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Formal solutions are found to the linearized Boltzmann equation for the initial-value problem.
These are decomposed into an infinity of modes, which are orthogonal under a suitable inner product.
All but five of these modes exhibit an exponential time decay. These five remaining modes form a
generalization of hydrodynamics. Under two different asymptotiec assumptions one finds quantitative
solutions. If the characteristic wavelength of the initial disturbance is large compared to the mean
free path, the solution appears as an expansion in their ratio. If the elapsed time is large compared to
the mean free time, the solution may be represented as an expansion in their ratio. As a specific example
of the theory, the fundamental solution of the one-dimensional shear-free initial value problem is
computed. This appears as an infinity of diffusing modes, a subclass of which also propagate.

I. INTRODUCTION

HIS is the second in a series of papers con-

nected with the initial-value problem in line-
arized kinetic theory. The first paper' was essentially
concerned with dispersion relations and solved no
specific problems as such. On the other hand, in
the present paper we shall develop solutions to the
linearized Boltzmann equation. At another time, a
general theory of approximate solutions to the
Boltzmann equation will be given. This will, include
for instance, the Chapman-Enskog theory as a
special case. For this reason, no effort is made to
connect approximate solutions, e.g. Chapman-—
Enskog, Moments Theory, Kinetic Models, to the
exact results found here. To a large extent many
of the natural questions in this context have been
answered in reference 1.

In the section that follows we consider the general
initial-value problem for the full, but linearized,
Boltzmann equation. The solution is found in terms
of an infinite series of modes. Although the solution
is formal in the sense that one does not obtain
precise quantitative results, it is nevertheless a source
of information. For instance it is easily shown that
all but five of the infinity of modes exhibit a sys-
tematic decay in time. These five modes which
persist might suitably be considered a generalization
of hydrodynamics. By suitably choosing the initial
data, one can obtain flows which exhibit only these
five modes for all time.

In order to obtain precise quantitative results,
an asymptotic analysis of the formal solution is
taken up in Sec. 3. Two separate asymptotic
situations are studied. In the first instance, smooth
initial data is considered. By this is meant that the

1 L. Sirovich, Phys. Fluids 6, 10 (1963).

characteristic wavelength of the initial data is large
when compared with the mean free path. This first
case is expressed in terms of an expansion in this
smoothness ratio. The second case is an expansion
in the ratio of mean free time to elapsed time. This
is independent of the smoothness, and of course is
given by the five hydrodynamic-type modes. Al-
though the latter are dominated by the hydro-
dynamical moments of density, temperature, and
velocity, they contain in general, all moments of
the distribution function. Both asymptotic situa-
tions lead to the same functional forms. This is
really very plausible since a flow naturally smooths
itself in time.

As a specific example of the theory, the one-
dimensional shear-free fundamental solution is
worked out in Sec. 5. The hydrodynamic modes, now
three in number, appear as a stationary diffusion,
and two oppositely directed diffusing processes
centered at the adiabatic speed. The remaining
infinity of modes also consists of stationary and
propagating diffusion processes. A discussion of extra-
ordinary propagation has already been given in
reference 1. It is clear that the hydrodynamic modes
which are the sole survivors in time, are not of the
same form as the solutions of the Chapman—Enskog
theory. The former contains the initial data of the
entire distribution function, whereas the latter con-
tains only the hydrodynamic moments of the initial
distribution function.

II. FORMAL SOLUTION OF THE LINEARIZED
BOLTZMANN EQUATION
Following the notation customarily used,® the
Boltzmann equation is given by
¢t H. Grad, Principles of the Kinetic Theory of Gases,

in Handbuch der Physik, edited by S. Fligge (Springer-
Verlag, Berlin, Germany, 1958), Vol. 12. .
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(—;’—t + z-V)f

1 rEr
= L [ 57 - #1086, V) dedoar,, @)

with
U= g — &. 2.2)

Employing the notation of reference 1, linearization
yields

((% + {-V)g = L(g) = fw*[g]B dedd dg,. (2.3)

All quantities in the latter have been made di-
mensionless with respect to an unspecified time scale
r according to reference 1, Eq. (2.3).

Let us designate the orthonormal eigenfunctions
of L by {¢,} such that

L(¥.) = Nt, 2.4
and, as is easily shown,®
A <0 (2.5)

The eigenfunctions corresponding to the fivefold
zero eigenvalue are

(1; £, 60 8, 52) = ('//0: Y1, 1#2: ¥s, 1[’4)- (26)

Assuming completeness we expand ¢ in a series of
eigenfunctions
g= 2 av.

and on substitution we get

(a% + E'V) f G = 2 Gt

=0 n=5

2.9

2.8)

This can be written as an infinite system of partial
differential equations

6 1 a @ a 3 a
(5+(C)5a+(0)a—x;+(C)55;)a=Aa 2.9

where we have gone over to matrix notation. In the
above

s = [dptidz, 2.10)

Ay = N 8;; (no summation convention); (2.11)
Ao

a=a|, (2.12)

¢ C. 8. Wang Chang, and G. E. Uhlenbeck “On the Prop-
agation of Sound in Monatomiec Gases,’”’ Engineering Research
Institute, University of Michigan (1952). This important
report contains the first investigation of the linearized
Boltzmann Equation and the attendant eigentheory.
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where the bar denotes the complex conjugate. It
is immediately clear that each of the matrices are
Hermitian and hence that the system is of the
symmetric type.* The energy associated with such
systems' in this case turns out to be the negative
entropy, and of course, one then sees immediately
that the volume entropy is a nondecreasing function
of time.

