, and a turbu-butions to the flow statistics over time. That work also sug-
lent core* with maximal turbulence production occurring at gests that these “propagating” modes play an essential role
X, ~13.5. in the bursting process found in wall-bounded turbulence.

A difficulty in identifying coherent structure$or wall- Recent attempts to develop low-order dynamical systems
bounded turbulent flows, e.g., the quasi-streamwise vorticefor these flows using the Karhunen-Iueeeigenfunctions as
mentioned above, lies in the imprecision and subjectivity ina basis set have given rise to models which mimic in some
defining it. In a very broad way, however, the term refers toimportant respects the original Navier—Stokes system. In the
some flow structure perhaps formed by the concentration dirst use of the empirical eigenfunctions to obtain a dynami-
vorticity, the structure itself undergoing a stereotypical tem-cal system, Sirovich and Rodrigifébtained excellent re-
poral evolution involving birth, growth, and eventual decay.sults for the Ginzburg—Landau model. It is important, how-
This description, however, is almost certainly inadequate oever, to place this preliminary success in the context of a real
of little practical value, in the sense that each turbulent flowfluid calculation?’ which showed that wall-bounded turbu-
seems to possess its own kinds of coherent structures whidence is governed by a strange attractor whose dimension,
become evident upon close examination of the flow. In anyeven for low Reynolds numbers, is soberitvig. for a fric-
event, the idea that coherent structures are closely tied to th®n Reynolds number of 80 the dimension is about)780
kinematic notion of a concentration of vorticity seems ines-This result alone might suggest an end to the pursuit of a
capable, along with the idea that such structures are founikdw-order description of wall-bounded turbulence and other
throughout the flow at any given instant and seem to havepen turbulent flows. However, it is not obvious that one
temporal lifetimes longer than one would associate with ranheeds to accurately represent all modes to gain insight into
dom background vorticity. the principal underlying dynamicé.In this respect, these

In the case of wall-bounded turbulence, there is almosmodels should be viewed as idealizations—Sirovich and
universal agreement that such coherent structures do existhol?® describe them asmpressionistic Models can be
The question that arises immediately is whether one can takibought of as test-beds for trying out novel methods of active
advantage of their existence in the computation, modelingiurbulence control, and for understanding the mechanisms
and understanding of the flow. In more precise terms, thénvolved in turbulent drag reduction by ribléfsand by poly-
Navier—Stokes equations are infinite dimensional but empirimer additior®> For example, recent simulatios have
cal evidence suggests that the system can be described byslown that perturbation of the wave-like modes described
finite, and possibly small number of degrees of freedom—aabove, significantly reduces drag in fully developed turbulent
low-order dynamical system. A first step in the determinationchannel flow and produces turbulence statistics remarkably
of such a system, if one actually exists, is to identify ansimilar to those found in polymer-induced drag reduction.
optimal coordinate systerm which to describe the turbu- Based on the KL analysis of the minimal channel flow, to be
lence. A method was proposed by Lumigyased on the presented in this paper, we find reason for optimism that
classical work of Karhunén, and Lowel* (The method concepts from dynamical systems theory will yield a more
goes back to Schmidf see Ref. 16 for a historyThe idea  fundamental understanding of wall-bounded turbulence and
is that the flow field itselfvelocity, vorticity, etc) be used to  perhaps even the means to control it.
define this coordinate system in a precise mathematical way. The minimal channel used in this work, with a spanwise
This procedure, termed the Karhunen-te¢KL) decom-  width of L;=1285,, can also be viewed in the framework of
position, has found broad use in pattern recognitfoend in  the wide channd® which has a spanwise width of
geophysic¥ and has been alternately called the proper orli;=6405,. In natural coordinates the largest wavelength in
thogonal decompositiofPOD, Ref. 14, the empirical or- the spanwise direction ik3, and corresponds to the sinu-
thogonal function(EOF, Ref. 19 analysis, and empirical soidal wave numben=1. Suppose we perform a numerical
eigenfunction analysiSEEF, Ref. 20. experiment in the large channel such that the initial condition

The geometrical simplicity of channel flow makes it contains only the spanwise wave number5, then the
ideal for the application of Karhunen—Lee analysis. From Navier—Stokes system respects this symmetry and the only
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wave numbers which will emerge in the evolution To solve Egs.(1)—(3), we use the numerical methods
of the flow are multiples ofn=5, i.e. n=0,#5,+10, developed by Kim, Moin, and Mos¥rin which the velocity
+15,... . This result follows from an examination of the field is approximated by a Fourier—Chebyshev expansion
triad interactions of the Navier—Stokes equatigsse Ref. which can be written as

29 for a more complete explanatioThus, the same solution
could also have been achieved by studying a channel flow of
width L;=1285, one fifth the original spanwise width, and U(X't):mzzwz n:ZN,Z pgo amnplt)

the usual spanwise periodic conditions. Thus the minimal _ ,

channel is seen to be that slice of the wide channel for which X Tp(xp)e'k1xaglkss, (4)

just one roll pair appears. An important distinction between )

