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The one-dimensional initial-value problem of a monatomic single component gas is considered.
Using the linearized Boltzmann equation the dispersion relation is studied. In addition to the usual
gas-dynamic sound waves, one finds an infinity of decaying propagating waves. The phenomenon
exhibits itself as a sequence of epochs, the last state of which is hydrodynamic. With reference to the
same problem, macroscopic equations such as Euler, Navier-Stokes, Burnett, moments equations,
etc., are considered. In addition, the recently considered ‘‘kinetic models’” of Gross et al. are applied to
the problem. These various formulations are critically analyzed and compared with each other and
with the Boltzmann analysis. Lastly, several modifications are offered which remedy some of the
shortcomings which appear in the approximate theories.

1. INTRODUCTION

N the period between 1952 and 1956 Wang Chang

and Uhlenbeck'™ and Mott-Smith® produced a
series of highly original and important studies in
kinetic theory. These dealt with extremely simple
geometries and with situations where linearization
could be used with confidence. Through their
formulations of problems and high level of analysis,
these reports (none are published) have provided
the inspiration for much of the recent theoretical
work in kinetic theory. The present study is in no
small way indebted to these researchers, as will be
evidenced by the frequent reference to their work.

Despite the simplicity of the problems in these
studies, perhaps the simplest problem has been over-
looked. This is the initial-value problem in an
unbounded domain. Closely connected to this is
the problem of sound propagation considered by
Wang Chang and Uhlenbeck.” It was their intention
to describe sound propagation for all ratios of the
mean-free-path to sound wavelength. In a certain
sense they were unsuccessful since they only achieved
their results in power-series representations of this
ratio. For the most part, we shall be content with
such representations, but will be interested in more
than just sound propagation. We shall, in fact,
uncover many other phenomena, including propaga-
tions other than ordinary sound.

1C. 8. Wang Chang and G. E. Uhlenbeck, “On the
Propagation of Sound in Monatomic Gases,”” Engineering
Research Institute, University of Michigan (1952).

2 C. 8. Wang Chang and G. E. Uhlenbeck, “The Heat
Transfer between Two Paralle] Plates,” Engineering Research
Institute, University of Michigan (1953).

s C, 8. Wang and G.E. Uhlenbeck, “The Couette Flow
between Two Parallel Plates,” Engineering Research Institute,
University of Michigan (1954). .

4 C. 8. Wang Chang and G. E. Uhlenbeck, “On the Behavior
of a Gas near a Wall” Engineering Research Institute,
University of Michigan (1956). . oo

s H. M. Mott-Smith, ‘A New Approach in the Kinetic
Theory of Gases,” Lincoln Laboratory, MIT (1954).

Our initial-value problem is, in itself, relatively
sterile from the physical point of view, since neither
laboratory nor reality comply with its requirements.
On the other hand, due to its simplicity it allows
greater penetration than any other nontrivial prob-
lem in kinetie theory. It therefore provides a suitable
setting in which to examine existing approximate
formulations in gas dynamics. We include in this
latter designation the Chapman—Enskog theory,®
moments equations,” and kinetic models.’*® Further-
more, new approximate formulations will be sug-
gested.’’

In the present paper the initial-value problem
is studied in a narrow sense. It will be based strictly
on dispersion relations. Such an analysis is decidedly
restrictive. For one thing it does not consider the
effect of initial data which, for instance, is of crucial
importance in delimiting the Chapman—Enskog
theory. This will be taken up at another time. In a
following paper'’ the initial-value problem is carried
further.

II. LINEARIZED BOLTZMANN EQUATION

In the interest of brevity we give only a short
review of the one-dimensional unsteady linearized

Boltzmann equation for Maxwell molecules,

6 8. I. Chapman and T. G. Cowling, The Mathematical
Theory of Non-Uniform Gases (Cambridge University Press,
Cambridge, 1952).

7H. Grad, “Principles of the Kinetic Theory of Gases,”
in Handbuch der Physik, edited by S. Fligge (Springer-Verlag,
Berlin, 1958), Vol. 12.

8 E. P. Gross and E. A. Jackson, Phys. Fluids 2, 432 (1959).

¢ P, F. Bhatnager, E. P. Gross, and M. Krook, Phys.
Rev. 94, 511 (1954).