To solve Eq. (2.9) subject to the initial conditions

a(t = 0) = a°, (2.13)
we introduce Fourler transforms
1
a = (2W)3f exp [—ik-xla(k) dk, (2.19)

where the same letter has been used for the Fourier
transformed variable. Introducing this, Eq. (2.9)
becomes the system of ordinary differential equations

(8/9t — ik,C* — Aa = 0,

(2.15)
k,}C" = k1C1 + k2C2 + kgcg.
The solution to this equation is immediate:
a(k) = exp [(®,C* + A)ia’ k), (2.16)

and the solution to Eq. (2.9) is

a= (2—”11& [ e 1k, + A)) exp [—kexla(l) dk.
@.17)

This solution is only formal since the exponential
of the matrix sum must be evaluated before quad-
ratures may be performed.

A better understanding of the solution (2.17)
comes from the projector® decomposition of the
exponential matrix, which will be performed in a
moment. We first write:

G = i,C"+ A = SDS™, (2.18)

where D is the diagonal matrix of eigenvalues and
S the matrix of column eigenvectors. Strictly speak-
ing, G is not a Hermitian matrix. This is easily over-
come however. We think of (sk) as being a triad
of free variables and then G is a Hermitian form
over these free variables. With this dodge, the
pertinent theorems of matrix theory are carried
over with a slight change of language. The eigen-
values of D are real functions of (i%) and the eigen-

¢ K. O. Friedrichs, Communs. Pure an .
345 (1954), d Appl. Math. 7,
* H. L. Hamburger and M. E. Grimshaw, Linear Trans-
formations in n-Dimensional Veclor Space (Cambridge Uni-
versity Press, 1951). For results in linear algebra one is
referred to this volume.
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vectors of G are orthogonal functions of (k). We
denote the eigenvectors by v™, so that

Q07 = d™T%, (2.19)

where we have for the moment gone to tensor
notation. The matrix S is then given by

S” = ’[)::’ (2.20)
and trivially
S = l:‘il“ (2.21)

where the bar denotes the complex conjugate. We
can write

exp [Gf] = 2 P™ exp [d.4], (2.22)
with
P = v/ (2.23)

It is easily seen that P™ is Hermitian and that
P™.P" = P", and so these are indeed projectors.’

On substituting Eq. (2.22) in Eq. (2.17), we de-
compose our solution into a sum of modes’

a= ) d"
m

2.29)

[’;,j’lz al dk. (2.25)

aw:=.(_2%)_§‘/‘ exp [—ik-x-l-dm(k)t]

As we shall see momentarily, each mode has asso-
ciated with it a specific exponential decay. If the
initial data a°(k) is decomposed in the eigenvectors
of G, it is seen from Eq. (2.25) that the Fourier trans-
form of @, is an eigenvector for all time. Further, if
the a° lacks any eigenvector, the corresponding mode
is absent and never appears. This property is basic
in the generalized Chapman-Enskog theory which
will appear at another time.

We may put the modes (2.25) in yet another form
which is very helpful in actual computations. As a
normalizing condition on the eigenvectors we will
take
(2.26)

and therefore the ‘“diagonal” mode member is

=T

= —1— —k- ™ vnaz
@ = @n)° f exp [—dk-x + d"()1] ok dk. (2.27)

In keeping with the notation of using the same
letter for both a variable and its transform we may
write

¢ A suitably defined scalar product of two vectors » and w
is obtained by taking the customary scalar product of »(ik)
and w(ik) considered as vector forms on k. Under this inner
product these modes are normal to one another.

LAWRENCE SIROVICH

an(ik) = exp [d"() #)@a,/ "),  (2.28)
Hence the Ith member of the mth mode may be
written as

m 1 m m
o} = -@?)gf exp [—ik-x] dk v * o,  (2.29)

where there asterisk denotes the convolution product.
The value of this representation will be seen later
when asymptotics are considered. Then v = »7(ik)
takes the form of a polynomial. Its transform is
then understood in the sense of distributions and is

V(= V). (2.30)

We shall use this notation as a symbolic form and
hence write for Eq. (2.29),

a = v(—Van(x). (2.31)

It is clear that by further exploiting this symbolism
we can represent «p, in terms of a formal operator
acting on the integral,

"= (2—1lr)3f exp [—ik-x + d"®)] dk  (2.32)

Some general properties of d"(ki, k., k;) can be
found by going back to Eq. (2.9). It is clear that
finding the d™ is equivalent to finding exponential
solutions of Eq. (2.15) of the form

a = a(k)e”. (2.33)

On substituting we get the ‘“dispersion equation’,

(=0 + i,C* + A)a = 0. (2.34)
Multiplying this by a we have
Re s = (a, Aa)/|al’. (2.35)

The negativity of A therefore shows that the real
part of ¢ and hence each d”, is nonpositive. Next it
is clear on setting ¥ = 0 that the roots of the ¢’s
start as

ok = 0) = .. (2.36)

It is physically plausible that Re ¢ is a nonincreasing
function of [k|. This has so far proven too difficult
to show analytically, except for Maxwell molecules,
where some penetration can be made.! We shall
assume this property on physical grounds. From
this we have

|exp [dmt] - )‘mt, < 1)
and returning to Eq. (2.25), we have
m eXit f m =-m o
|| 5(2_ﬂ_)3' Wil 97 lai(k)| die

< exp [Ni]M; M, a constant, (2.37)
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where the absolute value sign is meant in the sense
that the absolute value of each element of the
matrix and each element of the vector are taken.
The convergence of the integral is of course not
known because the behavior of v357 is not known
as |[k| — «. However, we avoid this problem by
taking [a?(k)| to be rapidly (enough) decaying as
k| — .