the narrow and full channels appears if one compares theWhere Tp(xz) denotes the Chebyshev polynomials,
eigenvalue spectra. For example, the mode which corréé1=27M/L;, andks=2mn/L;, wherel; andLs are the
sponds with the streak spacing for the large chatmet 5) domain lengths in th&, andxs directions, respectively. The
appears fourth in ranksee Table) whereas the same mode initial conditions were obtained from previous simulations of
(n = 1) for the minimal channel appears first. As mentionedfully developed turbulence performed by Handler, Hen-
in Ref. 29, the streamwise independent modes representicks, and Leightori” In our simulations, the box lengths
form of two dimensional turbulence, and thus can be exWere set toL,=m andL;=0.3x 7, and the resolution was
pected to undergo an inverse cascade. Therefore there islg9<48%24 in the wall normal, streamwise, and spanwise
tendency for th@ = 5 mode to migrate to smaller wave num- directions, respectively. The friction Reynolds number was
ber modes, and this is borne out by the eigenvalue spectrur§®t 10 135.5 which was so chosen as to maintain a bulk
This observation underlines the fact that the narrow channdfeynolds numberRe,=3U,h/2v, of 3000 as determined

is only a model of the full flow, and that it is inaccurate in from the results of Dedfi where the bulk velocityy, is the
regard to important dynamical effects. On the other hand@verage velocity across the cross-section of the duct,

since dimension is an extensive quantity, the narrower chan-

ngl has. an attractor dimension vyhich is roughly one fifth the Up(t) = EJ U(x,1)dA, (5)
dimension of the wide channel, if both had the same length. Ala

These considerations lead to the conclusion that the minimal

channel is a significantly simpler system to use in exploring?NdA is the cross-sectional area. It is known from the simu-

M/2—1 N/2—1 P

the dynamics of wall bounded turbulence. lations of Jimeez and Moin that this domain should lead to
a self sustaining turbulence which is confirmed in our simu-
lations.

II. NUMERICAL METHODS B. Karhunen—Loe  ve decomposition

A. Turbulence simulation In applying the Karhunen—Lae or proper orthogonal

decomposition(POD) to turbulent channel flow, we first
separate the velocity fieldJ, into a mean and fluctuating
Yportion, u, as follows:

We simulate the flow in a channel by solving the incom-
pressible Navier—Stokes equation in rotation form given b

Ju 1 1
E:UXQ_;VH—’_R_VZU_'—lelv (1) U(X11X21X31t):U(Xz)el+u(X11X2=X31t)1 (6)
V.U=0 ) where U(x,) is the mean obtained by averaging over the
' horizontal (;,X3) plane and time. It is important for our
and the boundary condition is subsequent deliberations to recognize that averaging over a
U=0 om+1 3) horizontal plane does not yield a time independent statistic,
=0, ,=

unless that area can be made to approach infinity. Virtually
where U(x,t) is the velocity, Q is the vorticity, I[I=p all simulations produce &y(t), (5), which is time depen-
+3p|U-U|?, p is the pressure, anal is the density. We use dent. Henceforth, it is understood that the eigenfunctions are
the notation X1,X5,X3) to denote the streamwise, wall nor- obtained from the fluctuating portion only.

mal, and spanwise coordinates, respectively. Velocity is The velocity field,u(x;,X,,X3,t) is homogeneous in the
scaled by the friction velocity,= 7, /p wherer, is the x; andx; directions so that the data set can be enlarged by
viscous shear at the wal,is scaled by the half width of the including an additional flow fieldi(x;+14,X5,X3+13,t) for
channel,h, time is scaled byh/u., and R,, the friction each value ot, andlj, that is the velocity field is transla-
Reynolds number, is given bR, = u,h/v, wherev is the tionally invariant in the horizontal plane. This implies sinu-
kinematic viscosity. We can refer to velocity, length, andsoidal dependence in the horizontal plane and allows for a
time in local wall units expressed as =u/u,, x*=x/6,,  direct KL analysis oni(x,,m,n) which is the Fourier trans-
andt®=tu,/5,. For the remainder of the paper, it is under- form of u in the x, and x5 directions. The effective size of
stood that quantities with the superscript) are reported in  the data set can be increased by a factor of four by including
wall units. In our calculations, the applied pressure gradienteflectional symmetries around the midplargs0, and the
remains constant and is given by,lwheree, is the unit  vertical plane,x;=L3/2, and a 180° rotational symmetry
vector in the streamwise direction. around the channel center,=0x3=L4/2.? It follows that
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for each wave number index pairm(n), the empirical the energye=d“\¥, is calculated and this represents the
eigenfunctions#, and eigenvalues,, are determined from energy in all corresponding eigenfunctions. An energy frac-

the equation tion, fk=eX/3,.e¥’, determines the portion of energy in any

h mode, and after ordering the modes from largest to smallest,
fﬁhKij(Xz,Xé,m,n)lﬂj(xé,m,n)dxé:K(m,n)l//i(xz), a cumulative energy can be calculated,
P
i,j=1,2,3, ) sP=> fk  k=(mn,q),  fk>fkL (13
k
where kij(x2,X;,m,n) is the two point spatial correlation ) ) i )
tensor or covariance matrix formed from which represents the portion of energy in the most energetic
. group of p modes.
Kij(X2,X5,M,n) = (U;(Xz,m,n)U;(x5,m,n)), (8) Along with these time averaged quantities, the decom-

where the expectation is taken over all realizations and symy, o1 statistics. It will be useful in what follows to define

metries, and Fhe bar denotes the Complex. Comugate. "_] ord (t) equal to twice the fluctuating kinetic energy from the
to solve the eigenvalue problem, a discretization must first b?elation

performed in thex, direction?® Our geometry uses 129
points resulting in 387 (129) eigenvalues and eigenfunc-
tions for each wave number index pair. Using the quantum
numberq to specify an eigenfunction for a wave number
index pair, the tripletk=(m,n,q) completely specifies an
eigenfunction. pk(t)=akaf(t)/E(t), (15)