10 Using the initial-value problem to generate approximate
equations which are to be used in more general situations,
is a widespread practice. This is explicit or implicit in the
Chapman-Enskog theory and in tﬁe current gas-dynamic
and kinetic derivations from the Liouville equation in statisti-
cal mechanics.

u T,. Sirovich, Phys. Fluids (to be published).
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£ = (&, &, &) denotes the molecular velocity and

£, the velocity of the struck particle. We define g by
f=ra+og, (2.2)

where f is the distribution function. We make the

linearized Boltzmann equation dimensionless with

respect to an unspecified frequency » = 1/7 as
follows:

VI R INE S — ¥ R — pO_BV
=, i = T B = (2.3

Rather than introduce a cumbersome notation
for the dimensionless quantities, we consider (2.3)
as having been carried out and then remove the
primes. The dimensionless equation then is

(% + & (;%)g = L(g) = f“’*[g]B de db d¥, (2.4)

The eigentheory of the operator L was discovered
by Wang Chang and Uhlenbeck® (see also references
5, 12). For shear-free one-dimensional motions, the
eigenfunctions of L are’

v, — SiaGEIEP (cos 0
rl [:2I+IP(7' + l+ %)]é ’
! (21 + 1)
where 8j, P, denote the Laguerre and Legendre
polynomials. In the form given we have

(2.5

fw‘Prl‘pr'l’ £ = 8, 04 (2-6)

and®

LY., = (l + 1) {¢7.1+1[

r+ 1+ 32 :r
@2l + D@L+ 3)
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The eigenvalues of L are given by"

2.7

A, = 2 f 0 B()[cos®™" 16P,(cos 16)

+ sin®*! 16P,(sin 6) — (1 + 8,0 8:0)], (2.8)

12 I,, Waldmann, “Transporterscheinungen in Gasen von
mittlerem Druck,” in Handbuch der Phystk, edited by S.
Flugge (Springer-Verlag, Berlin, 1958), Vol. 12,

TasLeE I. Normalized eigenvalues. (The values of the table
were obtained from reference 5.)

l

0 1 2 3 4 5
0 0 0 3/2 9/4 2.808  3.274
1 0 1 7/4 2.354 2.864 3.318
2 1 3/2 2.014 2.500 2.952
3 3/2 1.8420 2.238 2.646 3.064
4 1.8420 2.106 2.428 2.780
5 2.106 2.320 2.598
6 2.320
from which we see
Mo = Mooty (2.9)

Values of A,;/\;; taken from references 1 and 5 are
given in Table I. The Ao = Ag; = Ajq = 0 degeneracy
comes from the conservation laws (these will be
referred to as the hydrodynamic roots). We take
A11] in (2.4), this being the smallest eigenvalue."®

Expanding the perturbed distribution function
in the ¢,

y =

g= Zl: brl‘l/rl; brl = fwg\[/,l dE, (210)

we can immediately “reduce” the linearized Boltz-
mann equation to the infinite system of coupled
equations,

s 2 wtr+pe

(6t A“">b“” T o (”{b“‘”"[@v — D@ + D]
_, [%ﬁiimﬂ

w1, v~1 (2V _ 1)(21; + 1)

(u4v»+ 22 !
+ @+ 1){1)“"’“[(21} + 32 + D]

Several examples of the coefficients and their asso-
ciated eigenfunctions are

Yoo = 1, boo = p,

Yo = &, by = u,

Yo = @A -3, be=-@7, @12
Yo = %(3)%(5112 — 3, by, = %(3)%1’11:

Yu = (g)%(l - %52)51, b, = _(%)%Sl'
The quantities of the right column are, respectively,
the dimensionless perturbed density, velocity, tem-

perature, stress, and heat conduction. The dimen-
sionless pressure p will be eliminated by the “gaslaw”’

p=op-+T. (2.13)
13 C. Truesdell, J. Rat. Mech. Anal. 5, 55 (1956).
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TasLe II. Eigenvalue ordering.

boo = p bor = u1 b = (%)QT b1 b boz ba1 bao b1z b3y b4 baz bar bso baz bos
| | | I
o —ik
I | J |
—ik P (2/3)kik | 1—2/(3)%ik |
2/3)kik v | —(5/3)¥k | | 1
—(5/3)%ik s — A 2/(3)%1%l (8/15) ik —(28/13)}ik
2/(@)¥ik o — Ao | | (7/3)kk | .
—2/@ ik (8/15)¥ik | ¢ — Aoz —3/(5) bk g
| —(7/3)%1:k‘ ¢ — A @kr  4/5)%k —6/(15) ¥k
| | @Yk ¢ — N0 — 3k
____________ SRR e O [P
—(28/15)}ik | : 4/015)4ik ¢ — 2 (18/35)}ik
—(3)tik ¢ — \a1
I | | J
1 2 2 3

As examples of the equations of (2.11), we have
(8/8t)p + (8/0z)u = 0,
(8/0t)u + (8/0x)p1s + (8/9z)(p + T) = 0,
(3/9)T + ¥0/02) 8, + 3(8/dz)u = 0,

which are, of course, the conservation equations.
In writing down any finite collection of equations
the ordering of the b’s becomes important (a com-
plete solution is, of course, independent of ordering).
Generally, in questions of ordering, the degree of
the ., is most often taken as the determining factor.
For some purposes, ordering the b’s according to
the magnitudes of A is certainly as important.