Equation (2.37) clearly shows that all modes,
except those corresponding to \; = 0, vanish ex-
ponentially and with a decay time that is not larger
than the average time between collisions. Since the
;= 0 eigenvalue is fivefold, there are five separate
modes which show no systematic decay in time. We
refer to these as the hydrodynamical modes. As a
word of caution it should be observed that the
hydrodynamical modes do not involve only the
hydrodynamical moments of density, temperature,
and velocity (o, 7, u); in general they involve all
moments of the distribution function. As will be seen,
only under asymptotic conditions do we find that
the hydrodynamic modes reduce to a finite number
of moments [and in particular (p, T, u)]; and make
use only of a finite number of moments of the initial
distribution function.

III. ASYMPTOTIC ANALYSIS

The solutions of the last seetion must remain
strictly formal for us since no means are available
for evaluating the infinite matrix. We must content
ourselves with various asymptotic evaluations, which
are given in Sec. V. In this section we develop the
asymptotic formulas to be used later.

We now have need of formal power series repre-
sentations of »” and d”, in the wave vector k.
To compute the series expansions, we first write
formally

o

> (i)-d™,

n=0

Q
I

%
il

(3.1

©

" X @,

n=0

<
I

3.2)

In these, k" signifies the tensorial product of nk
vectors, and both d™" and v™" are nth order tensors.
The latter in addition, is a vector. Further, the dot
denotes the inner product between tensors. These
expansions (3.1) and (3.2) are substituted in Eq.

N =B [ exp [—in-xR] exp [t i (in)"-d""(:..z:)]a(n)[l + tO(

ini<1
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(2.34) and the resulting equation is decomposed
into orders of k. The procedure is standard and
nothing further need be said.' {It should be noted,
however, that the first term of Eq. (3.1) is already
given by Eq. (2.36).] All further quantities may then
be given in series representation by means of the
simple formulas in the last section.

Using these expansions, two independent asymp-
totic situations are considered. One will correspond
to an expansion in the ratio of mean free path to
characteristic wavelength of the initial disturbance.
The other will be an expansion in the ratio of mean
free time to elapsed time. For initial data we consider
the class of functions a whose transform satisfy

ak) = 0 for [k| >R, 8.3)

where R is some arbitrary finite number. It will
be clear in the analysis that this is far too severe
a restriction. Since our goals are more physical than
mathematical, we impose condition (3.3) to avoid
tedious estimates and we take for granted that our
results hold for a wider range of phenomena.

Smooth Phenomena

Rather than being specific, it will suffice to con-
sider a typical integral

N= [ opliex+ d(k)t]a(ll—;) dk.  (3.4)
The condition (3.3) has been explicitly exhibited
in the latter.

It is convenient in this case to think of the time

scale 7 as being unity. Next, it is clear that in
Eqgs. (3.1, 3.2)

am™", vht ~ 0 /N Y, (3.5)

where A is representative of the eigenvalues A,.
To see this, one has only divide each expression of
Eq. (2.34) by the eigenvalue of that equation, and
note that one is the solving for ¢/A in terms of k/A.
For this reason we write

. k) (k)2 R’

— (0) =1, 2 L@ 2y e
d=x +2(R d R+R d >\-i— (3.6)
to explicitly indicate the parameter dependence.
On substituting in Eq. (3.4) and performing the
obvious coordinate transformation n = k/R we have

n+1

0 T PR
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One may show by standard techniques that

\ [ o [—m xR + 1 2 (in)"- d("’()\lf_ )]a(n)mo[@)"n"“] i

LAWRENCE SIROVICH

of 1]

If we designate the mean free path by [ and the
characteristic length scale of the disturbance by L,
then

R ~1/L; N~ 1/1. 3.9

Hence Eq. (3.7) leads to an expansion in the smooth-
ness ratio

¢ = l/L. (3.10)

If we think of R as fixed and, for instance, O(1),
we see that our expansion, while not uniformly
valid in time, is good for, say, 0 < t < \". Naturally
this is extended by choosmg more terms in the
exponent of Eq. (3.7). The latter is offset by the
practical consideration of evaluating the resulting
integrals. As we see shortly, these expansions are
valid for all time, through entirely different con-
considerations.

In several instances the approximate integrals
may be evaluated; for instance consider the one-
dimensional integral

R

exp [—d1] f exp [—ik(z — AV — Ak
-R

-a(k) dk = exp [—d°(})] (3.11)
which we shall call the Navier-Stokes’ form. It
is natural to consider the corresponding fundamental
integral obtained by taking a(k) to be a constant.
This gives

w©

a exp [—d’($)] exp [—d®P Kt — ik(x — dV8)] dk
4 — dY¢

a[d—(’g,—t:l exp [—d“”#] exp I:Ld(z)“z"‘l]

(3.12)

The corresponding Navier-Stokes form of the funda-
mental integrals in two and three dimensions can

7 Referring to such integrals as the Navier-Stokes and
Burnett forms is, strictly speaking, appropriate to the hydro-
dynamic modes. It is shown in reference 1 that the expansion
(3.1) for the hydrodynamic modes is given correctly to O(k?)
by the Navier-Stokes equations and to O(%®) by the Burnett
equations. We shall use these appellations in general to
refer to the number of terms carried in the exponent of an
integral of type (3.11).

