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The linearized collision integrals for mixtures of Maxwell molecules are considered. A simple proof
of the eigentheory is given. Relations for and amongst eigenvalues are obtained. A brief discussion of
the corresponding relaxation theory is also included.

1. INTRODUCTION

N a pioneering paper, Wang Chang and Uhlen-

beck' proved that a certain complete set of
polynomials are eigenfunctions of the linearized col-
lision integral for Maxwell molecules. The corre-
sponding analysis for mixtures of Maxwell molecules
was not given until much later.” (In earlier treat-
ments, Curtiss® implicitly considers the eigentheory
for isotropic distribution functions and Naze*'® con-
siders only one portion of the collision operator.)
In this note, expressions for the eigenvalues are
obtained as well as relations amongst them. In the
course of the discussion a very simple proof for the
eigentheory of Maxwell molecules is given. As an
application the relaxation theory is considered.

2. EIGENTHEORY

A typical collision term for a multicomponent gas
is

TGty = [ Gity = 180

(0, |6a — &) d6 de dEs. )

This represents §-gas collisions in the a-gas equation.
In (1) and in what follows, the notation is standard
and no explanation is deemed necessary. We intro-
duce mean local Maxwellian distributions

for = ma(ma/2nkT)le™ €0V ] = a, 6. @

The number densities n,, s, the mean velocity u,
and the mean temperature T may all be regarded as
functions of space and time.

1 C. 8. Wang Chang and G. E. Uhlenbeck, University of
Michigan Engineering Report Project M999 (1954). See also
L. Waldmann, in Handbuch der Physik, S. Fligge, Ed.
(Springer-Verlag, Berlin, 1958), Vol. 12, .

2 1, Sirovich, Phys. Fluids 5, 908 (1962) (see Appendix A).

3 C. F. Curtiss, University of Michigan Department of
Chemistry Report NSF-2746 (1957).

+J. Naze, Compt. Rend. 251, 651 (1960).

s J. Naze, Compt. Rend. 251, 854 (1960).

Linearizing (1) about the local Maxwellians (2),
we obtain

Ja,p ~ Lap

= f foufos(gh + g5 = 9« — 9B’ d6 de ds,
where
g =0 — fo)/fu; 1=a,8.

Introducing the following normalization and nota-~
tion:

= (£ — W(m./kT)Y,
n = (& — w)(ms/kT), @
w(@) = 2n) %2,
we can write
Log = foang(M®g. + N°gy) )
with

Mo = [wtlo@) — p(QIB? dodedn, (5

N = [ olnlew) ~ o)]B* dodedn.  (6)

We use the superscript a to indicate that M*, N*
arise in the a-gas equation. In the g-gas equation the
analogous terms are written M*, N® and integration
is then with respect to ¢. Naze*'® considers only the
operator M.

The collision transformation for velocities, under
the normalization (3), becomes

(, = ( - [2mﬁ/(mﬂ + ma)][( - (ma/mﬂ)in] 'kkr
n=n— [zma/(ma + mﬁ)][n - (mﬁ/ma)*{] 'kk,

where k = k(6, ¢) is the unit vector in the apse
direction.
Define the inner product

W9 = [ v@elul dx

™
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where the asterisk denotes the complex conjugate.
By standard arguments, one has

= [ @ty

Je(T) — e(0)1B** d8 de dn d

(‘;’) M*g)

= 1 [ w@emw @) - v @
[e(¥) — o(OIB** db de dn d¥
= [ «(Qae@
W) — VQIBP dbdedndl, )
W, N9 = [ o(Dumy*@
e’) — ¢(m)]B** d6 do d{ dn

I

L [ o@u@iv@ - v@
Je(”) — o(m)1B*? d8 de d{ dn

[ e(@atet
LWAHT) — YAQIB? dodedTdn.  (9)

The operators M* and N* are isotropic, and hence
for functions of the form ¢g(|z|) ¥ (e, X),

