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Solutions of the linearized Boltzmann equation which may be found from finite moment equations
are studied. A general solution to this problem is found and its properties discussed. A more restric-
tive class of such solutions, called generalized normal solutions, are then uncovered. These constitute
a wide class of solutions in any desired number of moments. The governing equations are rendered
determinate by exact expressions relating higher moments to the distinguished moments. In certain
circumstances the initial data must be altered, and the resulting “‘ersatz’ initial data used in connec-
tion with the equations. A case in point is the usual normal solution of the Hilbert—~Chapman—-Enskog
theory. The “ersatz’’ initial data then renders the latter into an exact asymptotic theory. In addition
higher moment systems are discussed in detail. It is shown that the generalized normal solutions are
by no means a comprehensive class. Exact solutions of the Boltzmann equation which are also exact
solutions of the Euler equations, the Navier-Stokes equations, the Burnett equations, the Thirteen
moments equations (among others) are exhibited. Furthermore, these can satisfy the Boltzmann

equation in an infinite variety of ways.

I. INTRODUCTION

INCE this is the last of a series of papers's®

on the initial value problem in linearized kinetic
theory, we briefly summarize our results and its
bearing on some previous work.

In the last published paper II, the chief goal was
the solution of the linearized but full Boltzmann
equation. This goal was formally achieved with the
modal description given there, (II: 2.27).} The
motives of this paper will be somewhat different.
In II the Boltzmann equation was ‘“‘reduced” to an
infinite system of equations in moments of the dis-
tribution function,® and this system was then
solved.’ In this paper the cardinal concern will be
the determination of finite systems of moment equa-
tions which yield exact solutions to the infinite
system. And to establish criteria under which this
may be used in an accurate or approximate manner.

For as long as the Hilbert—Chapman—-Enskog
theory dominated kinetic theory, the central problem
in the field was the determination of a finite moment

* Present address: Division of Applied Mathematics,
Brown University, Providence, Rhode Island.

1 LI. Sirovich, Phys. Fluids 6, 10 (1963), henceforth referred
to as 1.

% L. Sirovich, Phys. Fluids 6, 218 (1963), henceforth re-
ferred to as II.

3 We will use this obvious method of referring to either
sections or equations of I and II.

4 Consistent with current usage we- shall use the word
“moment’’ generically to refer to the coefficients in an ex-
pansion of the distribution function. In general a coefficient
need not even be a sum of moments.

5 When referring to the Boltzmann equation we shall mean
either the true Boltzmann equation or the infinite system in
the moments. Strictly speaking, these are not equivalent
since the solution to the latter when properly summed to give
the distribution function, may not even converge, among
other possible difficulties.

description,® In particular, the Hilbert-Chapman—
Enskog method sought to solve the Boltzmann equa-
tion in terms of density, temperature, and velocity,
(o, u, T). This it did, in general, by describing all
the higher moments of the distribution function in
terms of (p, u, 7).”* It has long been felt that this
approach was defective unless clarified. For instance,
in connection with an initial value problem, it is
evident that the initial values of the higher moments
must be of the Hilbert-Chapman—FEnskog form. For
instance stress and heat conduction (p.;, S.), if to
be related to (o, u, T), must certainly be of this
form initially. It has further been felt that the
Hilbert—Chapman-Enskog approach did not give,
as hoped for, a better description of non-equilib-
rium phenomena than did the Navier-Stokes equa-
tions. Schaaf and Chambre’ mention this and cite
experiments which indicate this.

Furthermore the author'® showed, for a particular

6 A more narrow view is that the Hilbert~Chapman-
Enskog procedure reduced kinetic theory to the determina-
tion of transport coefficients.

7 A novel and interesting approach to this problem is
given by the Bogoliubov method. There it is assumed that
the time dependence of the distribution function is given
functionally through (p, T, u). For references and an account
of this approach see the article by E. G. D. Cohen, ‘“The
Boltzmann Equation and its Generalization to Higher Den-
sities”” in Fundamental Problems in Statistical Mechanics
edited by E. G. D. Cohen (North-Holland Publishing Com-
pany, Amsterdam, 1962). An equivalent method is given in
the next reference.

8 H. Grad, “Principles of the Kinetic Theory of Gases,”
in Handbuch der Physik, edited by S. Fligge (Springer-Verlag,
Berlin, 1958), Vol. 12. See section 25 in connection with
footnote 7.

¢ S. A. Schaaf and P. L. Chambre, Flow of Rarefied Gases
(Princeton University Press, Princeton, New Jersey, 1955).

10 T, Sirovich, “On the Kinetic Theory of Steady Gas
Flows,” in Rarefied Gas Dynamics, edited by L. Talbot
(Academic Press Inc., New York, 1961).
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SOLUTIONS OF THE BOLTZMANN EQUATION

boundary value problem, that the Burnett terms
only sought to give a finer description of the Navier—
Stokes solution. As we shall see, the Hilbert—-Chap-
man—-Enskog succeeds only in giving a very high
quality description of the hydrodynamic state. It
might appropriately be called hyper-hydrodynamies.