’ [ exp [-—in-xR +t Z (in)"-d‘M(ﬁ:)]a(n) dn

(3.8

be found without any difficulty and are essentially
products of one-dimensional forms. In one di-
mension, even a cubic term may be retained in the
exponent and we shall refer to this as the Burnett’
form. The evaluation, which is given in Appendix A,
is in terms of the Airy function.

It should be noted in Eq. (3.12) that on allowing
d® — 0, the form approaches a delta “function.”
This however is not uniform in time.

Long-Time Behavior

Although we again retain condition (3.3), the
“smoothness” requirement is now completely re-
laxed. From Eq. (2.31) and the discussion following
it, we know that all modes are exponentially small
(in time) compared to the hydrodynamic mode. We
consider these as asymptotically negligible and turn
to the asymptotic behavior, in time, of the hydro-
dynamic modes. A typical term is

©

M = _exp [—k-x] exp [d(k){a(k) dk, (3.13)
with
dk) = Z:: (ik)"-a™. (3.14)

As before, k" denotes the tensorial product and d

an nth order tensor. It is now convenient to think

of the normalization r as being the mean free time.
We decompose Eq. (3.13) as follows:

M=M,+M,=f

lkl<e

exp [—ik-x + dt]a dk

+f exp [—ik-x + dfladk.  (3.15)
lk|>e
From this we have
< [ exo[dd ol dk,  (3.16)
lk(>e

where d, denotes the real part of d. Here ¢ denotes
a small quantity which is still to be specified. Next
it is eclear from Egs. (2.35, 36) that d, vanishes
only if k = 0, and so by continuity, d, is bounded
away from zero for k % 0. Hence we have

exp [—d.f] < exp [—Cé#] k| > e (3.17)

Downloaded 20 Jun 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



FORMAL AND ASYMPTOTIC SOLUTIONS IN KINETIC THEORY

where C is some positive constant. Therefore from
Eq. (3.3) and Eq. (3.16),

IM,] < A exp [—Cét], (3.18)
where A is some constant.
Considering M, we write
N
M, = exp [—ikx + ¢ 3, (ik)"-.d™]
{kl<e ne=1
U4 0EY) + -+ Jak) dk. (3.19)
We now take
e = 1/¢; l<a< /(N +1). (3.20)

1t is evident that the expression (3.18) is expo-
nentially small, falling off by some fractional power
of . To show that the second term of Eq. (3.20)
is asymptotically small when compared with the
first is not difficult. One way is to expand the ex-
ponent about N = 2. This leads to an integral which
may be evaluated and the desired property found
by inspection.

The freedom in « as given by Eq. (3.20) is signifi-
cant and is a source of useful information. We now
demonstrate this by examining the one-dimensional
form of Eq. (3.19) specifically for N = 2, 3.

€

M, = exp [—ik(x — dV8) — dVK*1)

8o + Buk + Bok® 4 - -]

1+ 06 + -+ -] dk. (3.21)
To begin the discussion let us take
e=1/t%7 (3.22)

where (3)” is a number slightly smaller than 3.

Then, on writing O(k*) = d’k* 4+ O(k*), we have,
to lowest orders,

©

M, ~ exp [—ik(x — V) — d'Pk]

180 + Bik + iButd K’} dk,  (3.23)

where the integration has been extended to infinity
since this contributes negligibly. This type of inte-
gral has already been evaluated in Eq. (3.12). It is
clear from that form that Eq. (3.23) is only valid
in 2 space for

(x — dPH < £} (3.29)

since outside of this region, Eq. (3.23) and exp [—C ]
are of the same order: On the other hand if we take

e=1/(HY" (3.25)
where (3)* signifies a quantity slightly larger than 3,

223

our results are modified. Next to lowest terms we
see that we get

M, ~f exp [—ik(e — VD) — 212

(Be + Btd Pk} dk.  (3.26)

But on taking (3)* closer and closer to § we see
that all powers of k*t enter or more precisely we
then must consider

o

M.~ exp [~—ik(x — dUF)

~

— dKt + dV K48, dk. 3.27)

This is evaluated in Appendix A and is referred to
as the Burnett integral. Also since exp [—Cé*t] now
decays more rapidly, Eq. (3.27) may be used in the
enlarged region

(¢ ~ dVH < =48, (3.28)

We can now further delimit our results. This is
done by continuing our discussion of the one-
dimension integral; however the remarks are ap-
plicable to the general case. By employing more
terms in the exponent of Eq. (3.27) we can choose «
of Eq. (3.20) to be larger and larger. This has the
effect of enlarging the domain of validity of the
asymptotic expansion. By retaining all terms in the
exponent, i.e. by retaining d(k) exactly, our results
hold everywhere. This however should not be mis-
understood. It is rather the case that the exact
evaluation of the integral holds in a limited region
of the x—t plane. Let us examine the behavior of
the integral

o

f exp [~ikz + (k)] dk (3.29)

as we move out along rays from the origin in the
z—t plane. To do this we set z = st and we consider