(2.149)

III. DISPERSION RELATIONS

To develop dispersion relations we consider plane
wave solutions to (2.11), i.e., we assume

b” = E,leﬂ_ﬂw (3.1)

for all dependent variables, where the b,, are
constants. This corresponds to a Laplace transform
in time and Fourier transform in space. Substituting
this into (2.11) we get the linear homogeneous system

_ wt+r+32 |
(a‘ - )\w)gw - 'Lk()‘{gu.v—l[(z,’“_ 1)(2V + 1)]

bl
s (2 = D2 + 1)

P 2“ %
_@+D@HMLm+w®+D]
uw+v+ 22

‘&MLm+mw+nTD=°'

The determinant of the linear homogeneous system

3.2)
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(3.2) will be referred to as D(s, k). This, of course,
defines the dispersion law. The fact that D(s, k) is
infinite introduces some difficulties, e.g., the existence
roots. T'o avoid such questions we can consider (3.2)
as being arbitrarily large but finite. As will be seen,
the results are unchanged by going to the limit.
A truncated matrix of the system (3.2) is given
for the eigenvalue ordering in Table II and for the
polynomial ordering in Table III. We now determine
the roots o(k).**
On setting ¥ = 0 in

D(o, k) = 0, (3.3)
we see immediately that
“ g = A,‘[ (3.4)

are roots. Note that ¢ = 0 and ¢ = Ape(=Xse = Asy)
are triple roots and ¢ = \,(=M\,.;,,) are double
roots. We shall develop the roots in a power series
in k in the neighborhood of each of these £ = 0
points. Each & = O point defines the origin of one
or more of the branches of (3.3). It can be shown'® -
that D is a function of %k°, and, therefore, in the
neighborhood of a simple zero the root o may be
developed in a series of ascending powers of %°
However, in the neighborhood of a double or triple
point a Puiseux series must be used. In our case
this can be shown to be a power series expansion in
k.
We write for each root o

¢ = 0o+ arik + ok’ + -- (3.5)

4 For a boundary-value problem, one is essentially
interested in k = k(o). This is considered in reference 1.

15 1, Sirovich, Courant Institute of Mathematical Sciences,
New York University, Rept. MF 17 (1961).
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TasLr III. Polynomial ordering.
boo =p bo =ur b = (Dir bos bt bos b bz bo1 bat bis
i a | ! |
—ik - 2/3)tik l —2/@ ik | |
(2/3)¥ik - : —(5/3)kik I :
e _[T, e _(S/T5)*;I e == ===
—(3/3) ik ! 8/154k ¢ — Au ! 2/B)hik  —(28/15)bik !
_________ ! ek - PV 718;5)3;[*—4;7)5/: -
| 2/@ ik ! ¢ — Ano | —(/3)}4ik
l —(28/15)bik ! (18/35) bk ¢ — A2 ! as/134k  —(81/35) 4k
———————— e et
I | |
1 2 3
and for D(o, k) the expansion Table III, the polynomial ordering, rather than
D = D, + kD + (i/2) D2 the e%genvalue ordering of Table IT which will be
used in all other cases. (Of course, the results are
-+ (£*/3) D& + .. (3.6)

The enclosed superscript denotes differentiation and
the zero subscript the evaluation at & = 0. Relation
(3.5) is placed in (3.6) and this results in the evalua-
tion of the o, when (3.6) is set equal to zero. The
latter states that

indifferent to whatever ordering we use. A particular
ordering is used only for the convenience it affords.)

The hydrodynamical branches are found by taking
o = iak + BK* + ivk + ok* + ik’ + .- (3.8)

in D(as, k), i.e., in Table ITI. One finds that o is
obtained from the coefficient of %° in the expansion

0=D,=D" =D = ... = D™ = (8.7) of the first 3 X 3 determinant. We write this as
Because of the special nature of D, several tech- a —k 0
niques can be found which simplify the calculations."® coef (&) | —ik o k| = 0. (3.9)
Hydrodynamical Branches 0 @4k o
In this case it is more convenient to examine g is given by
o —ik 0 0 0
—ik ¢ @4 =2k 0
? (3)*
coef ()| 0 (Bkk o 0 —@4k| =0, (8.10)
-2 .
0 0 —-@kk 0 A
and v by
o —ik 0 0 0
. pg =2
—1ik o 3k (—3)—; ik 0
coef (") [ 0 (D)kk v 0 —@YK. (3.11)
-2 . .
0 (—3)—% 1k 0 e — re (T5)k
0 0 —@% 4k o — A
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The result of these calculations are the three
hydrodynamic branches

K /hy + O, (3.12)

{5 %[‘ 3< ~2 1 8 )]
= iz(3) ko T 108, T 1o0s
1, 2

P T B

I

g

Q
|

+ lcz( ) + O(Y. (3.13)

The branch given by (3.12) is purely decaying
and is connected with heat conduction. Relation
(3.13) furnishes two propagating and decaying
modes. To O(k), (3.13) is the adiabatic speed and
the O(k*) term gives the increase in the phase
velocity. One easily sees that (3.9) is the Laplace-
Fourier transform of the Euler equations, (3.10)
the transform of the Navier-Stokes equations,'®
and (3.11) the transform of the thirteen moments
equations. Therefore, from the point of view of
kinetic theory, the three roots (3.12), (3.13) are
given correctly to O(k) by the Euler equations and
to (k%) by the thirteen moments equations.

