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A class of exact solutions of the one-dimensional steady Krooked equation is obtained. The col-
lision frequency of the latter is left arbitrary. The solutions found depict flows widely removed

from equilibrium.

1. INTRODUCTION

EW exact solutions are available in Kinetic

Theory. Certainly the simplest of these is the
equilibrium solution itself. In this same category
is the spatially dependent equilibrium solution for
gas in a potential force field.

The most elementary of the nontrivial solutions
are the relaxation solutions. In short, these are ob-
tained by taking the distribution function to be
spatially homogeneous. This immediately gives con-
stant hydrodynamical moments and relaxing higher
moments. A more general solution of this type was
found by Truesdell,’ who considers a spatially linear
velocity field and constant density. He is then able
to construct a solution by assuming that all other
moments are homogeneous in space but allowing
temporal variation. Both of the latter mentioned
solutions are given in terms of the moments of the
distribution function and depend erucially on hav-
ing the special type of moments expansion of the
collision integral as is obtained for Maxwell mole-
cules.

Another type of exact solution was found by
Grad,” who sought locally Maxwellian solutions.
These were found to be representable by a transla-
tion, solid-body rotation, and free expansion. In
" this case, inasmuch as the collision integral is identi-
cally satisfied, the molecular model never enters.
Moreover, these solutions do not exhibit dissipation.
~ (They in fact satisfy the Euler equations.)

In this paper a search is made for exact solutions
to the single relaxation or Krook equation.’'* The
solutions found are widely removed from equilibrium
in contrast to the presently available exact solutions
which are mentioned above. These solutions do not
in fact possess higher moments.

1 C. Truesdell, Ratl. Mech. Anal. 5, 55 (1956).

2 H. Grad, Commun. Pure Appl. Math. 2, 33 (1949); also,
see, A. Sommerfeld, Thermodynamics and Statistical Physics
(Academic Press Inc., New York, 1956).

3 P. R. Bhatnager, E. P. Gross, and M. Krook, Phys. Rev.
94, 511 (1954).

¢ P. Welander, Arkiv Fysik 7, 44 (1954).

2. FORMULATION OF THE PROBLEM

We consider the one-dimensional form of the
single relaxation model equation,

51(3/ax)f = v(x)(fo — ), 2.1)
where
f = f(z, ¥), mass distribution function,
£= (4, &, &), molecular velocity,

fo= [P/(%rRT)*]e‘(f-U)’/er’

local Maxwellian,

ow) = [ 1 22)

macroscopic mass density,

U = [Uk),0,0] = f ¥ d&/p,

macroscopic velocity,

T(x) = f (¢ — U)’f d&/3pR, temperature,
and »(z) is the collision frequency. (We leave the

form of this open for the present.)

Our goal will be to find exact solutions to (2.1).
This problem is simplified by introducing the reduced
distribution functions

F = f fdbdg, G = f & + £)f di dis. (2.3)

The model equation (2.1) then reduces to the system
¢oF/dx = v(Fy — F), ¢ 93G/ox = v(2RTF, — @),

(2.4)
where & has been replaced by ¢ and

Fy = [p/@2nRT)"e” €T, (2.5)
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with
p=de§',v pU=fF§‘d§', 26
mT=§[f@——dep+deﬂ-

The collision frequency is easily removed from the
system (2.4) by the transformation

dy/dx = v(z). 2.7

Integration of (2.7) will be left for later. The system

(2.4) now becomes

¢ dF/3y = (Fo — F), ¢ 8G/ay = 2RTF, — @),
(2.8)

with the moments as before given by (2.6).
For our purposes it is convenient to consider ||

instead of {. We, therefore, introduce
F:& = H(:l:g-)F) G:‘: = H(:l:g-)Gy

where H is the Heaviside operator. We now obtain
instead of (2.8)

=+ lfl oF./oy = (Fy — F.),
=+ |§‘l 8G./dy = (2RTF, — G.).

2.9)

Henceforth, we regard ¢ as positive and, so drop the
absolute value sign. The moments now are given by

o= [ @ P,

o7 =1 [ (¢ — UP@. + F.)
+ (@ + G ds,

d7=.£ (@, — F)dt.

(2.10)

3. EXACT SOLUTIONS

One easily shows that the Eqgs. (2.9) are invarient
under the one parameter group of transformations

¢ = af’, 3.1)

for arbitrary values of a. We, therefore, investigate
the similarity solutions

y = ay, F =aF', G=a""G

F, = g-“ﬁi(g‘/y), G. = g_a+2éi(§_/y). 3.2)
The hydrodynamical moments now become
[ o~ ® ar ii 74
L= 5= [ WP+ P d (3:3)
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?ﬁ-dw—gﬁ[@ Oy + F)
+ @G+ G)lds, (B4
T/y* =T,
2T 50 = [ TP — P-Ga)] da
y (3.5)
Uy =T,
with
B = {/y. (3.6)

Substitution of (3.5) into the continuity equation
gives

pU@/oy)y™** = 0,

so that U = 0 unless @ = —2. We shall see that
a < —4, so that only motionless solutions will be
considered. Further, in the analysis y > 0 will be
assumed. The extension to y < 0 is straightforward.
Substituting (3.2) into (2.9) we find

F (@d/dwF. = Fo/u*) — F./u%), 3.7
F dG./du = QRTF./u***) — (@./v). (3.8)
Integrating we find
R I S XS
3.9)
F_(w) =& f S FL(’#;):?—“', (3.10)

G.(s) = 2RTe™* f

»

el/u' F(:, ) ,dl" + é+(w)e—1/u’

/4+a

(3.11)
Fo(#’) du’

14+a F)

»
G_(w) = 2RTe™ f e (3.12)
[}

where the limits of integration have been dictated by
the equations. In integrating we have allowed F,
and G. to be nonzero at «. Regarding (3.10) and
(3.12) we see that F_ and G_ are also nonzero at «.
Restricting attention to integer values of a, we see
from (3.4) that @ < —4. Various other forms for
(3.9)-(3.12) are easily obtained by parts integration.
It should be noted that the class of solutions (3.9)-
(3.12) are algebraically (not exponentially) decreas-
ing at infinity. It is important to note, therefore,
that all higher moments do not converge.