®

f_ exp (#d(R) — sk]} dk (3.30)

as t — . This, however, is in a form which lends
itself to the saddle-point technique. This technique
produces an asymptotic form of the type ~exp (ht).
Since we do not have the functional form of d(k)
we cannot locate the saddle point (even if we had
the closed form expression for d(k), it is highly
unlikely that we could locate the saddle). On the
other hand

f " lexp [td(k) — dsk]] di (3.31)

has a saddle at the origin and hence asymptotically
behaves as O(1/t%). Therefore Re h in exp (kf) is
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Fra. 1. Range of influence of the hydrodynamic modes.

nonpositive. The point at which we are driving is
that along rays, the integral (3.29) is exponentially
damped. Further on physical {(and mathematical)
grounds, this damping increases with «. But in
considering the asymptotic limit of { — « we
neglect the nonhydrodynamic modes which are
Ofexp [M]). Therefore the region in which the
t — o limit can be used is |z/t] < 3¢, for some 3¢,
as, is indicated in the Fig. 1. If one wants to extend
this region higher modes must be included in the
analysis, until if one wants to consider { — « but
for all z, then all modes must be considered.

Each of the asymptotic cases, as we have just
seen, lead to the same types of terms. This is also
clear from the fact that each made use only of the
expansions for small k. There remains now only the
task of connecting the two asymptotic expansions.
This can be done only for smooth flows, since
nothing can be said of the early evolution of ir-
regular initial data. The connection for smooth
initial data is clear since the same functional forms
occur. For long times, one has only to neglect the
modes with exponential decay, i.e., retain only the
hydrodynamic modes.

IV. MAXWELL EIGENFUNCTIONS

We now give a brief description of the eigen-
function theory of L{g). It is due mainly to the
pioneering work of Wang Chang and Uhlenbeck.?

The orthonormal eigenfunctions of L{g) for Max-
well molecules are given by®

= SGOEP (cos 0) exp (imx)/NYrn,  (4.1)

rim
with
yo 2UTe T4+ A |m
S TR D) (- |m)!

Here ¢ and x are the angular variables in spherieal
velocity space. The functions (4.1) satisfy the
eigenrelation,

(4.2)

L((I)rlm) = Xrin®Prim (4.3)

8 Here S;- are Laguerre polynomials and Py Legendre
polynomisls. See reference 1 for more details of notation.
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Wang Chang and Uhlenbeck® have shown that X,,,,
are at least (21 4 1)-fold degenerate—not depending
on the subscript m at all. In addition one finds'

)\,—o == A,..l, (4.4)
and
Noz. 4.5)

These degeneracies are of extreme importance in
our later work. Many of the eigenvalues have been
evaluated and a table is given in reference 1.
Several examples of the eigenfunctions (4.1) and
their associated coefficients are given in reference 1,
Eq. (2.12). The application of Maxwell eigenfunctions
to other molecules is also indicated in reference 1.

Ao = Ay =

V. ASYMPTOTIC SOLUTIONS

As a specific example of the general theory de-
veloped, we now work out the asymptotic theory
of the one-dimensional shear-free initial-value prob-
lem.” Two and three dimensions offers nothing new
and is only more tedious. Qur results will be dis-
played as modes aceording to the decomposition of
Sec. II. With the exception of the hydrodynamic
modes, all modes will be given only to lowest order.
The former, because of its special interest, is carried
further. Appendix B, contains sufficient data to
carry the calculations to even higher orders.

In accordance with the remarks of the last sec-
tion, we introduce a more specialized notation. First
since we consider only one-dimensional motions, the
matrix G becomes

thC' + A =ikC + A (5.1)
As is pointed out in reference 1, we may suppress

the index m for one-dimensional shear-free motions.
The eigenvector expansion will now be written as

v = 2 (k)T (5.2)
n=0
and the eigenvalues as
dﬂv = Z du!’.n(,ik)n, (5‘3)
n=0
with
a0 = N, (5.4)

Note that (uv) refers to the eigenvector {or corre-
spondingly the mode) and 7j to the component.
A certain ordering of eigenvalues must be assumed,
a discussion of this is given in reference 1. In general
it is taken, roughly, to correspond to increasing
magnitudes of A,;. Eigenvalues and eigenvectors
for the case at hand are given in Appendix B.

? The analysis is carried out for Maxwell molecules, but

can also be taken as giving the diagonal approximation for
other molecular force laws. (See reference 1, Sec. 5).
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The types of modes which occur can be split
into three categories, according to the degeneracy
of the corresponding A,;. These will be referred to
as the nondegenerate, doubly degenerate, and the
triply degenerate hydrodynamic modes.'” Rather
than consider any specific initial data, we shall
consider the fundamental solution. To do this we
replace a,(k) by the constant vector

B = {8.}. (5.5)

The solution for some particular initial data may
then be found in terms of a convolution integral.

Hydrodynamic Modes

The hydrodynamical modes are now three in
number, corresponding to

)\oo = >\10 = )\01 = 0. (5-6)

As we saw in Sec. ITI, both the long-time and smooth-
ness-ratio expansions follow from an expansion in
wavenumber. As stated in Sec. II, we shall express
each mode in terms of the diagonal mode member.
It is not as yet necessary to give asymptotic forms
for the latter. We can first obtain more general
relationships from the eigenvector expansion of
Appendix B and relation (2.31). This immediately
gives the following asymptotic representations of
the hydrodynamic modes.