The three dimensional eigenfunction is a complex val- . . .
ued vector field which can be written as for each mode. This probability represents the portion of

_ _ energy in any modek. Finally, a representational entropy,
(X1, X,X3) = (Xx,,m,n)e2mMa/lag2minxs/ls - (9)  g(t), is computed which calculates the degree to which the

It is important to note some properties retained by the eigen(_anergy Is distributed over the modes:

functions. First, because the eigenfunctions are derived from B K K

physical flow fields, they are themselves flow fields and re- S()= _Ek: PA(DIN(p*(1)). (16)
tain the incompressibility propertyV- ¢*=0. The eigen- o .
functions also satisfy the no slip boundary condition A small value ofS indicates that few modes contain the bulk
#<=0 atx,= = h. It follows from the Hermitian property of of the energy while a large value & indicates that the

xij(X2,%5,m,n) that the eigenfunctions are orthonormal, energy is distributed over many modes. While the flow can
be decomposed into any orthonormal basis set, it has been

shown by Sirovicf that the empirical eigenfunctions are the
basis set which minimizes the representational entropy for

) ) . the time averaged probabilities.
and the eigenvalues must all be real. This allows any velocity

field to be decomposed as a linear superposition of the eigen-
functionsu(x,t) = a(t) ¢*(x), where the coefficients are Ill. RESULTS

rE'osition properties are used to compute some important tem-

E(t)= fDu(x,t) U(x,t)dx= ; ak(tyaX(t). (14)

Using this, we define the probability

JD o~ de: Okl » (10

obtained from A. Turbulence statistics
K(ty — Nk Using the methods and parameters defined in Sec. II, we
ai(t) fDu(x,t) B(x)"dx. (11 have simulated turbulence in a minimal channel for a time of

) . ) . approximately 2B/u.. or t*=4000. At this Reynolds num-
It is straightforward to show that the eigenvaluks,which  po; and box size. Jifmez and Moif find fully developed

represent the energy in each KL mode, can be obtained from, i, jjent activity on both walls. Our results agree with theirs
the coefficients by with both walls maintaining activity through the majority of

— |2 the simulation. At a lower bulk Reynolds number or box size
M= < ’ j u- ¢p*dx > =(ak(t)a(1)). (120 they find turbulent activity on only one wall, which switches
D . . . .

in an intermittent fashion from one wall to the other. We

It follows from the flow symmetries discussed earlier note that the turbulent activity on one wall tended to domi-
and the reality of the flow that all eigenfunctions can benate over the other through some portions of the simulation,
found from the solutions calculated in wave number spacéut this effect did not cause a noticeable asymmetry in the
m=0,n=0. From this, it is easy to show that an eigenvaluemean velocity profile or any other statistics that we exam-

A9(m,n) is equal to eigenvalues in the other quadrantsned. Another point of interest is that we drive the flow with

N9(—m,n), A\9(m,—n), and\9% —m, —n). DegeneracygX, a constant pressure gradient while Jirae and Moin used a

denotes the multiplicity of such eigenvalues. Degeneracy isonstant mass flux condition. With the exception of the mean

equal to four ifm # 0 andn # 0, equal to two if one but not velocity profile, as we will discuss below, this difference in

both m,n are equal to 0, and equal to onerif=0 and driving mechanisms did not affect the statistics in any sig-
n=0. In order to account for all wave number index pairs,nificant way compared to those found by Jimeg and Moin.
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FIG. 1. Mean streamwise velocity near the wall. Solid line is F|G. 3. Power spectra of the velocity vs the streamwise indgxon the
U/u,=2.5Inx; +5.5, point values are results of the minimal channel simu- planex; =14.5. The solid line represents, the small dots represent,
lation. and the bold dots represemi.

With the given pressure gradient used in our simulationspectra, shown in Figs. 3 and 4, show decays of 3 to 5 orders
we achieve a time averaged bulk Reynolds numbeRef of magnitude indicating the flow to be well resolved spa-
=3 (Upyh/v) and a centerline Reynolds number, tially.

Re,=Uh/v, of 2489. These values are close to the corre- The results of Figs. 1-4 clearly show that our results
lations of Deaf* with our bulk Reynolds number exceeding compare well with classical experimental results and those of
Dean’s prediction by 3%. We note in Fig. 1, that the meanJimenez and Moin, and as such, the minimal flow unit pro-
profile exceeds the classical law of the wall results, and ivides a sound basis for the study of wall-bounded turbulence.
should be noted that Jimez and Moin find similar results. The minimal channel turbulence is fully self-sustaining, two
They observe that the difference seems to occur in the centaalled, and produces accurate statistics while isolating the
of the channel and could be related to the formation of largelominant flow structures. We believe that this allows for a
structures. As additional support, we observe that the argwslear examination of the relevant structures.

ment leading to the log law follows from the assumptions

x2+>1 andx;<RT. Next we note that the minimal channel B. Decomposition of the minimal channel flow

has the additional restriction that the width of the channel is

roughly 128 _. An individual roll is half this, or 64_.. This
last estimate imposes the estimate that 64 which makes

We identify the dominant structures by applying the
Karhunen—Loee decomposition, as described in Sec. Il, to
it unlikely that a log layer will appear even R, 7. ;E.het rfr'1f|tn|mal chdanngl flow eﬁa;n!ne_?l E:JO\I/E'I A “St'.?r? of the