A new approach in kinetic theory was taken by
Grad," who proposed the use of more than the
(p, u, T) moments. This work, published in 1949,
explicitly details a theory in the (p, u, T, p;;, S)
moments, now known as the Thirteen-moments
equations. Shortly after, Wang Chang and Uhlen-
beck and Mott-Smith'® produced works also based
on a moments theory and which considered many
more than the above thirteen moments. As is well
known, the moments methods yields a determinate
system by disregarding all but a predetermined finite
number of moments. Certain inadequacies of this
theory were evident to Grad himself, and he later
suggested'® an amended scheme which he called
“interpolation.” Both the latter and the earlier
moments method are discussed in I. In regard to
the initial value problem it was shown that the
liabilities presented by a moments method de-
scription greatly dimmed its virtues. It was also
shown there that the method of interpolation was
in the right vein, but, as originally proposed, was
incomplete. A more refined method of interpolation
as well as a less arbitrary method of choosing mo-
ments was then given there. As an example of those
considerations, there was exhibited in I a system of
equations in nine moments (p, T, u, S, @). The
latter, a fourth order moment, was considered since
its relaxation time is identical to that of S. A major
result of the present paper is the delimiting and
clarification of the above methods—all of which,
strictly speaking, have only a formal status.

Using the terminology of II, the status of the
Hilbert-Chapman—Enskog theory may be described,
to some degree, in a more general way. If the initial
data consists of only the hydrodynamic modes (in
the sequel we shall say it belongs to the Hilbert-
Chapman—FEnskog manifold) then it remains on this
manifold for all time. [This was demonstrated in
(II: Section II).] Under this condition the solution
is here shown to result from a finite determinate
system of equations—the conservation equations.

2 H, Grad, Comm. Pure Appl. Math. 2, 331 (1949).

12C, 8. Wang Chang and G. E. Uhlenbeck, “On the
Propagation of Sound in a Monatomic Gas,”” (Engineering
Research Institute, University of Michigan, Ann Arbor,
Michigan, 1952).

13 H, M. Mott-Smith, “A New Approach to the Kinetic

Theory of Gases,” Lincoln Laboratories, MIT (1954).
1 Reference 8, p. 264. See also reference 16.
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The (p:;, S) as well as all higher moments are ex-
pressed as convolutions in space of (p, u, T) with
functions which we shall call spatial influence func-
tions. The expansion of the influence functions
furnishes the Hilbert—Chapman—Enskog theory as
it is usually given. More generally suppose the
initial data consists only of N-modes (we shall
say It belongs to an N-mode manifold) then it
belongs to an N-mode manifold for all time. Then
it is shown that the solution may be found by
solving a determinate N-moment system of equa-
tions. Again, all higher moments are expressed in
terms of the N distinguished moments by means
of space convolutions with spatial influence funec-
tions. On expansion of the influence functions, dif-
ferential operators occur.

Reversing the viewpoint, if one seeks a description
in terms of N-specific moments, an N-mode de-
scription can then be found which results in N
determinate equations in the N-moments. In this
it is tacitly assumed that the initial data of the
higher moments can be approximated (in a sense
to be described later) by those relations which are
demanded by an N-mode description. In general
there are many exact solutions to the Boltzmann
equation which depend on only an N-moment de-
scription. In the appendix of this paper it is shown
how to construct such exact solutions of the Boltz-
mann equation which, for instance, exactly satisfy
the Kuler equations, the Navier-Stokes equations,
the Thirteen moments equations, and so on. These
solutions, as a class, do not contain much structure
and are probably not worthy of deep investigation.
The moment-mode description, on the contrary, has
a great deal of structure and possesses a general
theory. The so-called normal solutions found in the
Hilbert—-Chapman-Enskog theory are the particular
members of the class which belong to the Hilbert-
Chapman-Enskog manifold. For this reason we shall
refer to the entire class of solutions as generalized
normal solutions.

In II it was shown that two asymptotic situations
were capable of detailed treatment. One was an ex-
pansion in smoothness ratio, i.e., the ratio of mean
free path to the characteristic length scale of the
phenomena. The other, an expansion in mean free
time to elapsed time. Both these situations allow
detailed calculation in the present paper. Restricting
attention to the time asymptotic case, we found in
IT that only the hydrodynamic modes persist. As
time procedes the Hilbert—Chapman—Enskog theory
is established to higher and higher orders, which
emphasizes our earlier remark that the Hilbert-
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Chapman-Enskog theory might be called hyper-
hydrodynamies. It might be characterized as being
the closest state to equilibrium without actually
being equilibrium.

The question arises as to whether it is possible to
deal only with the Hilbert-Chapman—Enskog theory
and still obtain from it the asymptotically correct
solutions. The answer is in the affirmative if one
employs the correct initial data in the Hilbert—
Chapman—Enskog development. In this connection
it should be mentioned that H. Grad® suggested that
one should “investigate the initial layer and supple-
ment the asymptotic differential equations (author’s
note: i.e., the equations obtained in the Hilbert—
Chapman—Enskog procedure) with asymptotic initial
values computed somehow from the actual initial
values.” The implied conjecture is therefore proven
here. Actually, it can be stated in a different and
stronger form. It is shown that the hydrodynamic
modes can be dealt with directly by means of a
finite system of equations subject to altered initial
conditions. Asymptotically the hydrodynamic modes
are all that remain of the solution. This, in turn, is
governed by the Hilbert—-Chapman—Enskog theory
with asymptotic initial data. The details of the
construction of the ‘“‘ersatz’’ initial data are given
for the asymptotic case.

Abandoning the five moment description (of the
Hilbert—-Chapman—Enskog manifold) we find asymp-
totic equations for any generalized normal solutions.
These turn out to be of the same form found in I
but the coefficients are somewhat different. It is
found, interestingly enough, that the interpolation
type scheme has implicit in it a second expansion
procedure which, in practice, is not warranted. The
asymptotic equations, which are given later, in a
senge give the results gotten by summing this second
expansion.