With respect to the latter, one sees that two other
roots appear. This is discussed in Sec. VI. Actually,
instead of ¢ appearing in the last two rows of (3.11),
one may insert their expansions. On doing this
one finds that (3.11) is equivalent to the transform
of the Burnett equations of the Chapman-Enskog
theory."”

Referring to Table III and the determinant
given by ¢, j < 3, the coefficient of k° leads to 3,
and the coefficient of &7 to e of the expansion for ¢ in
(3.15). The determinant is identical to the one
which would be gotten from a “26 moments” theory.
In this way we may determine the dispersion relation
of the hydrodynamical branches to any desired
order. Although we found the transforms of the
equations of the Chapman-Enskog procedure in
the above analysis, it should not in any way be
construed as a verification of the Chapman-Enskog
procedure itself. This is clear from the fact that
the inversions of the relations do not, without proper
initial conditions, give Chapman-Enskog relations
for stress and heat conduction. This important
point will be taken up at another time. Next we
note that the expansion of ¢ is in inverse powers of
A, ie., with terms of the type (k/X.;). As we take

16 The viscosity and heat conductivity coeflicients are
propol;fional respectively to the negative reciprocals of
Aoz and Aji1.

17 The reduction of the thirteen moments equations to
the Burnett equation was noted by S. A. Schaaf and P. L.
Chambre [Flow of Rarefied Gases (Princeton University Press,
Princeton, New Jersey, 1955)].

larger determinants we gain larger |A,;| and we can
presumably describe higher-frequency phenomena.
Unfortunately, the calculations become more tedious
with larger determinants.

Nondegenerate Branches

We may express the branch of a nondegenerate
root as

o =X\, + B8+ ok + --- .
One finds"

- + 1)2[

(3.19)

2w +v + 9 1
2y + D@v 4+ 3) N — Avin

ﬁuv =

+ 2u 1 ]
2+ 32+ DAy — My onr

of 2 +v+ 3 1
T [(QV + D@ = D) A — Ao

2u + 2 1 ]
(2 — D&+ DAy — Mcrva

If one inserts into (8.15) those values which are
given in Table I, it is found that 8,, is negative.
It is plausible to presume that the coefficient of
k* in the nondegenerate branches are all negative.

+ (3.15)

Doubly Degenerate Branches

From (2.9) we know that the doubly degenerate
eigenvalues are given by A, = \,_;,;. Referring to
(3.8) one finds for «

a,, = +=(2r/3)} (3.16)
and for 8,¢
- 2r + 3 2r + 1
Fro = [6()\7,0 - )\,,1) + 6(%7’0 — >‘r—1,o)
2(2r + 3) 2(2r — 2) ]
+ 15\, — )\,_1'2) + 157, — >\r_2,2) . (3.17)

The @’s which can be computed from Table I are
negative. It is again plausible to presume this
negativity for all 8 given by (3.17).

Triply Degenerate Eigenvalues Aoz = Xzy = As)

The results of this caleulation are

)\30_}92[ 4 + 8

Il

STOZ 150\02 - >\11)
, 9 4
- k
5()\02 - koa)] + 0( ),
o = Ao = Yk — K (3.18)

[ 8 " 18
150\02 - >\12) 15()\02 - >\22)

7 3
+ 6(7\02 - 7\20) + 2(7\02 - )\31)].
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DISPERSION RELATIONS IN RAREFIED GAS DYNAMICS 15

Again one may see, on using the values of Table I,
that each of the modes is dissipative. No general
relation is given in this case since no general triple
degeneracy is to be found. In a sense, this last case
is not a triple degeneracy at all, at least not in the
same way as the hydrodynamical branches. One
can easily see that the branch corresponding to
Aoz may be computed as if it were a nondegenerate
case. Further, the branches -corresponding to
Azo = Ag; may be computed as if they were a double
degeneracy.

IV. SOME REMARKS ON SOLUTIONS OF THE
BOLTZMANN EQUATIONS

In Fig. 1 we have plotted the roots of the dis-
persion relation in the complex ¢ plane. k& occurs
as a parameter along each branch, and the depend-
ence of each o on k£ may be found by returning to the
appropriate calculation of the last section. The
dispersion relation is given in a power series, and,
having only a few terms of the series, the representa-
tion will be valid for only small k. We are therefore
restricted to problems with sufficiently smooth initial
data or to an observer far removed from the initial
disturbance in space or time.

From Fig. 1 we can obtain a qualitative picture
of the solution to the initial-value problem. We see
that three branches emanate from the origin. The
purely real branch leads to a strictly decaying mode,
whereas the two complex branches have propagation
in addition to decay. These two conjugate branches
correspond to ordinary sound propagation. The
presence of other complex branches indicate addi-
tional propagating modes. Also, we see the presence
of additional purely decaying modes. These latter
modes are distinguished from the hydrodynamic
modes in that they begin with a negative real part.
This results in an immediate exponential decay in
time for all such modes.