The root mean square velocity fluctuations, ISt iieen moces Is presentedin fable | along with a com-

T R Ny SRS NN S parison to the full channel flow calculated by Sirovich, Ball,
up=(ui)"% us=(u3)% uz=(u3)*? are shown in Fig. 2
. i . : and Handle® at nearly the same Reynolds number. The cu-
along with empirical results of Wei and Willmarth at a Rey- mulative energy sum for the two flows, as describedLid)
nolds number ofRe,=2970. It is evident that our results ay ' '

: . . . are also compared in Fig. 5. A first conclusion that can be
compare quite well with those of Wei and Willmarth. Energy drawn from tr?ese resultg is that the minimal channel is of

10 T

2.5

0.1
uy fu,
uyfu, 15

i,

0.01

0.001

0.0001 | R ]
0.5 . .
1e-05 | RN ' k|

le-06 L

FIG. 2. Root mean squared fluctuations. Solid ling/u.: small dots, FIG. 4. Power spectra of the velocity vs the spanwise indern the plane
us/u,: large dots,uz/u,, Re,;=2489. Symbols are data from Wei and x; =14.5. The solid line represents, the small dots represent, and the
Willmarth® at Re,;=2970. Wei and Willmarth did not measuvg . bold dots represents.
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TABLE I. Energy content of the first 15 eigenfunctions of the minimal X 13555, or 4265, and a spanwise width of

channel flow and the full channel flow. 0.3xmx135.55, or 128, resulting in a volume of
Minimal channel Full channel 1.47< 10 8. A similar calcul7at|on of thg full channel
Rr=135.5 Rr=125 shows its volume to be 9.%710 é‘f The ratio of Dy, for

the two flows is 0.157 while the ratio in volumes is 0.151,
the two ratios differing by only 4%. The fact that these ratios
are in such close agreement indicates that the KL dimension

Mode Energy  Energy Mode Energy Energy
Index (m,n,q) fraction sum (m,n,q) fraction sum

; Egig 8-13(21;2 8-;2%2 Egig 8-83533 8-8;‘;32 scales in proportion to volume which is in agreement with

3 (111 004863 028611 (040 003266 011539 the assertion that_ o_llmen5|on is an e_xtenswe varlablg.7 This

4 (112 004807 033418 (0,51 0.02866 0.14405 Suggests that a minimal channel version of the Keefal:

5 (0,1,3 0.029037 0.36355 (0,4,2 0.02288 0.16693 calculation would lead to a Lyapunov dimension o260

6 (01,4 0.02170 0.38525 (0,1,2 0.02097 0.18790 instead of~ 780.

g EEZ 8-8132;’ 8;2‘;22 Egg% 8-8?82‘7‘ g-ggggg With the empirical eigenfunctions in hand, we use them

9 001 001700 043845 (022 001878 0.24700 to de(;om_pose and reconstruct the flow fields for storage _and

10 211 001651 045496 (0.6 001381 026082 ©xamination of the flow. A direct way to store a flow field is

11 (0,2,) 0.01376 0.46872 (0,52 0.01310 0.27392 by its representation in physical space, for example, three

12 (1,0,) 0.01348 0.48220 (1,3, ) 0.01252 0.28645 components of velocity stored at each spatial point. Instead,

ﬁ Egg% g-gggg g-ggggg 8421;)) 8-882‘3‘? g-ggigg we can use the empirical eigenfunctions to calculate the co-
1Ly . . 4y . . . . k . .

15 (122 001289 052175 (1510 000820 031258 efficientsa”(t) as described in Eq.11) and store these at

discrete times. While the space needed to store all coeffi-
cients is the same as that needed to store the flow field in
physical space, we choose to store the 3025 most energetic
lower dimension with fewer modes needed to account fomodes which account for 96.4% of the energy. This requires
any fraction of the energy. This result supports the expectasnly 0.4% of the space needed for pointwise storage and
tion that the minimal channel has less structural repetitionepresents a significant data compression. We note that a one
than the full channel making the fundamental turbulenttime storage of the “library” of eigenfunctions is also nec-
mechanisms easier to identify. essary. To reconstruct the velocity field(x,t), an eigen-

In order to evaluate the dimension of a flow, which al- function, ¢{™™%(x), will make its contribution to the flow,
lows it to be compared to other flows, we use the nominal{™"%(x,t), through as many as four degeneradfesver if
KL dimension as defined by Sirovich.The KL dimension, eitherm or n is zerg which is written as
Dy, denotes the number of modes, including degeneracies, UM (x t) = a(MAD)(£) MmN x)
which are needed to account for 90% of the energy in the ’

flow. We will examine the relationship betweBrx, and box +am=ma(t) pMm—mad(x)

size by comparing the results of the minimal channel flow to

those of the full channel flow. For the minimal channel, +al-mnal(t) g -mna)(x)

Dk, =658 while the full channel has a KL dimension of +almmena) () M) (x) (17)

4186. In order to compare box size, we calculate the volume

of each box in viscous unit$>. The minimal channel, with ~ Since this represents the summation of complex conjugate
a half height of 135.5,, has a height of 274, between the functions,u™™%(x,t) fulfills the reality condition. In addi-
two walls. This same channel has a streamwise length dion, since the eigenfunctions are derived from an actual in-
compressible flow, the reconstructed flow field,
umna(x t), is incompressible and satisfies the no-slip
boundary conditions, as well as periodic boundary conditions
in the streamwise and spanwise directions. For a full recon-
struction of the flomu(x,t), summation must be performed
over the Fourier and quantum numbers,

uxt) =2 X X U™ O(xt). (18
o m n q

: In addition to reconstructing the flow from all modes, insight
03 . 1 can be gained by consideration of various groups of modes,
02 . such as the 100 most energetic modes, or even a single
o1k 1 mode.
0 ' ' ' ' ' ' : . : In Fig. 6, we show two surface®ne positive and one

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 . . .. . .