Some related topics in the theory of the Boltz-
mann equation have been recently discussed by
McCune, Morse, and Sandri'® and Grad.'®

Since this is one of a series of articles it was felt
that a repetition of result and analysis would be
unnecessary. For this reason frequent reference is
made to specific tables and equations in I and II.
A knowledge of I and II is needed for an under-
standing of this paper, and details of this paper de-
pend on details of I and I1. The contents are arranged

15 J. E. McCune, T. F. Morse, and G. Sandri, “On the
Relaxation of Gases Toward Continuum Flow,”” in Rarefied
Gas Dynamics edited by J. Laurmann (Academic Press Inc.,
New York, 1963). Nonlinear theory is considered here, but
only applied to the Krook equation.

16 H. Grad, Phys. Fluids 6, 147 (1963).
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from almost hopeless generality at the outset to
specific calculable cases. The section following, poses
the problem and gives a general solution. Section III
gives a formal method for obtaining the Hilbert—
Chapman—-Enskog theory and then generalizes it.
Following that, in Sec. IV, a more rigorous and
tauter analysis is given based on the eigentheory of
II. An asymptotic analysis with specific calculations
is presented in Sec. V. The appendix gives some
examples of exact solutions of the Boltzmann equa-
tion which are of a speecialized sort. It is presented
in a somewhat terse fashion since we are only in-
terested in exhibiting these solutions and not in
investigating them.

II. SEPARATED SYSTEMS OF EQUATIONS

As stated in the introduction the central problem
of this study is the reduction of the Boltzmann equa-
tion to a determinate finite system of moment equa-
tions. This is now carried out in perfect generality.

The reduction of the Boltzmann equation to an
infinite system of coupled moment equations is
given by (II: 2.9, 11). Using a mixed tensor and
vector notation with the summation convention on
subscripts this is'’

L3

i ax (21)

<6 i + C - Aii>a,- = 0.

ot
Subject to footnote 5, we shall regard (2.1) as
equivalent to the Boltzmann equation and its solu-
tion as equivalent to finding the distribution func-
tion. The investigation will only apply to the initial
value problem in circumstances under which we may
substitute a Fourier transform or series for the
moments. In either case (2.1) becomes the ordinary
differential equations
d
<61-,- i k.C;; — Ai,.>a,- = 0. (2.2)
We shall often speak of —k and 9/8x interchange-
ably. Justification for this will be given when it is
deemed necessary.
To achieve a description in terms of the first N
moments, say, we introduce the following splitting,

hz’ = a’fy

H,; = Cin

1= a LiSN @)
fi= Y ik-Cia::

JEN+

17 See 1T for definitions and notation.
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Y, = Qi
Rii = Ci+N.;v'+N,
1,721 2.4
ﬁLii = A’i+‘V,j+A\'7 ! ( )
N
F, = Zik-CHy‘jaJ-.

i=0

Using vector notation Eq. (2.2) can be written as

the two separate systems

(a% — k-H — l)h = f, (2.5)
%—&R—L%=E (2.6)

Denoting the initial conditions of r by r,, Eq. (2.6)
is easily solved to give,

1 o0—":( Tk*R+
rza"r_)gf o IR KR L”rgdk

+ s [ [ e R aras. @)

F has been regarded as a known function in the
latter, however it must be recalled from (2.4) that
it is a linear form on h. Upon substituting r into £
of (2.5) [f is a linear form on r] we obtain a finite
determinate system of equations in h. Further if we
define the Fourier transform of e‘*®*Y to be
Mz, i), ie.,

fM<x, De*F dk = (TR (98

then (2.7) may be written as
r=M*r, + f M(t ~ ) F(x) dr.  (2.9)
0

The asterisk denotes the convolution product.

We have therefore succeeded formally in reducing
the Boltzmann equation to the solution of a finite
determinate system (2.5) [note that the substitutions
for f and F must be made before (2.9) is substituted
into (2.5)]. However the following effects are found
in general,

(1) Trom the first term of (2.7) it is seen that the
initial data of the entire distribution function will
enter.'

(2) Due to the time integral in (2.9), (2.5) will
depend on the time history of h.

(3) Due to the convolution product in (2.9), (2.5)
will be nonlocal in space.

't By methods similar to (II: 2.41) this may be shown to
have an exponential time decay. However, it is incorrect to
neglect this term on this basis.

THE BOLTZMANN EQUATION
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III. A GENERALIZED HILBERT-CHAPMAN-ENSKOG
THEORY

We now uncover certain requirements on the
initial data which, if fulfilled, allow us to relax some
of the conditions given at the close of the last
section.

We set
G=—-@k-R+L (3.1
and consider the transform of (2.7),
H
r= ¢S+ f SR dr. (3.2)
o

Parts integrating the last term indefinitely we are
led to

oo am 1 }
r=e P° G 1Fegal

1

1 B
+ G 1+ G a/a1 F. (3.3)
Use has been made of the relation
= n —_— -—]‘A W
nzzn (X) - 1 — X ) (34)

which is formal in the absence of convergence. An
immediate result of (3.3) is that

1

=G+ a/ot

F (3.5)
if the relation is true initially.