The determination of F,.(w) and G,(x) now
follow from (3.3) and (3.4). Considering the expres-
sion for p,
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o _ o IFHI d,
‘6:_[ “a[e lluf o o(’g)mﬂ
0 2 1
ko 'F' " du’
-I-e""f e —0—‘(";2)‘—”#}11
0

+ F+(m)f yae—l/u d,u,
1]
we write
p= D + 52 + 537

where

ﬁl =f yﬂe—l/uf =1/p’
o B H

5 = F’+(oo)f we dy.
0

O(ﬂ)dﬂ d

/2+a

Interchanging orders of integration,

G = f / sgin g Fow)e™ o,

12+a
Writing

a=-n

one easily shows
i _ , _ n—2 1 n—2—1{ (n — 2)’
’ nel/u du’ = ¢ 1/m (_) —.
fo “ # %\ (n — 2 — )
Therefore,

o= i(_y}iﬁ; _%)'m‘/; Fo(l-‘)#" du.

i=0

" In the same way we find

N

o — 2 —9)!
3 TP du + (=) — 2)!

. fo “F o du,
G = (n — 2 Fu ().

Combining terms we find after some manipulation

0= S @RIURT
S m—2-2k)kl2
— (=R VI, /(RDY + F‘—E}"—) (3.13)
where
1@ = [ eweme e
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and [ ] denotes the integral part operator. The

expression (3.14) has been considered in the litera-

ture’ and is partially tabulated. Equation (3. 13)

determines F,(«) for given values of 5 and T.
In a similar manner (3.4) yields

2k + D! (RT)
& -4 — 2kl
— (=V(RTP" L, [1/(RT)}]

(3 (n=-4)] (2}{})! (RT)Ic

Z (n— 4 — 2k)!2%!
— (=) RT*™ 1,1/ (RTY
ﬁ+(°°) + G+(°°)

RT ’

which with (3.13) determines G,(®). {The summa-

tions in (3.15) are defined to be zero for {{(n — 4)]
< 1.}

3 (n—2)1

O=

+ 2

+ (3.15)

As an example, we consider the case n = 4. From
(3.13) we obtain
—1 4 L{1/(RT] = F.(=)/sRT,  (3.16)
and from (3.15)
1 + 2L[1/(RT)"] = G.(»)/RT.  (3.17)
Inspection of (3.14) reveals that I, < 3 so that

F.(») is negative. However, by choosing pRT suf-
ficiently small, ,(») may be made as small as we
please. G.(«) on the other hand is definitely posi-
tive. In general one must take pRT' small to make
F.(®) small in magnitude.

4. EXTENSIONS

The solutions obtained in the last section apply
directly to the case of constant collision frequency.
In this case we take y = vr as the integral of (2.7)
to complete the solution. A constant collision fre-
quency is of course unrealistic, and it now remains
to consider a general form for the collision frequency.

A simple calculation relates the viscosity i to
collision frequency as follows®:

i = pRT/v.

As is well-known from Kinetic Theory,’

(4.1)

B~ TE;

5 C. T. Zahn, Phys. Rev. 52, 67 (1937); C. Laporte, 2bid.

(szé ’;2) (1937); M. Abramowitz, J. Math. & Phys. 32, 188
1953).

8 As is well-known both the viscosity and the heat con-
ductivity cannot be simultaneously chosen for the single re-
laxation model. Our choice of viscosity is only made for the
sake of definiteness.

7 8. Chapman and T. G. Cowling, The Mathematical Theory
of Nonuniform Gases (Cambridge University Press, New
York, 1952).
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where 3 < 8 < 1 (ranging from rigid spheres to
Maxwell molecules, respectively). We, therefore
take®

v = zpT°, 0<a< .
Substitution into (2.7) yields

4.2

dy/dx — xﬁTay—n+1+2a’

where we have made use of (3.3) and (3.4). Since
n > 4 we integrate from the origin and find

y = [(n — 2a)\pT"2]"/ "2, (4.3)

Finally, the hydrodynamical‘ moments are given by
= — ~rfe, 11/ (n—2a)
T = Tltn — 2a)\T"a] , o

p = Bln — 2a\pTig) D Ee,

8 More general choices of » can easily be taken without
additional difficulty. In fact, since the distribution functions
are well removed from equilibrium, having faithful transport
coefficient expressions seems hardly necessary.
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The reduced distribution functions are given by
(3.2)with (3.9)—(3.12), and thiscompletes the problem.

5. CONCLUSIONS

A wide class of exact solutions of the single re-
laxation model has been found. In all, three param-
eters T, 5, and n > 4 may be chosen arbitrarily.
The hydrodynamical moments p and 7' in each in-
stance are such that the density falls off to zero and
the temperature becomes unbounded at infinity.
An especially noteworthy feature of these solutions is
that all sufficiently high moments diverge. The solu-
tions exhibited, therefore, are widely removed from
equilibrium,
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