Mode index, p negative of constant streamwise vorticity at an instant in

time. This is a reconstruction from all 3025 stored modes and
FIG. 5. Cumulative energy sunsP. The solid line is from the minimal Cfa” be Cons'qereq to be a true flow re.al.lzatlon'. The VO'I"[ICIty
channel flow, the dots are from the full channel flow calculated by Sirovi(:h,f!e_Id ?hOWS S'Qr"ﬂcant small scale _a(_;“V'ty making the iden-
Ball, and Handler. tification of dominant structures difficult. By examining a

Phys. Fluids, Vol. 9, No. 4, April 1997 Webber, Handler, and Sirovich 1059

Downloaded-23-May-2008-t0-10.1.150.90.-Redistribution-subject-to-AlP-license-or-copyright;~see-http://pof.aip.org/pof/copyright.jsp



FIG. 6. Surfaces of constant streamwise vorticity from minimal channelFIG. 8. Surface of constant streamwise velocity from reconstruction of the
reconstructed from all 3025 modes. The light surfaces are positive streanfirst Eigenfunction. The light surfaces are positive streamwise velocity and
wise vorticity and dark surfaces are negative streamwise vorticity. The ndhe dark surfaces are negative streamwise velocity.

slip planes are on the top and bottom, and the streamwise direction is from

left to right.

positive and one negatiy®f constant streamwise velocity.

field which is reconstructed from fewer than all modes, smalfFrom further examinations, the flow field clearly consists of
scale detail can be filtered out and the dominant structure®vo counter rotating vorticegwe use the term vortex in a
identified more clearly. Figure 7 shows the same vorticityloose way to imply rollswhich span the length and width of
field produced from the 100 most energetic modes and sughe channel producing a streak spacing.of= 128 which is
gests that the upper wall is dominated by long streamwisé reasonable agreement with the streak spacing found
vortices while the shorter, outward tilted vortices play aexperimentally’> Negative streamwise velocity is found in
larger role on the lower wall. These same structures are othe regions where the two vortices act to pump fluid away
viously more difficult to identify from the original flow field from the wall while positive streamwise velocity is found
which demonstrates one use of partial flow reconstructiovhere the vortices are bringing fluid from the outer flow
using KL modes. toward the wall as suggested by Bakewell and Lunifephe

In examining the individual modes, we begin with the magnitude of the streamwise velocity from this mode is larg-
most energetic mode, one which contains 13.3% of the flovest ab(; =15. It is interesting to observe that in experimental
energy. This mode is characterized by the triplen,r{,q) and numerical studies, the peak value of the root mean
= (0,1,1). Itis clear that this mode has no streamwise depersquared streamwise velocity fluctuatiar,, is also found at
dence and its spanwise length-scale is the width of the box; = 15210
At a specific timet’, we construct the flow(®19(x,t’) as The next most energetic mode is characterized by
described in(17) producing a real valued, incompressible (0,1,2) and represents 10.5% of the flow energy. It shows a
flow field satisfying all boundary conditions. Visualization of structure similar to the first but with opposite parity, viz. the
this mode is seen in Fig. 8 which shows two surfagmse  streamwise velocity of this mode is odd in the wall normal
direction. Because all modes with spanwise but no stream-
wise dependence appear as a collection of long rolls, we will
hereafter refer to them a®ll modes The analysis of full
channel flo®® also shows the roll modes to be the most
energetic ones. The first and second modes in this study have
the same size and structure as the (0,5,1) and (0,5,2) modes
from the full channel study as explained earlier. Along with
roll modes, the only other modes without streamwise depen-
dence arenet flux modegor which (m,n) = (0,0). These
modes vary only in the wall normal direction which vary
only in the wall normal direction and are the only modes,
along with the mean, which enter into the calculation of the
bulk velocity. The net flux modes along with the roll modes
together form the entire group of modes without streamwise
dependence and are referred tokasematically degenerate
modes?*

The third most energetic eigenfunction for which
FIG. 7. Surfaces of constant streamwise vorticity from minimal channel

reconstructed from the 100 most energetic modes. The light surfaces ar(em’n’q) : (1,1,1)does show streamwise dependence. Such
positive streamwise vorticity and dark surfaces are negative streamwise voptreamwise dependent modes have been shown to move at a

ticity. predictable speéfl and have been termegropagating
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FIG. 10. Energy in the fluctuating portion of the minimal channel flow. The
vertical lines denote representative times of event 1 and event 2.