The time derivatives have no meaning initially,
apart from their values as given by space derivatives
of the initial data. To find such a representation, we
note that from (2.3), (2.4) F is linear in h and f
linear in r. More explicitly,

f=>ob.r,
F = B-h,

(3.6)
(3.7

where neither b nor B are necessarily square matrices.
Substituting these into Eq. (2.5) gives

oh 1

5= J-h + b'WG T B-h, (3.8)
and from this
9B =BJh+Bb o Bh (39
at G -+ a9/at
with
J = ik-H+ 1. (3.10)

By repeated application of (3.8) on itself with the
aid of (3.9), we write finally,
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oh/at = Jh + Xh, (3.11)

where X represents the result of these manipula-
tions.'® Integrating (3.11) and inverting the trans-
forms we have,

h = *—L§ f 6[1’k-H*l+X(k)]lhoe—ik'X dk. (312)

(2m)

We see therefore that by choosing initial data of the
form (3.5) [with 9/dt eliminated by means of (3.8),
(3.9)] we have eliminated two of the three conditions
given at the close of the last section, and which would
exist under general initial data. Now only the initial
data of h enters in the solution for h, (3.12). And
secondly the time history effect has been eliminated.
As an additional property we note that (3.12) hag
at most N + 1 modes. In the next section we indi-
cate that these are indeed (N 4 1)-modes of the
solution of the Boltzmann equation found in II.
This gives a clue to another approach to the problem,
i.e. starting with a finite modal condition. This is
the approach taken in the next section and it results
in a more rigorous and tauter theory. There is one
result found there which bears mentioning now. It
tells us that before carrying out procedure of this
section we should have first eliminated the syste-
matic time decay of h. That is he'* should be sub-
stituted in (2.5) and the exponential eliminated from
both (2.5) and (2.6). Although the procedure of this
gection is correct, it includes implicitly an expansion
which is not necessary. A full description of this
will be given in See. V.

In any case if (2.5) is taken as the conservation
equations, 1 = 0 and no system time decay in h
is present. To get the Hilbert-Chapman—Enskog
theory an expansion in small k is needed. This we
know is sufficient for a description of smooth flow
and for long elapsed time. Therefore in

1 & 1 0
so(-e%) e
we write
l ~ L_ _ L—IR L—l Y.
& Y
2
L LRLRL™ axaax L. (3.14)

The substitution of 3/dx for —ik is justified, for on
solving the resulting partial differential equations
we obtain the same asymptotic solutions as in the
exact case of II. This can be carried to any desired

19 Under certain circumstances the determination of X
can be reduced to find a particular branch of a quadratic in X.
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order by carrying a sufficient number of terms in
(8.14). As an example on carrying only the first
term in (3.13), (3.14) we get the Navier—Stokes
equations, and two orders give the Burnett’s equa-~
tions. For the one-dimengional case these equations
can be immediately read from table 1T of II.

If we disregard the earlier remark about eliminat-
ing systematic time deeay, (3.13), (3.14) give equa-
tions in any desired number of moments. In particu-
lar the one-dimensional form of the Nine-moments
theory suggested in I is gotten by just glancing at
table I of II. It is identical to (I: 6.15, 17, 18).

Later we shall see that the form of these equations
is correct, only certain coefficients must be altered.

IV. GENERALIZED NORMAL SOLUTIONS

In IT we denoted the eigenvalues and eigenvectors
of G by d” and v”, respectively, and from this we
showed that the solution of (2.2) is™

_ i am ey Vi (R)(R)
- e mi2

V™|
The initial condition a° may also be decomposed into
a sum of eigenvectors as follows:

a;(k). 4.1)

m=0

w©

>

(4.2)

with
g = a’ /v (4.3)

We now investigate the class of solutions obtained
when (4.2) is the finite sum

N
E : I

= gy
#=0

The solution (4.1) is now

(4.4)

N

§: d"‘tmm

Clearly the s may be replaced by (N + 1) of the a;.
The most natural replacement is in terms of the
diagonal mode members (IT: 2.26, 27). The replace~
ment is easily effected with the use of the following
notation:

(4.5)

i= {a;} i=1,N, (4.6)
V= ()} i,j=1,N, 4.7
a= {a,.~} 1=1, o, (4.8)
V = {vjn} i=1,N; j=1,®. (49

20 This notation may be somewhat confusing. By |vm|? is
meant 3 ; 5™ which is not in general real, but rather is a
real function of 7k.
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SOLUTIONS OF THE BOLTZMANN EQUATION

By means of simple operations we obtain
a=vVV'g,

which is a basiec relation of this paper. More ex-
plicitly, we write

(4.10)

N

a; = 3 ik k),

i=

(4.11)

where the ] can be computed from (4.10). Naturally
wi = §;; for « < N. Further, Eq. (4.11) can be re-
garded as the transform of

N
a;, = Z wi * a;, (4.12)
i=1

with

w, = 8,;8x) <N,

We shall refer to the w!(z) as spatial influence func-
tions. Returning to the original system of equations
we single out the N + 1 equations which have time
derivatives of the diagonal mode members. (This is
not necessary and is only done for definiteness.)
In these we replace all higher moments in terms of
the distinguished moments by means of (4.12). This
renders the system determinate. Upon solving this
system, all higher moments can be computed from
(4.12). We have, therefore, shown the following:

If the indtial data of a distribution function lies
on an N-mode manifold, the solution remains in this
subspace for all time (see I1); further, the distribution
function 1is determined by the solution of a finite
system of equations in the same finite number of
moments.

For later comparison we point out trivially

alt = 0) = a’. (4.13)

We note also that, as in See. III, only the initial
data of the distinguished moments enter, and no
time-history effect occurs. This contrasts with the
general development of Sec. IT1. Something which is
obsecured by the manipulation of Sec. III is that
the theory is nonlocal in space. Note also that the
influence functions w(x) are only dependent on the
nature of G.