P 1
o @ + (1/3\1 + 2/3\g) 8/0x
alo |~ | —® = [10)}/3\u] 9/6c  |ab, (5.7)
ol —[(10)¥/3x,,] 9/0z
late] L [2(5)!/3Nos) 8/
(o] =) — 2(1/3\, + 2/3Ngy) 8/0x |
o 1
oo [~ (B — [(DXE/5M1 — 2/5))] 8/02 | i,
afi [(A/AD)®Y 8/0x
Lagz] L [2/(3)Nex) 0/ 0 1 (580
[ by @} |
ay [(A/A0)(3)*) 8/6x
|~ 1 a3 (5.8b)
ol [(A/A0)(3)*] 9/6x
Laos | L 0 i

10 There is in addition a triply degenerate mode correspond-
ing to Eq. (4.5). This in reality, however, behaves separately
as nondegenerate and doubly degenerate modes.
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On referring back to reference 1, Eq. (2.12), we
see that to the lowest order for each mode we have

pu _ (4 i) _u
Do (3>\02 ox/ (RT,)}’ (5.9)
and
S _ (L i) T,
po(RTo)% B 2M1 0x/ Ty (5.10)

Hence to this order the Navier-Stokes relations
hold independently of the approximation to the
diagonal mode members. Further to the lowest
order, for the (00) and (01) mode, we have the
following density—temperature relation:

T/T, = % p/ po-

Since in linearized theory the “gas low’’ (identity) is
P/Po = p/po + T/T,,

Eq. (5.11) expresses that the (00) and (01) are
adiabatic to lowest order. On the other hand,
inspection of the (10) mode shows it has the
isobarie relation,

(56.11)

(5.12)

p/po = =T/T. (6.13)

This again is to lowest order.
We must still evaluate the diagonal mode mem-
bers. First we define the following integrals:

Vind exp [—tkz + d”t) dk.  (5.14)

T 2r
Next from the expansions of the eigenvectors in
Appendix B, we can write to first order

1 | Boo |
i 400 - (]
Qoo 10 72 5 ) 10 |;BOL

610
-GG+ ) a3
10\5/ \Ny; T A/ BN 75 \B

.(L _ L) 1 _1_]
A Ao/’ An(10)F 7 Ap(5)F

_>IOO (5.15)

BIO

B
51

Downloaded 20 Jun 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



226

Boo
o [_1@3*1 _;_]B
Qo 2\5/ 92" (10)% 01

10

_LL_“LGL_LyL@y
5\ 7 (15)F \2M;1 Ao/’ BNy \2/ 7

— -

600
1 1 B ﬁ_ 01
‘m@h”m@Jﬁ oz’ (5.16)
B
o]

([

10

©! 1 (3\']8a] 8 |0
_ [_m , T(E) ][ ]%}1 RNCRT)
ﬁll

From the work of Sec. IIT we know that our
considerations apply to two different asymptotic
limits. On one hand is the theory in the limit of
large collision frequency (or equivalently smooth
phenomena), and on the other hand is the theory
in the limit of large times. The former analysis was
restricted to finite time, but this was lifted by the
latter development. The time asymptotic analysis
makes no demands on the smoothness of the initial
data.

The basic difference in these two approaches has
an immediate effect on the interpretation of the
results given above and in particular on the fact
that I** was not given any particular approximation.
First let us regard the case of smooth initial data,
and consider the type of integral which occurs:
I~ f exp [t — k][l + O®)] dk.  (5.18)
From the analysis of Sec. III we know that the term
O(k) for any finite time, is of a lower order than the
contribution of an infinite remainder in the ex-
pansion of d(k). However any term in the ex-
pansion of d(k) is of a lower order than O(k) for
sufficiently large ¢. Therefore, including more and
more terms in the approximation of d(k) extends
the validity in time until, on keeping all the terms,
it holds for all time.

Improving the approximation of d(k) in the long-
time theory has quite another effect. There is now
no requirement on the smoothness of the initial
data. (As already remarked, a flow naturally smooths
itself in time). In Sec. III, we found that the in-
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clusion of more terms in the approximation of d(k)
extended the region, in z space, of the long-time
asymptotics; that for z sufficiently large, any term
in the expansion of d(k) was of lower order than O(k)
in Eq. (5.18). By finally choosing the exact expres-
sion for d(k) the integral is valid over all z as the
lowest-order contribution. But the asymptotic theory
has already neglected exponentially decaying terms.
Therefore as shown in Sec. III, the integral is only
valid in z—¢ region indicated in Fig. 1. This distinc-
tion between the value of the integral (5.18) and
its role in an asymptotic theory is extremely im-
portant.

To reconcile the two asymptotic developments of
the hydrodynamic modes we note that the hydro-
dynamical mode has the same form in both expan-
sions. From the analysis of the long-time behavior,
we know that the finite-time requirement in the
smooth phenomena theory may be lifted, and that
those results are valid for all time. It is however the
case, that as time becomes large, these results can
be used only in some finite z interval. This interval
is delimited by Fig. 1, and its extent in that region
is determined by the level of the approximation.

An interesting comparison between the two
asymptotic theories comes from entropy considera-
tions. Rather than entropy we must of course con-
sider the H function mentioned in Sec. II. From that
section we see that for large times the H function
is given only by the contribution from the hydro-
dynamic mode, but the smooth-flow expansion has
contributions from all the other modes. They of
course agree for large times since the contributions
from the higher modes vanish.