Mg(jz) Yin = §(|z)) Yim,
Nog(lz) Yim = §(|2) ¥ im;
i.e., the spherical harmonics
Y1, = Ph(cos o)e'™

are characteristic. (¢, x should be regarded as polar
angles with respect to a fixed frame.)
Next we introduce the Sonine polynomials

Sn@) = {(=)"/n1}(d/ds) A — &)™ "€ ]|smo,
and from these the functions™®
Verm = 810" Pi(cos @)™,

which are polynomials of degree 2r + I. This com-
plete set of functions has the orthogonality property

(‘[/r'l'm"v ‘brlm)

_ 2P+ 14 9 (1 + [m)!
Toal@l4+ 1 (- |m)!

1
= N"" 8,, 8110 Omrs

i

(10)

i

arr' ‘sll’ amm'

an

s H., M. Mott-Smith, Massachusetts Institute of Tech-
nology, Lincoln Laboratory Report V-2 (1954).
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We now restrict attention to force laws for which
B*® = B*X(9), (12)

which is true for Maxwell molecules. Substituting
(7) in M*Y,,,, and N°¢,1,,, we see that each of these
is a polynomial in ¢ of degree < 2r 4 I. From the
orthogonality of the polynomials, (11), we see that
(‘pr’l’m'; Mall/rlm) and (‘!’f'l’m’y N\&;zlm) are zero fOl‘
2r 4 I' > 2r 4+ I But from the last lines of (8)
and (9), these expressions are zero unless 2r + [ >
2" < U'. From (13), however, these expressions
vanish unless m = m' and [ = I’ and therefore
unless r = 7’. This proves therefore that for inter-
molecular force laws such that (12), then

Ma'llrtm(()
= [ o rin®) = $r1nQIB(O) de d8 dn

= #:E‘prlm(c)y
Nad’rlm(“’)

= fw(n)[\l’rlm(n,) - 'prlm(“)]Bap(e) dﬁ d& dﬂ
= vr¥rnm({).

The eigenvalues u,3, »,5 do not depend on the sub-
geript m since M and N commute with the rotation
operator. It is important to note that N* transforms
a (-gas polynomial ,;,,(n) into an a-gas polynomial
¥ia({). We note in passing that the simple gas
eigentheory follows from the above by setting m, =
mg, since (M -+ N) is then the simple gas linearized
collision operator.

To obtain explicit expressions for u,i, v,q, it suffices
to suppress m, and on taking inner products we
obtain

s = b [ o] [ o[ 2014 @)
— ¢,,(§)] de dﬁ) dn} d¢, 13
= ik [ o] [ o[ B 14)

— Yu(w)] de de) dn] dt. (19

The reduction of these expressions can be accom-
plished very simply by noting several features of
the calculation. In (13) and (14) the expressions
in the large parentheses are polynomials in n and ¢
Furthermore, by orthogonality (11), only the 2r + [
power of n need be retained from the large-square-
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bracket expression in carrying out the ¢ integration.
These terms, however, are of the zeroth power in
n. Therefore in evaluating ¢,,(n) and ¢, () in
(13) and (14) we may suppress all powers of { less
than 2r 4 [ and also take the limit  — 0.

We write

k[{ — (mo/mg)*n] = [¢ = (ma/mp)*n| cos 0.

The polar direction of the fixed reference frame is
denoted by i. ¢,, may be then written as

¥r(m) = S1,Gn) [n| PG n)/|nl],
also
Y = SiyGn™) '] PyfG-0)/|n']].