As an example, let us suppose that the initial

data lies in the Hilbert—Chapman—Enskog subspace.’

In this case the natural moments are (p, u, T) and
the natural equations are the conservation equa-
tions. These are rendered determinate by the
(p:;, S) relations™

m“, S) are only known to be coefficients of eigen-
functions for Maxwell molecules. In other cases the summation

of coefficients leads to (pi;, S), and (4.14) is obtained in that
manner,

Downloaded 20 Jun 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

1433

p
] To® o @
fp”—i — Wi Wiy wnkJ «| T (414)

LS, 'JZS” o o
Uy,
where the asterisk again denotes the convolution
product. Specific forms for «* and @° will be given
in Sec. V.

Let us now consider a related problem. Suppose
the initial data is completely arbitrary, but we wish
to focus attention on only some particular N + 1
modes (let it be the first N + 1, for definiteness).
From the orthogonality of the eigenvectors v and
the linearity of the operator (2.1), we may split
the initial data into a sum of eigenvectors, then
solve the problem with each of these summands as
initial data and finally solve the original problem
by summing the partial solutions. However, we
have just finished with the case when the initial
data is composed of a finite number of modes.
Only the initial data of the problem need now be
modified. We have therefore shown the following:

Given arbitrary data a°, the evolution of N + 1
particular modes may be found by considering the
problem as if only N -+ 1 modes existed (i.e., by solving
a N -+ 1 system of equations) and taking the projection
of the initial data on the N-mode manifold as inatial
conditions, i.e.,

N
a’= ) v =P".a" (4.15)
u=0
where 8" is given by (4.3). We will refer to
N _eok
P =3 ‘l"’l (4.16)
w=0 @

as the (N 4+ 1)-mode projection operator, it being a
sum of the elementary projectors previously defined
(II; 2.23). These results have some rather deep
consequences, especially in regard to the Hilbert~
Chapman—Enskog theory.

We know from II that as the elapsed time be-
comes large only the hydrodynamic modes persist.
Therefore, if we focus attention on the hydro-
dynamic modes only, we obtain the correct long
time behavior of the flow. But as we indicate in the
next section, the description of the hydrodynamic
mode is equivalent to the Hilbert~Chapman—
Enskog theory.”” We therefore have the following:

For arbitrary instial data, a°, the Hilbert-Chapman—
Enskog theory gives the correct time asymptotic theory

2 Only under asymptotic conditions is the Hilbert—
Chapman—Enskog theory uncovered. The conservation

equations as rendered determinate by the description of the
hydrodynamic modes give a more general theory.
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if and only if the projection of a° on the Hilbert-
Chapman—Enskog manifold is taken as inittal data
for the problem.

A conjecture of this nature was made by H. Grad
some time ago.' Details of such a calculation are
given in the following section.

It is also of interest to consider the error involved
in considering an (N + 1)-mode description with-
out first projecting the initial data onto the (N + 1)-
mode subspace. Solving a problem in this manner
naturally leads only to (¥ 4 1)-modes with all
higher moments having incorrect initial values. From
the linearity of the problem the error term is ob-
tained by solving the same (N + 1)-mode problem
with initial values given.by
a’ — PY.a", (4.17)
with 8* given by (4.3). If the solution derived from
(4.17) is subtracted from the original incorrect
solution, the correct solution results. It is interesting
to note that a second incorrect problem must be
solved [i.e., taking (4.17) as initial data] in order to
rectify the original erroneous calculation.

We have shown that any real or ficticious re-
striction to N-modes is sufficient to reduce the flow
problem to the solution of a finite system of equa-
tions. We can then ask if this is in any way a neces-
sary condition for the latter. The appendix provides
a negative answer to this question. There it is
demonstrated how to construct a wide class of exact
solutions to the Boltzmann system (2.1), which are
not generalized normal solutions. In particular, it
is shown how to construct solutions which exactly
satisfy the Euler equations, the Navier—Stokes equa-
tions, the Thirteen moments equations, etc., and
which can be made to satisfy the Boltzmann equa-
tion in infinitely many ways.

We close this section by making some comparisons
of this and the preceding section. In all instances
which have been considered, the results of the last
and this section were equatable (on removing
systematic time decay in Sec. 3 identical results
were obtained). However, I have not been able to
find a genuine demonstration of the equivalence of
the two methods. This is also regretable from the
mathematical point of view since the method of
Sec. 111 seems to offer a method of computing eigen-
vectors without first finding the eigenvalues. On
examining the two methods we see that the method
of Sec. III is more direct and is more easily per-
formed. Although (4.10) was obtained without diffi-
culty, it required all the preparatory machinery that
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was built up in I and II. Moreover, more calcula-
tions are in order before quantitative results can
be obtained (see next section). On the other hand,
the tauter theory presented in this section offers a
firmer foundation for the somewhat cavalier methods
of Sec. III. Also the work of this section offers the
most promise for an eventual mathematically rigo-
rous theory.