The solution of the Boltzmann equation includes
all modes and may be thought of as a suceession of
epochs, or temporal boundary layers. Each epoch
is determined by a ‘“folding time” A7}. After each
of these times a cluster of modes becomes, roughly
speaking, ¢ ' of its initial value. This does not at
all mean that it is negligible when compared to the
modes immediately to the right of it in Tig. 1.
Inspection of Table I shows that ratios of eigen-
values are not large enough to warrant such a
statement. However, any particular mode is asymp-
totically negligible compared to its neighbor to the
right in Fig. 1. A cluster of modes is washed out
of the picture more quickly than its neighboring

C plane

~,
A oo=0

Fia. 1. Dispersion relation of the Boltzmann equation.

cluster to the right and less quickly than the one
to the left. The hydrodynamic mode is the last of
these epochs, and all other modes are asymptotically
small compared to it.

V. NON-MAXWELL MOLECULES

A knowledge of the Maxwell eigenfunctions has
made the collision integral amenable to analysis.
For general molecular force laws the eigentheory
of the collision operator is unknown and only an
approximate treatment may be given. The appear-
ance of nonsound propagations comes directly from
the twofold degeneracy (2.9). There does not seem
to be any analytical basis for supposing that this
degeneracy persists for non-Maxwell molecules.
And hence the existence of nonsound propagations
are cast into doubt. In this short section we are
chiefly interested in this question.

For general molecular force laws one may show'®

L(g) = 2 boAuuis, (5.1)

rpy

with'®

Ar;w = fww*[¢rn]¢qu(6) ‘E* - ED de df dE* dE

(5.2)
The diagonal approximation is obtained by taking
A =0, for r 4. (5.3)

This is exact for Maxwell molecules and leads to
the first approximation of the heat conductivity
and viscosity coefficients in the Chapman-Enskog
procedure.® Mott-Smith® presents a strong case in
favor of this approximation by showing that off-
diagonal terms rapidly vanish, and Wang Chang
and Uhlenbeck’ give a systematic procedure for
improving it. It is clear that the results of Sec. III
are immediately applicable to the diagonal approxi-
mation. It is only in this sense that we consider
more general molecular modes.

18 Aryy I8 the normalized form of the usually defined
“bracket integrals’’; see references 5 and 6.
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o piane

Fia. 2. Bifurcation
leading to propaga-
tion.

ST Arro
t > <

Mott-Smith® has evaluated A,,, for general molec-
ular models in terms of compound cross sections.
From his results one may show

Aszp = Aupr. (5.4)

This degeneracy exists independently of the molecu-
lar model, and corresponds to Az, = Ay for Maxwell
eigenvalues. Hence the first cluster (propagating)
to the left of the origin in the figure exists independ-
ently of the model (in the diagonal approximation).
On the other hand, one finds

Arr(] 75 Ar—l.r;l,l (7‘ > 2) (5‘5)

except, of course, for Maxwell molecules. Since the
degeneracy is lost we may use (3.23) to examine the
branches defined by (5.5). One finds that, although
we have the inequality (5.5), the values of A,,, and
A,_1.,-10 are close to one another. Their difference,
which is small and occurs in the denominator in
(3.15), governs the behavior of the two branches
under question. Inspection of (3.15) shows that
the branch starting at the left moves to the right
along the real line and vice versa. The two branches
. meet in a point for some value of & and bifurcation
takes place, resulting in propagation. This is sketched
in Fig. 2.

Improvement of the diagonal approximation
should not change this situation. From the essentially
diagonal character of A,,, we can expect the eigen-
values to differ only slightly from A,,.. We can then

expect the occurrence described in the last paragraph

to persist and still have propagation.

The phenomenon just described certainly seems
unphysical. The decrease in decay with increasing
wavenumber is, in itself, suspicious. Nevertheless,
the case for propagation is strong. A possible recon-
ciliation is that the degeneracy given by (2.9) is
independent of molecular model. This conjecture
has been difficult to prove or disprove.

V1. KINETIC AND MACROSCOPIC MODELS

We now go to the analysis of approximate formula-
tions and the comparison of these with the Boltzmann
results. Rather than start with any particular
approximate formulation, we shall find it more

convenient to extraet these from the Boltzmann
equation itself. Our study of the Boltzmann equation
has limited us to the study of relatively small
wavenumbers. On the other hand, in examining
the approximate theories we will consider the full
range of wavenumbers. In all eases these calculations
are possible and often serious shortcomings are
revealed at the high wavenumbers.