We now turn to specific approximations for the
integrals I*”. By retaining O(k®) in the exponent,
the Navier-Stokes approximation is obtained and
we denote it by I%;. For the hydrodynamic mode
we have

0 _ (__:’mxoz >*
Vs 4t Aoz + 2Ny,
. (x ~ (%)%t>23)\11)\02]
exp [ 0o+ 22t |0 619

1

01 — ( 3A11)\02 )z
NS\t [Noe + 2Ny |

(z + ('g‘>%t)23>\11>\02
P [ 40z + 201

01 __ |>\11|)} (xz)\u)
”"(z.w P\ /-

Each of these forms characterizes a diffusion process,
but in the first two [Eqgs. (5.19), (5.20)], this is cen-

:I ,  (5.20)

{5.21)
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tered about a propagating wave. The speed of the
wave is (3)! which is the adiabatic speed in our
normalization. Only the zeroth order expression may
be validly used with the Navier-Stokes integrals.'!
This is true since the correction term O(k*) is of
the same order as O(k) which leads to the second-
order theory (see Sec. III). Further the first two
modes [Eqgs. (6.15), (5.16)] apply in a region given by

[z — B < =0, (5.22)
and the third mode [Eq. (5.21)], on a region given by
z < =) (5.23)

Outside of these regions in a-f space, the solution
is ~0, to this order. These regions of dependence
are sketched in Fig. 2.

\ o
‘ I :
N\ ‘

N I //

. AN Vo S
\.\../mw\ '(ﬂf"m; éﬂm&/
\‘\ N ) [ 7 ‘/
NN d

S B

\\\ \l \ \ R ] ///
< M
AN

i
i
N
N [//\ tarr!/2
oy an’ vy

Fia. 2. Evolution of the hydrodynamical modes.

X

If terms of O(k%) are retained in the approxima-
tion to d(k) in the evaluation, we get the Burnett
integral and write it as

5.

The evaluation and discussion for this integral is
given in Appendix A. On using this integral we may
now use the relations (5.7)—(5.9) and (5.15)-(5.17)
to describe the hydrodynamic mode to the first
order. Also the range of application in 2t space
is widened and for instance the I% integral may
be used in

[z — ®¥] < =)} (5.24)
The range of application of I35 and I are sketched

IN KINETIC THEORY 227

Fie. 3. Domains of accuracy in the Chapman-Enskog
integrals.

in Fig. 3. Also the effect of retaining O(%k*) in the
exponent, or what is designated in the sketch as
third-order theory. By choosing more terms in the
approximation of the eigenvalue d(k), the range of
application is widened. However, it will not pass
out of the wedge region. Past this region, the inte-
gral is of an exponential decay comparable to al-
ready neglected quantities (the high modes).

Nondegenerate Modes
From Appendix B, the lowest order is
o B € Nyt = 27/4dH]
" (4md* )t

Aside from the diagonal mode member, all other
entries vanish to the lowest order. We see that in
addition to the systematic decay in time, we have
diffusion. A sketch of this behavior is given in Fig. 4.

MWWWT‘;WW,-

A

(5.25)

Fia. 4. Evolution
of a typical non-
degenerate mode.

Doubly-Degenerate Mode

It will be remembered that in this case A, = A,_; ;.
With the results of Appendix B, we have for the
two modes associated with this degeneracy,

a::i; ~ %(57»-1,1 - igr,o)

afo ~ $(B,-1.1 + Broo) exp [—(@ — &7°70)°/4d%M] + Mot ,

exp [— (2 4+ d™°'9)°/4d°"8] + Mot . .
{4zd> 1} LRt alo~ =711, (5.26)
i ~ ol (5.27)

{4 ro'zt}%

1 By this is meant undifferentiated terms. It is easily seen
that the notion of order in each of the expansions can be
transferred to the appearance of derivatives. Note that both
Egs. (5.7-5.9) and Eqgs, {5.15-5.17) fall into orders according
to appearance of derivatives.

Aside from the systematic decay, we now have a
diffusing wave traveling to the right and to the
left, each having the same speed. This is sketched
in Fig. 5.
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X

Fic. 5. Evolution of a typical doubly degenerate mode.

The expression for d’°', d”>? in terms of the \’s
are to be found in Appendix B. In only taking the
lowest orders, we have obscured an important
property of these modes. This is the fact that a
single mode will in general, contribute to an infinity
of moments. This can be seen by examining the
eigenvectors in Appendix B. This mushrooming of
a mode was clearly exhibited for the hydrodynamic
modes.

In closing we can briefly note that the solution
to the Boltzmann equation is far more complex
than given by the Chapman—FEnskog theory. The
latter can give no more than the hydrodynamic
modes and hence can at best be a time asymptotic
theory. Further, the Chapman—Enskog theory takes
into consideration only the initial data of the hydro-
dynamical moments. This is clearly insufficient for
a general theory as is seen from Eqgs. (5.15-5.17).
Nevertheless the Chapman—Enskog theory has a
valid asymptotic sense, as will be demonstrated at
another time.
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APPENDIX A. THE BURNETT INTEGRAL

We consider

o

f exp [—iak — bK® + k] dk  (A.D)
with @, b, ¢, real.
Defining
u=(a+ b°/3); v=2b/27¢ + ab/3c,

we can transform Eq. (A.1) into

1 .. L
B = B¢ Alo(u/(3 e (A.2)
where Ai, is an Airy integral. For tables and proper-
ties of this function, one is referred to the literature."”