V. ASYMPTOTIC THEORY

The exact determination of the influence fumc-
tions w(z) seems to be a hopeless cause. As in (I)
and (II) to gain results we must resort to power series
developments in the wave number k. We first carry
this out for the basic relation (4.10). Writing”

\4

I
M

(k)"-V,, (5.1)

1

]

n

~

\'

]
[Me

(k)"-v,, (5.2)

n=0

I

where the subscript refers to an nth order tensor
and the dot denotes the complete inner product of
V. with the nth order tensor (7k)". Then if we write

Vi = f (k)"-U,, (5.3)
we find
U, = V.V, (5.4)
U, = V.V, - v,V V.V, (5.5)
U, = V,V,' v,V v,V
A 7R AN AT A A G )|

and so on. A similar expansion holds for the pro-
jection operator (4.16), which is also a matrix. These
expansions are applicable to two asymptotic situa-
tions; an expansion in smoothness ratio and an
expansion in mean free time to elapsed time. Both
situations were discussed at length in II Sec. III
and any further discussion would be repetitious. It
suffices to say here that dealing with only a finite
number of modes in no way alters the arguments
of 1II.

Evidently the above power series lead to series
representations of the influence function w. To be
definite, let us write

o ~ i o, (k)" (5.7)

23 In all cases V does not have a zero order term.
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This can be inverted to give

o) ~ 2 (<Ve 5@,  (8)
n=1

where 8"’ denotes the nth derivative of the &-
function. When an expression of the type of (5.8)
is used in the convolution (4.12) we see that we
ultimately wind up with a sum of derivatives. More
simply (7k) in (5.7) can be immediately replaced by
the gradient 4/0x. This entire procedure, including
the replacement wavenumbers by derivatives, is
justifiable. From II we know that terminating an
expansion yields the correct solution to some par-
ticular order. On solving a system in which the
derivatives have been replaced by wavenumbers we
are immediately led back to what we know are
asymptotically correct expressions (this is immediate
if the system is solved by transforms). Care must be
taken not to use a system to provide results beyond
the order of its accuracy. For instance, as we shall
see in a moment, the Navier-Stokes equations are
accurate asymptotically to the zero order. In gas
dynamics it is sometimes found that asymptotic
solutions to the Navier-Stokes equations are carried
to orders which can only be given by the Burnett
equations or higher orders.

The eigentheory of the linearized Boltzmann col-
lision integral L [see (II: 2, 3)] is only known for
Maxwell molecules. For this reason we restrict all
further study to the diagonal approximation [see
(I; Sec. V)] of the collision integral.”* The operator L,
for Maxwell molecules, has a discrete spectrum. And
by construction the diagonal approximation gives
a perturbed operator for other molecules which also
gives rise to a discrete spectrum. The general theory
developed earlier and in II assumes at the outset
the existence of a discrete spectrum, and therefore
the cases mentioned fall within the pale of the
theory. On the other hand it has recently been
shown™® that under certain restrictions a continuous
spectrum oceurs. It would then seem that the
mathematical simplicity of the Maxwell molecules
is possibly offset by an inadequate physical de-
scription. This has not been shown yet. Moreover
for simple gases there is not one known phenomenon
predicted by arbitrary force laws which is not pre-
dicted by Maxwell molecules.”

We now consider several examples of the results

2 Note that this is exact for Maxwell molecules.

25 See reference 16,

26 For gas mixtures, Maxwell molecules fail to predict
thermal diffusion. See 8. 1. Chapman and T. G. Cowling,
The Mathematical Theory of Non-Uniform Gases (Cambridge
University Press, Cambridge, 1952).
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of this paper. As in T and IT we shall for simplicity
only consider one dimensional shear-free flow. We
can then find V and V for the first two orders in
Tables I through VI of II.

HILBERT-CHAPMAN-ENSKOG THEORY

We state at the outset that no rigorous identifica-
tion will be established between the well-known
Hilbert—Chapman—Enskog theory, the theory of
Sec. ITI, and that which is developed below. In all
instances tried, the resulis produced were identical.

For the Hilbert—-Chapman—Enskog theory the dis-
tinguishing moments are (p, u, T), or using the
notation of II, (beo, boy, bry). We therefore only
need tables T through III of II in order to compute
U.. Also, since the conservation equations are the
natural equations, we will exhibit only (bes, bi1)
[which are proportional to p,, and 8, respectively].
By inspection and elementary operations, we get
to lowest order [i.e. corresponding to U, of (5.4)],

3 2y 1 é>%
bll — lk <10> /SAH )\11 <3> )\11 <3
26 23
b02 1 3X02 >\()23 0
3 1<§)% _1(&)%‘}, |
10 2\5 5\2 00
1 §)% 1 1 <
2 (5 2 oy || oo (5.9)
2 (3\} 3
5 <2> 0 5 || b

The second matrix is V;* in this case and the first
is the appropriate truncation of V, to give the column
vector on the left. Substituting for the b,; their
definitions (I: 2.12), and inverting we get

5 oT

[S:] = *—2)\“ oz (5.10)
4 du

[:011]1 - 3)\02 % (5.11)

which are of course the Navier-Stokes relations,
customarily gotten in the first step of the Hilbert—
Chapman—Enskog method. The subsecript 1 in
(5.9-11) denotes the first order theory.

Second order theory can also be obtained from
the calculations of II. This gives®

2 The (02), j = 2 entry of (I1: Table I) should have a
coefficient of —1. The (02), j = 2 entry of (II: Table III)
should be 0.
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3 1(6) J(ﬁ)*"
b11 [ (g)i 4 (10)} (l B —1_> 0 - 10 2\5 5\2
e 3/ 3MeAn 15A; e An 1 (3} 1 1
= R - S 72\ 2 aop
b 2 <_1__L> (25)*(_2__&) 22
. 2 { )\023 Ay Aoz 3)\02 5)\11 Aoa 3A11Aoe 2(§>* 0 §
L 5\2 5
2\t 1 1 2\t 1 3 1({ 2 1 boo |
3 G T ) s T B T
02/ 11 11 11/h02 11 B 02/711 11 \ bm . (512)
2 (1 5 2 1 1 V2 [ 2 1 (
i\ -1 + =) o \mEe bio
0(3) Aoz AT oY 3(0) 2No2h11 Aoz 3 Shos Aiihoe/ 1)

The first term of the right hand side is the product V.V:" and the second is the result of V,V;'¥, V.
Carrying out the matrical operations, substituting the usual expressions for b,,, and inverting we get,

4 5 P
S, 2 0 ( — *‘5‘) 0
_ ;%;‘E | 3A11A02 3\ ul. (5.13)
L0 )
Pu 2 3Aoe 0 3 Ao t Ados !