FIG. 9. Surface of constant streamwise velocity from reconstruction of the
third eigenfunction. The light surfaces are positive streamwise velocity and ) ) L )
the dark surfaces are negative streamwise velocity. scale structures, leading to the identification of the dominant

wall vortices.

modes.The third mode has a fourfold degeneracy, as show&' Flow dynamics and entropy events

in (17), which add to form a real valued, incompressible flow Having obtained the dominant KL modes, we now ex-
field satisfying all boundary conditions. Each such eigen-amine how the structures interact over time and what they
function leads to a “plane wave” moving at an oblique can reveal about the detailed dynamics of the flow. Using the
angle to the constant driving pressure gradfénthile an  empirical eigenfunctions from the initial simulation, the flow
individual eigenfunction moves at an oblique angle, the sundata from a second simulation is projected onto these eigen-
of all four, as shown in(17), produces a structure which functions yielding time dependent coefficiensg(t). These
moves straight down the channel. Surfaces of constardoefficients are employed in the formation of a set of dy-
streamwise velocity for a reconstruction of this mode arenamic quantities including energy, entropy, and bulk velocity
shown in Fig. 9. These structures are tilted away from thedescribed in Sec. Il which are then used along with a com-
wall by an angle of 30°a plot for streamwise vorticity puter animation to examine the flow.
shows an angle of 18°Similar structures have been noticed The functionE(t) (14), which measures the fluctuating
in experiment’ and are defined as quasi-streamwisat-  energy of the flow, can be calculated directly from the time
ward tilted vortices®® These structures could also be de- dependent coefficients(t). A plot of E(t) is shown in Fig.
scribed as an admixture of two types of vortices observed b0 based on 3025 modes. Most noticeable are the two sharp
Bernard, Thomas, and HandferThe first type being the peaks near the times = 1000 andt ™ = 4000, in addition to
longest vortices whose upstream ends are near the wall arednumber of smaller spikes. Data are presented in the range
downstream ends are in the outer flow domain and the se@<t"<10,000 for the purpose of clarity. The second simu-
ond being the relatively new vortices which have formed atlation is actually carried out to* =40 000 and similar spik-
the wall. ing activity was found throughout the calculation so that the
In summary, the minimal channel is a lower dimensionalpeaks under discussion are typical. The events occurring at
flow than the full channel as expected. More specifically, thet™ = 1000 andt*™ =4000 indicate, respectively, a sharp rise
KL dimension is directly proportional to computational vol- and fall in turbulent activity which are examined in greater
ume, confirming that dimension is an extensive quantity. Usdetail below. We will hereafter refer to these events as event
ing the KL transform, we are able to directly identify the 1 and event 2.
structures that are thought to be most vital to turbulence self We also study the degree to which the fluctuating energy
maintenance. This is consistent with the results of Rempfeis distributed over the modes by monitoring the representa-
and FaséP who found the KL procedure to reveal important tional entropy,S(t), (16). (Entropy can be sensitive to the
dynamical structures in the evolving boundary layer. Thenumber of modes included. To ensure the accuracy of the
most energetic mode appears as two counter rotating vorticegends indicated in Fig. 11 we studied this sensitivity by de-
with a spanwise width on the same order as the streak spatermining the entropy based on 96.4% and 90.3% of the
ing found in experiment. The largest magnitude of streamfluctuating energy. This provided convincing confirmation of
wise velocity for this mode occurs af =15, the same po- the behavior shown in Fig. D1Entropy, shown in Fig. 11,
sition whereu; is observed to be maximum experimentally. shows two noticeable events near the times also at
To complement the roll modes, the KL process also identit*=1000 andt™=4000, with other minor events at other
fies a set of propagating modes with a structure similar to théimes. A detailed examination of these events shows that the
outward tilted or quasi-streamwise structures that moveepresentational entropy drops to its lowest levels early in the
straight down the channel at a steady speed. In addition tevent cycle while the energy is growing rapidly. This indi-
examination of the individual modes, the KL reconstructioncates that during the energy growth portion of the cycle, the
technigues have proven to be valuable in filtering out smalknergy is distributed over relatively few modes and the flow
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FIG. 11. Representational entropy of the minimal channel fi§{t). The FIG. 13. Energy in the roll modes of the minimal channgj(t). The
vertical lines denote representative times of event 1 and event 2. vertical lines denote representative times of event 1 and event 2.

is well organized. A sharp rise in entropy then occurs while

energy is still high. This indicates that the energy is redisyrimary contributors to the early growth in the energy. In

tributed over many modes in a very short time after whichzqdition to the roll mode energy, the propagating mode en-
the energy decreases. The temporal evolution of the bulkygy, E,(1), is calculated by

velocity is shown in Fig. 12, and is seen to grow early in the
event cycle, reaching its largest values at the times as the
entropy is growing rapidly. A suggestion as to how the ob- > ° 2 (.3 =TN.G)
served energy redistribution is related to the bulk velocity Ep(t)=m§_5 n:E—S qzl al™n P (t)al ™ e(L). (20
decrease is presented in Sec. Il D. m#0
Because various types of modésll and propagating

act in distinctive ways, individual energy contributions for 5 plot of the propagating mode energy shown in Fig. 14 also
each group are now calculated separately. The roll modgqys spikes at the time of the two events. A comparison of
energy represents the contribution to the energy from modege temporal evolution of the roll energy and propagating
with spanwise but no streamwise dependence and is calCy;oge energy shows that the propagating mode energy maxi-

lated from the equation mum occursafter the the roll mode energy maximum. We

5 25 also note for the two events, that the roll mode energy rise

E ()= > > al®"dt)a®ma (), (199  begins at a time when propagating mode energy is at its
9t minimum. Both of these observations regarding the propa-
gating modes support the findings of Sirovich, Ball, and

wherem=0 is the streamwise index. A plot of the roll mode o5
Handler:

energy is seen in Fig. 13 which again shows a spike both at A clearer picture of the first event can be seen in Fig. 15