The most straightforward approximation is gotten
by using a truncated system. For instance, referring
to Table III, if we truncate off 7, § < 1,'° we get the
Euler equations (2.14). The roots of the correspond-
ing dispersion relation are

e = @Yk, 0,

which are plotted in Fig. 3. ‘

The truncations of 7, 7 < 2 in Table III leads
to the thirteen moments equations of Grad.” As
mentioned in connection with (3.11), two roots
exist in addition to the hydrodynamic roots (3.12,
13). For small wavenumber these are

6.1)

o B [§ __s_.a___,] s

7= =50 5 T — ] TR (62
= —_ _]iz_ [é ,___.82‘.02___.._] 4

g = A()z )\02 3 '+‘ 15(A02 _ )\“) + O(]C )- (6.3)

On substituting the values of Table I we find
that both these branches move to the right, and at

ko~ :f:O.35, T~ 0‘6)\02, (6.4}

the two branches come together in a double point
and leave the axis in the way shown in the circled
region of Fig. 4. (The same type effect occurred in
connection with Fig. 2 as diseussed in See. V.) To
complete the picture the asymptoties for large %
must be found. A simple caleulation shows the five
roots to be

¢ = (e + OQ/EY, (6.5)
o = +ik(4.59 + 0.33),, + O(1/K), 6.6)
o = +ik(0.66)! + 0.22\,, + O(1/k).
L 3 o plare

Fic. 3. Euler dispersion
relation.

19 The ¢, j refer to the integers located along, the side
and bottom of Tables II and III. In this connection we
associate ¢, —k and dispersion relations with 8/a¢, 8/éx and
partial differential equations respectively.
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F1e. 4. Thirteen moments dispersion relation.

The coefficients of 7k in (6.6) should be recognized
as the thirteen moments characteristic speed. On
carrying the expansion of (6.6) several more orders
we find that the first expression is to be identified
with the hydrodynamic branch and the second with
the extra sound. This completes the picture sketched
in Fig. 4.

We can make the following remarks in connection
with the thirteen moments equations. For smooth
phenomena, &t < 1, they accurately describe the
hydrodynamic branches but not so for the branches
near A;; and Ao.. Comparison with Fig. 1 shows that
the dispersion relation is completely distorted in
that region, the most evident inconsistency being
that decay decreases with wavenumber. For large-
wavenumber phenomena the inconsistency is more
striking. The indication is that all branches of the
dispersion relation Fig. 1 move toward negative
infinity with increasing wavenumber, The thirteen
moments system has a finite absorption cutoff.
Further aggravating this is the fact that there is a
branch for which the absorption decreases as k&
becomes unbounded, see Fig. 4, Similar shortcomings
appear in general for truneated systems.

One may easily show that any truncation, no
matter how large, gives a symmetric hyperbolic
system of equations.'® This has several consequences
which are of importance to us. One immediate con-
sequence is that as £ — « we are led to finite speeds
of propagation (some of which may vanish). We
represent a truncated system by

[I(3/0f) + A(9/0x) — A]b = 0, (6.7)

where I is the identity matrix, A the coefficient
matrix [as gotten from (2.11)] and A the matrix
made up of the eigenvalues of the Boltzmann
integral operator.

Equivalent to dispersion theory is finding eigen-
values o, such that

(tkA + A)b, = ob,, (6.8)

where b, is the corresponding eigenvector. On
multiplying (6.4) by the conjugate of b,, b*, we
easily obtain

g, = (Aba; bt)/(bw bt): (69)

where o, denotes the real part of o. Since A is non-
positive, we have

o, X 0. (6.10)

Denoting the eigenvalue of largest magnitude by
M, we have

M <o L0 (6.11)

Hence any truncated system has limited decay, and,
as the size of the truncation increases, A* increases
in magnitude. It should be borne in mind that o, is a
function of %, as is the eigenvector b,. The work
of the previous sections indicates that o, becomes
more negative with increasing k. A statement which
is certainly physically reasonable. Further, by
increasing the size of the system it is plausible to
assume that o,(k) will become more negative. This
is clearly implied by Eq. (6.9). We conclude from
this line of reasoning that a truncated system, in
limiting the decay of high-wavenumber phenomena,
inadequately describes this part of the spectrum.
Also in support of this statement are the calculations
of Sec. III. We showed there that any coefficient
in the series representation of ¢ is not correctly
given until a large enough matrix is taken.

Another type of approximate theory is furnished
by the Navier-Stokes equations. As pointed out,
this may be extracted from the thirteen moments
equation.”'" It gives the hydrodynamic roots
[(3.12, 13)] to O(K?).

A simple calculation shows that for large k the
three roots are

___ o, 1
R T O(k?)’ (6.12)
o = 4k°/3Ne + O(1), (6.13)
o = 5k/3n, + 0(1). (6.14)

This completes the sketch given in Fig. 5.