These are the usual terms furnished in addition to Fnskog approximation. Thus in solving the con-
(5.12) in the Burnett approximation. Higher orders servation equations with (5.12) Navier-Stokes, only
can also be obtained in this manner. However the the lowest order (zeroth order) remains unchanged
preparation and tedious calculations soon make such  in a finer approximation. The first order is correctly
a course prohibitive. For higher orders it is far given by the Burnett equations. It also follows that
more expedient and direct to use the method of the “ersatz’ initial data (5.14) must fit the order of
Sec. III. the equations. Thus with the Navier-Stokes equa-
With either (5.12), or (5.12) plus (5.13), the con- tion just the zeroth order of (5.14) is to be used, i.e.,
servation equations become determinate, and with 6 -0 o 0 0 o .
proper initial data describe the hydrodyna’mic modes @@, T) = (o'’ T). (5.15)
in the two already mentioned asymptotic regimes. On the other hand all of (5.14) should be used with
The determination of the asymptotic initial data the Burnett equations.
proceeds as the other calculations and it is not With the use of “‘ersatz” initial data the hydro-
necessary to go into it. Denoting the asymptotic dynamic mode is obtained, at least, in two asymp-
initial conditions by a superbar, these are to the totic senses. For long time, as stated in Sec. IV, it

first two orders given by, furnishes us with asymptotically correct (p, u, T)
r o to any desired order. By using the Burnett equations

5 1 00 0 o ° we find it through the first two orders. On the other

u’ hand, for the smooth ratio asymptotics, it is incor-

1

- 9
Up | = 010 0 )\02 ax r]vf) .

(5.14) rect to assume that (p, u, T) will come from the
~ 9 4 g0 asymptotic hydrodynamic mode. Certainly it will
T 0 0 1 T 0 ’J do so for a long time since this is just the prior case.

1 Lph But from II we do know that to lowest order the

The coefficient matrix is the transform of the pro- asymptotic hydrodynamic mode furnishes the cor-

jection operator (4.18) to the first two orders. From rect (p, u, T). Hence:

our study of fundamental solutions in II [see For smooth phenomena lin the sense of (II)] the
especially the discussion following (II: 5.21)] we Navier—Stokes equations will, with (5.15), give the
know that restrictions exist on the solution of the correct lowest order (zeroth order in smoothness) solu-
conservation equations in any Hilberi~Chapman— tion for (p, u, T) for all time.
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On the other hand, we also know from II that first
order (in smoothness) contributions to (p, u, 77
come from the (11) and (02) modes, i.e., from the
heat conduction and stress modes. Only asymp-
totically in time are these contributions washed out
of the picture.

We mention in passing that the fundamental
solutions of the Navier—Stokes and Burnett equa-
tions are furnished to us by the calculations in I1.%°
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As a second example of the theory we next con-
sider the case associated with (I: 6.15).
NINE MOMENTS THEORY
The distinguished moments now are (p, 7', u,
S], Q) or in the brl notation (boo, blg, bgl’ b]l, b20)-
To terminate the natural equations [see (I: 6.15)]
we need to find (bgy, bai, bi2). From tables I through
V of II, we get to lowest approximation (corre-
sponding to the truncation of U,)

”bm 4&% —2 9 ~<£P>% 9 <£>H
3oz No2d? Ao — Az \1D Aoz — Aao \1D
ba| =tk 0 o 0 >\21—1>\20®% le—lxzo (gl
R B e v <i75>§ o\_zogxm) (1l5>%_ B
5 5@ 30 o o]l
S8 5 @y o ofm
%@é 0 g 0 0llb,|. (516
0 0 0 % —% by
o0 0 o %_71)20_

The first matrix is the truncated V', and the second V;'. Carrying out the matrical operations, inverting
the transform, and going to more familiar notation, we obtain

7 e 8 0 ou |
Pu 3oz 15(hoz — Nao) ox
_ ! 1)* a8
buj = 0 0 Aer = Ago <10 ox (5.17)
sl ol
Lblz. L 0 5()\20 - )\12) 3 v JLax .

We now compare this to (I: 6.15-18)."" We see
immediately that to obtain the latter from (5.17)

28 The initial value fundamental solution of the linearized
Navier-Stokes equations in one-dimension for Prandtl
number of % has been calculated by T. Y. Wu, J. Math.
Phys. 35, 13 (1956).

The method of (II) allows the rigorous calculation of the
Navier-Stokes fundamental solution for all Prandtl numbers
and in three dimensions. In addition, the Burnett solution
can also be obtained.