events 1 and 2. A comparison of the roll mode energy and , . . K
total energy during both events shows that the two quantitie\évhICh shows the temporal behavior of both roll and propa

rise simultaneously, indicating that the roll modes are the

4.5 T T T

15.8
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FIG. 12. Bulk velocity of the minimal channel flowJ,(t) scaled witha*. FIG. 14. Energy in the propagating modes of the minimal charigk).
The vertical lines denote representative times of event 1 and event 2.  The vertical lines denote representative times of event 1 and event 2.
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FIG. 15. Energy in roll and propagating modes during the first event,
800<t"=<1400. The solid line represents the roll mode energy and the dots

represent the propagating mode energy. The vertical lines represent tHdG. 16. Surfaces of constant streamwise velocity from the fluctuating ve-
times that flow realizations are presented. locity field att™=973. The light surfaces are positive streamwise velocity

and the dark surfaces are negative streamwise velocity.

gating mode energies in the time range 820<1400. We ~ €xample of the animation taken af =973. The image
have also made observations of the bulk velocity and repre3NOWs two tubes on the upper wall with the lower wall struc-

sentational entropy through this period. Frofm=800, when tures still in the beginning stages of development. The tubes

. . S . ;
both roll mode and propagating mode energies are small, thgman dominant unt” = 1135 while the propagating mode

. _ . . energy slowly grows. A similar plot of streamwise velocity
roll mode energy rises undl" =1025 while the propagating at this time is seen in Fig. 17 which shows well developed

:gﬁgeagng%ergrgsl?selml:;npé{:ﬁ?};ﬁﬂ?:g;:% Ztéfiir;vgsn?s_tructgres on the top _and bottom walls. We also see wave-
) ' . . o ' “like disturbances which propagate down the channel as
tr+opy steadl.ly decreases reac;hmg Its minimum - neag, by animation. At this time the bulk velocity is near its
t"=1025 while the bulk velocity rises. The roll mode energy mayimum, the entropy is at its minimum, and the roll and
remains large until ™ = 1135 at which time the bulk velocity propagating modes are on the verge of an energy exchange.
reaches its peak. Following this time, a number of events\g seen in Fig. 15, the propagating mode energy immedi-
occur simultaneously. The roll mode energy energy goes int@tely rises increasing the magnitude of these wave-like struc-
a sharp decline while the propagating mode energy increasegres which is a phenomena similar to that reported by Rey-
rapidly. (An extensive and detailed energy budget, which isnoldset al® just before the destruction of the rolls. The final
work in progress, confirms that indeed roll energy acts as &ealization is taken at"=1184 and can be seen in Fig. 18.
source term for the propagating modeshis indicates that This plot shows a surface extending away from the roll. Evi-
the near wall vortices begin to play a smaller role while thedently we are witnessing the breakup of rolls into smaller
outward tilted, quasi-streamwise modes dominate the activscale structures. These small scale structures experience a
ity. In this period, the representational entropy undergoes #rger degree of viscous dissipation than the well organized
sharp increase implying that the energy is redistributed over
a large number of modes. The bulk velocity also begins its
decrease which suggests that the propagating modes are
more effective than the roll modes at transporting momen-
tum to the wall. As time proceeds, the total energy decreases
because the smaller scale propagating modes decay at a
faster rate than the roll modes. We have examined many
periods in which the bulk velocity reaches a maximum and
find similar activity in virtually all cases. We now have a
description of a cyclical process as seen through roll modes,
propagating modes, and representational entropy.

During the time span 8G8t™ <1400, a computer ani-
mation has been produced which provides a more graphic
description of this cyclical process and its related quantities.
The animation is generated by viewing surfaces of constant
streamwise velocity of the fluctuating flow fieldx,t) com-
puted from 3025 modes which account for 96.4% or the tota,zI G. 17. Surfaces of constant sireamwise velacit .

. . 4 .17, y from the fluctuating ve-
energy. In the time peI’IOd 8680t" <1025 two sets of tubes locity field att™ =1136. The light surfaces are positive streamwise velocity
form on the upper and lower wall, as shown in Fig. 16, anand the dark surfaces are negative streamwise velocity.
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FIG. 20. The full Reynolds stress profile scaledtﬁybefore and after the
energy exchange. The solid line represents the profité at1125 and the
FIG. 18. Surfaces of constant streamwise velocity from the fluctuating vedots represent the profile &it = 1210.

locity field att™ =1184. The light surfaces are positive streamwise velocity

and the dark surfaces are negative streamwise velocity.

nolds stresgA6), and their sum is shown in Fig. 19. From

this result, we see that the roll modes dominate the Reynolds

wall structures leading to a decrease in total energy. OUgiress in the buffer layer reaching their pealkit=23. On
interpretation is that Fig. 17 shows a highly energetic andne other hand, the propagating modes show a greater pres-
organized wall-bounded structure shortly before its breakupgnce in the region further from the wall reaching a peak at
and we associate this breakup with what has been termed)@zr:52, well into what would in a normal channel be the log
burst. layer.