Making use of the remarks of the previous bara-
graph, we obtain

2 = ke [ w0 ( [ s [ B0 it
! P,(%’Z—}) — b, a,o} de do} dn) de
= i [ wtwao ([ sl 50

[ r ( 4mamﬂ i)fl 2<mamﬂ)*
"W\ (m, + mg)* 2 My + My

-cos’ §-P,(i-k) — 8,0 a,o:l de da} dn) d¢

= op(Zmamdl ) [ gy

ma+M3

-[cos™*" 6P ,(cos ) — 8,, 8,0] A8,

(15)

where we have briefly indicated the steps in the
calculation. (Note that »2 = »#;, and we may there-
fore suppress the superscript.) In going to the last
form of (15), the addition theorem of spherical har-
monics has been used. In the same way we also
find that (Naze® has previously obtained this ex-

pression)
4 m.m r+1/2
«—f _ cos’ 6

P f:/z Baﬂ(o)[(]. - m

1 — [2mg/(m, + my] cos’ 8 _ ]
P ’({1 am.mg/(ma £ my’] cos o}%) 1]de.
(16)

The simple gas eigenvalue, A,;, is obtained by set-
ting m, = mp and adding u.; to v{}’,

/2
Aep = 21rf B(8)[cos™ " 6P,(cos 6)
0

+ sin*** 0P,(sin §) — 1 — 8,0 8,0 0.  (17)
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Since the “cross section”” B** is positive, one has
by inspection

Yoo = 07
>
Vo > Vmo = 0, for m >r >0, (18)
Vro > Vel
vy — 0, |r + 1] = o
goo = 0,
ey <0, r or 1#0, 19
”70>”m01 m>7‘>0,
Mo > Mrye

A relation between cross-collisional eigenvalues can
be obtained. Let z, y denote two arbitrary real
quantities and consider

ns(’us + 2yw,) + naWul + 2y
= nglxy.i(n), M 2, ()] + nglxy, . (§), N y¥n(n)]
+ na[y'l/rl(g‘)! Mﬁy‘prl(ﬂ)] + na[y'l/rl(;-)v NBx‘prl(g.)]

5 [ 9@ + vt = 2va)

=y ()PB*(0) dedddn dT < 0. (20)

Strict inequality is obtained in (20) for rl # (0, 0),
(1, 0), (0, 1). From (20) we obtain

Ne n a
2(n-‘l;'/ﬁ)fyrl S (:url”'rl) *- (21)
A weaker form of this is
(#71#51)* _>_ Veto (22)

Strict inequality holds in (21) and (22) under the
conditions stated below (20). As is well known, B**(6)
for Maxwell molecules diverges at § = r as cos™*6,
and hence the expressions (15), (16) are condition-
ally convergent. In particular, u,, — — o as
|r + 1] = «. On applying (18) and (19) to (17), we
recover known properties of the eigenvalues A,,.

3. RELAXATION OF A BINARY GAS

In order to apply the results of the last section, we
consider a homogeneous binary mixture of Maxwell
molecules. The linearized equations are

89/t = n L g. + nsM"g. + nsNgs,  (23)
dgs/0t = ngLPgy + nMPqs + n.Ng,, (24)

where L is the one-component linearized collision
operator. Taking the inner product of (23) with
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Yein(Q) and (24) with ¢,,..(n), we obtain

K liafzj — I:na:)\:z + ngus Ngvry :“ia:zm]
1

%\ a8, NaPry Ny + ol L afim

(25)
where
Qrim = (1/ rlm)(‘prlmr 9.

(Curtiss® considers the case I = m = 0.) Using (22)
one easily shows that (25) leads to only exponentially
decaying solutions. This may, however, be demon-

strated more generally by forming the norm from
the inner product defined below (7},

lgll = (g, 9)*.
We then easily obtain

LAWRENCE SIROVICH

©/09) |lgll < M [lgll <O, (26)

where )\ is easily estimated from the eigenvalues.
The inequality follows from well-known integral
relations [see (8) and (9)]. In fact (26) is the linear-
ized form of the H theorem.

Various limiting situations of (25) may be dis-
cussed on the basis of (15), (16), and (17). This
is straightforward, and we do not carry out such
a discussion, especially since special cases are to be
found in the literature.”"*:”
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