APPENDIX B

We give here (see Tables I-VI) a résumé of the
results necessary for the calculations made in Sec. V.
The eigenvalue determinations are taken from refer-
ence 1, and the eigenvector vector determinations
are given without reference or calculations. Both
computations follow from the procedure given in
Sec. III, and are in general straightforward, though
somewhat tedious. Some of the tedium is removed
by the computational aids found in reference 1. The
determination of the hydrodynamical modes are
carried to a higher order because of its natural im-
portance. A description of the notation is found in
Sec. V.

Hydrodynamic eigendeterminations

00,§
TasLE 1. b3,

(00) values.

d® = kb + 1/ + 2/N)k + BH—2/5hhis + 1/100] + 8/15ML)ik° + - - -

uy j=0 i=1 j=2
00 1 0 0 0
01 @ —(1/3\1 + 2/3N) (®H—2/50pAn + 1/10N7, + 8/15)\%)
10 -3t (10)/3\4 B/ + 4\ — 14/3\))
11 0 (10)*/3\, (/3o
20 0 0 (10/3)12/3Ns0M1
02 0 ~2(5)}/3Noo 12/202(3* 11/ M1 — 1/A00)
12 0 0 (14/3)*2/3\ 1112
03 0 0 —2/)\02)\03
0 0 0

12 See for instance, J. C. P. Miller, The Airy Integral (Cambridge University Press 1958), Part B.

Downloaded 20 Jun 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



FORMAL AND ASYMPTOTIC SOLUTIONS IN KINETIC THEORY 229

Tasue II. b9} 7, (01) values.

& =~k + (1/3M; + 2/3\)E” — (—2/Bhohiy + 1/10M, + 8/15M)ik° + -

w i=0 j=1 ji=2

00 —®*  31/3u + 2/3\) (B}1/6MN] — 2/15Noohy + 4/5X5)

01 1 0 0 0
10 @ @N4/B — 2/ [1/A0NA/2M + 2/MNee — 4/2%)

11 0 (—1/\0) (B} [(10)%/150;1(2/ N0 — 1/A1)

20 0 0 2(2)/ 3NNz

02 0 —2/Noa(3)? [2(5)*/3N02)(2/5My — 1/Ne2)

12 0 0 —2/3\ h\a(14/5)}

03 0 0 - (%) §2/)\02)\02

Tasus II1. 307, (10) values.

d° = E/\y + 0% + -

v i=0 i=1 ji=2

00 ®»? 0 —®*4/3Mee + 1/A0)

01 0 —($*1/x; 0

10 1 0 0 0
11 0 —1/MuG) 0

20 0 0 2(5)*/3\i1h20

02 0 0 +2(2)*/3\ 1 hoz

12 0 0 —2(N)}/3N A2

03 0 0 0

Propagating Mode &,, = %,.1

TabLe IV. b7 1, (r — 1, 1) values.

] —
dr—1,1=>‘ro+(&‘>ik_[2r+3 Lol 24y L 2Aw-—2 ]k+

3 6(%,0 - )\rl) 6()\10 - )\1—1,0> 15()\r0 - )\r—ll,Z) 15()\r0 _ )\r~2,2)
wy i=0 i=1 j=2
r— 1,1 1 0 0
o . (iﬂ: 41 2Ar+y _ 2Aw-—2 . 2+3 ]
! 2r 3()\10 - x1-—1.0) 15()\1'0 - A7‘—1.2) 15()‘1'0 - x1'—2,2) 6(%,0 - >\rl)
1 o + 3>%
m 1 0 A — x,o( 3
1 or + 1)*
T 1’ O 0 )\rO - x1'—1.0 < 3
1 or + 3)*
- 1, 2 0 )\70 - )\r—l.2< 15
2 2r — 2\}
re 2, 2 0 k,-_z'l - Aro ( 15 )
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TasLE V. b;,;%, (7, 0) values.

or\} or + 3 or + 1 2(2r + 3) 202r — 1) R
drO = )r ('—> k — [ k P
° + 3 ’ 6()\10 - }\11) + 6()\70 - )\7'—1.0) 15O\r0 - )\1—1,2) + 15()\10 - )\r——2,2) +
v i= j=1 j=2
SN[ 2+ 3 o + 1 2(2r + 3) 22r — 1) ]
e |
r 27‘ 2()\7'0 - )\rl) + 6()\1'0 - )\r—l,O) + 15()\1'0 - )\r——l.Z) + 15()\r0 - )\r—2,2)
r, 0 1 0 0
1 or + 3)*
r’ 1 0 )\rO - xr1 3
B » 1 2r + 1)*
" 1, 0 0 )\ro - )\r—l,O ( 3
B 2 2r + 3)*
’ 1, 2 0 er )\,._.1_2 ( ]-5
2 or — 2\}
T 2, 2 0 xr—2.2 - )\TO ( 15
Nonpropagating Modes
TaBLE VI. b1,
2u + 2v + 3 1 2u 1
- 1.2 1 2[ ]
" = N ’“{<” T B D@D = T B )@ F D = M
o %t w41 1 o2 + 2 1 '} 3
T [(21/ + D@ — D Aw — Ay T (2 — )2 + 1) Ny — Mazyor +
rl i=0 i=1
i,V 1 0 0
_ 0 —v ((M+v+%)2 )*
By ¥ Mav—1 — A \(2v — (2 + 1)
y 2u + 2 )*
o ( |
pt Lyt Moot — A \@ + D@ — 1)
— + 1) < 2 + 2 + 3 >*
v+ 1 0 Mavir — A M2 4 3)(2v 4+ 1)
v+ 1 2% )*
po Lyl LR W <(2v ¥ )@ + 3)
0 0
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