20 ITn (I: 6.17) replace — by <+, and in (I: 6.18) the second
expression should contain Ay instead of Ap.
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we expand the denominators of (5.17) and only re-
tain the first term. This bears out the previous
remark that the method of Sec. III, the Grad inter-
polation technique, and its refinement in I all have
implicit in it a second expansion. Successive terms
of this expansion are picked up in successive inter-
polations. Regarding table I of I we see that such
an expansion is unwarranted in practice. The forms
in (5.17) have in them the exact summation of these
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expansions. We see that the result of the differences
of eigenvalues in (5.17) is to enhance the effect of
the “interpolated” terms.

It is fairly easy to see where the interpolation
argument breaks down.*’ In ignoring time deriva-
tive terms, interpolation implies that exponentially
decaying terms are negligible. But on checking it
is found that certain other exponentials are being
kept, which is inconsistent. Interpolation may easily
be made consistent by taking into account the rela-
tive rates of decay. In the method of Sec. II1, this
simply means that the systematic decay of (2.5)
must be removed. The method of accomplishing
this was given in See. III.

The initial conditions for the system (I: 6.16)
with (5.17) are diagonal, i.e.,

@, @, 1° 8, Q) = (", v, I°, 8, Q). (5.18)

In general, the lowest order “ersatz’’ initial is always
diagonal.

The asymptotic equations resulting from (I: 6.16)
in conjunction with (5.17), and in general all such
asymptotic equations need some word of explanation.
Certainly for the asymptotic expansion in smooth-
ness ratio (this is for time, see II), the equations
have a simple explanation. They give a description
of modes which for a priori reasons one has chosen
to investigate. On the other hand, the time asymp-
totic theory becomes somewhat obscure, for, aside
from the hydrodynamic modes, all modes have ex-
ponential decay. We must therefore view equations
such as (I: 6.16) as giving the time asymptotic
theory when for other reasons the hydrodynamic
modes are negligible. Indeed, the nine moments
theory contains the most persistent of the system-
atically decaying modes.

We have refrained from giving any but one-
dimensional examples in the above. To do otherwise
would have greatly increased the length of the paper.
Also, the Maxwell eigenfunctions do not lend them-
selves as well to higher dimensions as they do to
the one-dimensional case. It is hoped that in the
near future a nonlinear theory will appear. The ap-
proach will necesarily be quite different and mathe-
matically less satisfying, but the generalized normal
solutions will fail out as a special case, and in three
space dimensions.
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APPENDIX. SOME ELEMENTARY EXACT SOLUTIONS

As in Sec. V, we consider the one dimensional
linearized Boltzmann equation in the diagonal ap-
proximation. In passing, we remark that the follow-
ing treatment can be carried out for three dimensions
and for nonlinear cases. At the present time we are
only interested in exhibiting certain exact solutions
and not investigating them. The simple one-dimen-
sional case will suffice for this purpose.

We wish to find elementary exact solutions to the
Boltzmann equation. Rather than deal with space
derivatives we consider the transformed equation
since it in some respects allows us more latitude.
Equation (2.2) in the diagonal approximation can be
written as (see I: 3.2)

)
S w+rv+ 2 [
- Zk(‘{b“'"“[(zv — D2 + 1)]
e 2
w19 T2 + 1)

W)
-+ 1){17“—1'”1[(21, + 3)(& + l)]

b _[(u + v 4 3/2)2 ]})
wrl ey + 3@ + DS/

We first look for solutions which are of hydrodynamic
type, i.e. for which the solution, in an essential
way, depends only on (p, u, T'), or in the notation of
(A1) on (b, bos, b1o). To do this we fix the following
moments as indicated,

(A1)

boo

[602} _ [aoo(ik) a0, (iF) a,o(ik):) bl n > 1. (A2)
bin LA CONCACORCHICOR P

The a(ék), within reason, are perfectly arbitrary. If
an a(zk) is a polynomial it indicates a differential
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operator, in general only a convolution product is
indicated. Since b, and by, are proportional to the
stress and heat conduction, (A2) renders the con-
servation equations determinate. On solving the
now determinate conservation equations for (p, u, T')
we next see that all b,, are determined from them
without further equation solving. To see this one
substitutes (A2) in (A1) and makes use of the fact
that, from the conservation equations, using (A2),
the time derivatives of (b, bie, boy) are linear
functions of (bgq, b1o, boy). It is then immediate that
all by, are determined. Next, assuming all b,, are
known in terms of (bys, bio, Do), it is clear that
(A1) gives all b,,,,.

As an example let the a’s all be zero in (A2).
We are therefore considering certain solutions of the
Boltzmann equation which satisfy the inviscid equa-
tions exactly. Setting p = 0 in (Al), we have,

<(_% - >\0,>bm ~ ik(bo,rl[(wz?{li—‘)h'(g}z—_k_ﬁ]i

EQUATION 1439

v+ 3/2)2 b
@ + 3@ + 1)] ) (43)

Then since by, = 0 we see that all b,, are determined
by (A3). Next, setting o = 1 in (Al), we have

2 H 1 H
bz.y—l[m] =—@+ 1)bo,v+1[:m:| , (A4)

which determines all b,,. A glance at (Al) shows us
that we may get all b,, in this manner. It is clear
that by properly choosing the a(7k), we may have
(p, u, T) determined by the Navier—Stokes equations,
the Burnett equations, or for that matter any step
of the Hilbert—-Chapman—Enskog procedure. Next,
because of the arbitrariness in choosing the a"(¢k),
we see that there are infinitely many distribution
funetions which have the same (p, u, T).

It is furthermore evident that we may choose
more than (p, u, T') as distinguished variables and
by the same methods find various exact solutions
in such variables. The remarks at the close of the
last paragraph again apply.

-+ (V -+ l)bo,»HI:
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