This leads us to an interesting situation. From
calculations made later in this section and from
what has been said we may guess that the hydro-
dynamic mode in Fig. 1 is qualitatively given by the
dotted line. It may return to the real line, but in
any case the decay decreases with wavenumber.
The Navier-Stokes equations qualitatively give
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F1a. 5. Navier-Stokes dispersion relation.

this behavior. They may or may not be correct in
predicting the loss of propagation—but they do
lead to increasing decay with wavenumber, The
thirteen moments theory, to the contrary, has
bounded decay. They may or may not be correct
in predicting propagation at high wavenumbers.
But this is really immaterial, since the attenuation
at high wavenumbers becomes so great that the
presence of a wave no longer seems a sensible notion.
Therefore the thirteen moments equations are in-
correct at high wavenumber and by the previous
discussion they incorrectly give the first propagating
mode to the left of the origin in Fig. 2. The only
instance in which they are correct is in their descrip-
tion of the hydrodynamic mode for small wave-
number, which is the same as Navier-Stokes to
O(k®). Alternately both the Navier-Stokes and
thirteen moments equations have the same solution
asymptotically in time.*® From this discussion we
can conclude that it seems fruitless to consider the
thirteen moments equations in an initial value
problem, since the simpler Navier-Stokes equations
are superior in many respects.

We can now develop a system of equations which
describes the hydrodynamic and Az A mode
in Fig. 1. It is obvious that the relative placing of
the eigenvalues must be given consideration. From
relaxation considerations it is clear that in a homo-
geneous problem, the moment b,, persists for a
longer time than does the stress by (since it is
represented by a smaller eigenvalue). Looking at
Table II, the eigenvalue ordering, it is tempting
to consider the truncated system %, j < 2. For small
k this would give the first two clusters of branches in
Tig. 1. The immediate shortcoming to this system
is that it gives insufficient attention to the stress.
This would have the consequence of giving the
hydrodynamic branches incorrectly to O(k®). Alter-

20 P, K. Ai, “Small Perturbations in the Unsteady Flow
of a Rarefied Gas Based on Grad’s Thirteen-Moments
Approximation,” in Rarefied Gas Dynamics (Academic Press
Inc., New York, 1961). Actually since (3.12), (13) are correct
to O(k‘*) the thirteen moments equations are asymptotically
accurate to one higher order.

SIROVICH

natively the Navier-Stokes could not be extracted
from this system. The difficulties of bounded absorp-
tion also reappear.

The five exact equations corresponding to the
truncated system just mentioned are immediately
gotten from (2.11),

/3t + du/dz = 0,
2o+ m+ Py,

2du , 298,

O L 20u 298, o,
o 3
¢ 3 ox 3 a9z (6.15)
35, 50T | 4Q
9t — M+ g 20r T oz
9y _ (&)% 9
+ dx 3/ ox b = 0,
9Q 4 _@te ., _
at ~ Mol + 3 ax 3 oz bar = 0,
where
= (10/3)*byo, (6.16)

and bys, by, bao are defined by (2.10). In order to
close off the system and introduce a Navier-Stokes
type of dissipative character into it we can resort
to the interpolation scheme of Grad.” In short, this
consists of dropping bs;, b from (6.15) and neglect-
ing the time derivative of stress in the stress equation
(the idea being that it would introduce a negligible
transient). The latter yields

= (4/30g2)(0u/0x) — (8/15002)(0.8/92). (6.17)

A finer analysis, however, shows that this is asymp-
totically incorrect, and that one must terminate
biz, sy, in the same way as bg..”' This is easily
carried out and gives

= (—2/5\:)(14/3)}(88/97),
1= (1/A12> (7/10)*(8(2/63:).

Equations (6.15) coupled with (6.17, 18) constitute
a generalization of the Navier-Stokes equation to
include the first decaying mode of Fig. 1. In a
succeeding paper this will appear as a special case
of a generalization of the Chapman—Enskog pro-
cedure to include higher modes.

Implicit in each of the truncation and associated
interpolation methods is a particular form of the
distribution funection. Equivalent to the method

(6.18)

2t This finer analysis will be given in a later paper. In it
will be given a more rigorous derivation of expressions
(6.17, 18).
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of truncation is imposing a distribution function of
the finite form

N

g= 2 bv, (6.19)
where some particular ordering is taken. When this
is substituted into the linearized Boltzmann equa-
tion, one finds that the first®® (N + 1) generated
equations form a determined system for the coeffi-
cients b,(r = 0, 1, --- , N). This is identical to the
truncated system. After solving this system of
equations for the b’s they are substituted into
(6.19) above, and the corresponding distribution
function is known. An interpolation scheme only
changes the method of finding the b,.

The criticisms of the moment systems now apply
to the corresponding distribution functions, e.g.,
they can only be presumed to be asymptotically
valid. One further remark in support of this is the
following: in demanding that a distribution be of
the form (6.19) we eliminate consideration of free
flow or near-free flow. The insertion of such a
distribution function in a free-flow operator imme-
diately leads to the generation of the higher moments
which have been excluded from consideration. We
now consider another type of approximation which
remedies some of these shortcomings.

In a well-known paper, Gross and Jackson® give
a general technique for approximating the Boltzmann
equation. Their equations are gotten by replacing all
Ns in Table III past a certain point by a single
constant. One of the virtues of this technique is
the simplicity of the resulting forms. For instance,
on taking all N’s equal to Ag,, one gets

d 3]
(5} + & 5:0' - )\o2>g
= Ao + ué + %T(%g — DI,

which is the linearized “Krooked” equation.’ The
dispersion relation of (6.20) was studied in reference
9. A more detailed analysis is to be found in reference
23.