We now will examine the total Reynolds stress profiles
D. Reynolds stress decomposition which are calculated at specific times with averaging done in
the streamwise and spanwise directions. Figure 20 shows

In addition to the temporal behavior of the roll modes i , " _
o profiles, the first at™=1125, just before the energy

and propagating modes, we investigate the independent co i
tributions they make to the average Reynolds stteee the transfer frem roll to propagating modes of event 1, and the
Appendiy. By averaging the Navier—Stokes equations Ove,second at =1_210, immediately after. the transfer. We note
the two homogeneous directions along with time, we see thépat these .proflles represent the entire Reynolds stress, and
the pressure gradient is balanced by the viscous shear stre§8, Séparation into various groups of modes has occurred. At

(1R,)(d%dx3) U, and the gradient of Reynolds stress,t —112.5,'the bulk velocity is ri.sin'g and the majority of
(d/dx,) Uglip(x,). Here, we investigate how the various energy is in the roll modes. At this time the Reynolds stress

groups of modes contribute to the transport of momentu ear the wall is greater than the time averaged values, and

averaged over time, and what this reveals about momentuHi1e mag(;ntudles m'IEP]e chafrjlnel clentle: z:%tlzeigltgan rt]he time
transport at various stages of the events. averaged values. 1he profile calculate » when

A plot of the roll mode contribution to the Reynolds the propagating mode energy has reached its first peak,

. I shows that the Reynolds stress is more active in the center of
stress(AS), the propagating mode contribution to the Rey the channel which results in a decline in bulk velocity. This

result shows that the propagating modes are more effective at
transporting momentum to the channel walls thereby reduc-

07 : : : : : : ing the bulk velocity. Similar profiles are found at event 2,
4000<t* <4600.

0.6 - 4

05 L ] IV. CONCLUSIONS

ot [f _ We have simulated a minimal channel flow using a con-
|7o| i stant driving pressure gradient which has yielded flow statis-
a2 031 T e | tics which are similar to empirical results. The computed KL

o2k [f : _ dimension Py, =658) for the minimal channel was smaller

; T than the KL dimension of the full channeD¢, =4186) by
orr k O] about the same factor as the ratio of the two channel vol-
0 : : . . L frreel umes, confirming that dimension is an extensive variable.
0 2 “ © g ¥ o The most energetic flow modes identified by the KL pro-

cess have a strong similarity to structures seen in the experi-
, N ment. A reconstruction of the most energetic mode showed
FIZG. 19. The .average Reynolds str.ess in the minimal channel scaled %0 counter rotating vortices with a streak spacing of
uz. The solid line represents the entire Reynolds stress, the large dots rep-, 128 b idth of the ch | which is cl h
resent the Reynolds stress from the roll modes, and the smaller dots repré- — » ONE DOX Wi _t of the channel, which is ¢ Ose. to the
sent the Reynolds stress from the propagating modes. standard streak spacing &f =100. The largest magnitude
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of streamwise velocity for this mode is & =15, which  ported by the Office of Naval Research through the Naval
agrees with experimental and other numerical simulationsResearch Laboratory and through the DOD High Perfor-
The propagating modes are tilted away from the wall at ai€tmance Computing program. The authors are grateful for the
angle, in a manner similar to quasi-streamwise vortices seemelpful comments made to them by Gal Berkooz.
in both experiment and numerical simulation, and travel
straight down the channel.

The minimal channel flow in combination with the KL

. . . ... APPENDIX: STRESS ANALYSIS
procedure is extremely effective for revealing flow activity

through the examination of the dynamic quantities. The By averaging the Navier—Stokes equations over the two
minimal channel will have at most one pair of counter rotat-homogeneous directions as well as time, we are left with the
ing vortices on each wall going through the process of forrelationship

mation, growth, or destruction. A larger channel, on the other

hand, will have multiple vortices at various stages of the d 1 d?

process. The dynamic quantities calculated from the minimal ~ 0=1— =~Til(Xz) + = WU(Xz)- (A1)
channel will therefore present a clearer picture of the life of 2 T2

these vortices. The temporal evolution of roll mode energyThe first term, 1, is a product of the driving pressure gradient
propagating mode energy, representational entropy, and bulind is counteracted by the viscous shear stres®R Y1/
velocity show interesting and consistent patterns during pex(dZ/dxg) U(x,), and the gradient of the Reynolds stress,
riods of turbulent bursts. We observed that representationgld/dx,) u;U,(x,). We note that the viscous shear stress is a
entropy growth occurs simultaneously with the transfer ofproduct of the mean flow and the Reynolds stress is a prod-
energy from the roll to the propagating modes all at a time ofyct of the fluctuating portion of the flow.

peak bulk velocity. The bulk velocity rises at times of low To analyze the Reynolds stress by Fourier wave pair

propagating mode energy and begins to decrease after tiigh,n) we first decompose the fluctuating flow field into such
energy has been transferred from the roll modes to the propgairs,

gating modes. An animation performed at this same time

shows the formation and destruction of strong wall-bounded M/2-1  N2-1
rolls, Uy X Xg )= 2 2 l(xp,m,n,t)
Finally, this work has demonstrated how roll and propa- m==M/2n==N/2

gating modes make independent contributions to the Rey- X @2mimxy /Ly g2minxg /g (A2)
nolds stress with the roll modes dominating the profile near

the walls and the propagating modes generating larger valud$ext, we recognize that the flow field is real allowing to
towards the channel center. Reynolds stress profiles calclpe written as

lated at specific times before and after the exchange of en-
ergy from roll to propagating modes of the events show that -, - —
thgyReynolds stré)ss%oges frgm awall dominated quantity toa  Y2= > , > Upe?mmialhig?min s la= y,
center quantity during the exchange causing the bulk veloc- m'= M2 =Nz

. L. M/2—1 N/2—1
ity to begin its decrease. — -, ,
— E 2: uzefz-rrlm xllLlefz-rrm x3/L3_
m'=—M/2 n"=—-N/2
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