To gain some understanding of the accuracy of
the related dispersion relations, we briefly consider
the dispersion relation of (6.20).

We recall that (6.20) was obtained from Table III
by replacing all A’s past a certain point by a single
constant. Let us consider the hydrodynamic branch
of (6.20). Referring to Table III, we see thatz,7 < 1

(6.20)

2 Actually more than (N 4 1) equations may be generated,
and one has the embarrassing situation of more equations
than unknowns. This can be avoided by ignoring equations
without time derivatives.
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Fia. 6. Single relaxation time model dispersion relation.

remains unchanged and the three branches in the
hydrodynamic cluster are given correctly to O(k).
To the next order, however, we see that A, is re-
placed by A,; and the expansions for ¢ are somewhat
modified. In fact, all higher orders are modified in
this way. However, the complexion of the matrix
of Table IIT has not been changed, and the series
given by the “Krooked” model is of the correct form
but with incorrect constants. The effect of succes-
sively higher truncations on the hydrodynamic
branches are sketched by the dotted lines moving
to the left in Fig. 6. The diffusion mode moves to
the left along the real axis, as is shown. The exact
theory of the single relaxation model is given by the
heavy lines terminating in o, = A.”® From the
remarks made earlier, we know that no truncated
system can have a greater absorption than that
given by A.. For this reason the line o, = Ay, plays
the role it does in Fig. 6.** Nothing has been said
of the infinity of branches which have their origin
at ¢ = Age. For any finite truncation these extra-
ordinary branches appear in the strip A < o, < 0.
As the order of the truncation increases these are
shoved over to line ¢, = A, and, in fact, the latter
line belongs to the spectrum. For a finer discussion
the reader is referred to reference 23.

A similar discussion can be given for more de-
tailed models. However, one soon reaches the same
difficulties as were encountered with the thirteen
moments equations, and the Gross-Jackson tech-
nique must be slightly modified to avoid them.
Care must be taken in choosing the distinguished
moments. For instance, in almost any conceivable
problem in fluid mechanics the hydrodynamic mode
is all one is interested in. As we saw in Sec. III,
the polynomial ordering is the most natural for

B L. Sirovich and J. Thurber, Courant Institute of
Mathematical Sciences, New York University, Rept. NYO-
9757 (1961).

% The dashed extension to the left of o, = A2 represents
the analytic continuation which appears.
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determining the hydrodynamic branches. An entirely
different ordering (neither eigenvalue nor polyno-
mial) would be used if one wanted to examine
another branch. There is no systematic way in which
to order the eigenfunctions. This can be more clearly
seen if we allow ourselves a large number of moments
in our description, Suppose, for example, we choose
to use the polynomial ordering. We would then have
the hydrodynamical branch given quite accurately,
but we would also have the incorrect evolution of a
great number of moments. Many of the moments
which occur between those involved in the hydro-
dynamical caleulation will not even appear. On the
other hand, strict use of the eigenvalue ordering leads
to a correct dispersion for small &, but does not neces-
sarily give any branch to a great accuracy. A com-
promise between the two methods might be

oz, ) 1
ww )| =e [| & ol — g, 600 ax
TGz, ) 4 - 1
1
v e
3 -

where the argument of the elements in the last
vector is (z + £{s — t}, s). For instance, p(s) =
P(x + El{s - t}y 8).

On solution of this system, the flow (p, w, T) is
substituted into (6.21) giving the perturbed dis-
tribution function. We see that the distribution
function is given in terms of the initial distribution
and the evolution of the flow (p, u, T). In general,
any model gives the distribution function in terms
of the initial distribution and the evolution of a
finite number of moments. In a certain sense this is
a generalization of the moments method. There,
as we saw earlier (6.19), the distribution is given
in terms of a finite number of moments and one
solves differential equations for the moments. How-

LAWRENCE SIROVICH

advantageous. One chooses which branches to
describe with some degree of accuracy and then
collects the moments accordingly. This, of course,
corresponds to neither the eigenvalue nor polynomial
ordering.

To investigate the nature of the solutions of
model equations, as gotten by the Gross—Jackson
technique, it suffices to consider (6.20). Letting
oz = v, the solution to (6.19) is

oo, 1,0 = o [ lole + &ils = 1), 9

+ tulr + &{s — t},9)
+ T + &fs — t},9(G8 — §]ds
+ glz — &t, EO) " (6.21)

On taking the appropriate moments, this reduces to

& G — 9 || o6
£ §GE — ) || u@) |dsdE,  (6.22)
1) &G8 — 1° 338 — 9 ILTE

ever, full use of the initial data is not made there
and, as our considerations indicate, the distribution
function is only asymptotically valid. On the other
hand, the model solution describes the flow as we
approach free flow. In fact, on setting the »’s to
zero in (6.21) we get the free flow solution.
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