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Starting with the exact Boltzmann equations for gas mixtures with arbitrary intermolecular
potentials, a macroscopic theory of mixtures is obtained. For a binary gas with masses m,, mg total
number density n, viscosity g, and diffusion coefficient D,g, it is shown that the classical Chapman~—
Enskog theory of mixtures holds when C = 2u/[(m, + mg)nD,g] (which is related to the Schmidt num-
ber) is near unity. This criterion delimits the region of validity of the Chapman-Enskog equations.
For situations outside the Chapman-Enskog range a new system of equations, referred to as the two-
temperature theory, is shown to be valid. The latter includes a new diffusion effect which involves
temperature differences. The temperature difference in the Chapman-Enskog regime which becomes
higher order is also explicitly obtained. For problems widely removed from equilibrium a two-fluid
theory is advanced. The last has the Chapman—Enskog and two-temperature theories as limiting
forms in near equilibrium situations. A heat flow problem illustrating the new equations is discussed.

I. INTRODUCTION

ONSIDERATION of a multi-component gas
must begin with an analysis of the associated
Boltzmann equations. For any except the simplest
problems, such a program is unfeasible. Fortunately,
in most situations of interest, simpler equations may
be shown to apply (under appropriate conditions,
an example is the equations which follow from the
Chapman—Enskog procedure). The analysis of the
gas-mixture equations is, in part, more formidable
than the comparable simple gas (i.e., single com-
ponent) theory because of the many different scales
which now enter in the approach to equilibrium.
The approach to equilibrium can be divided
roughly into two processes. There is the approach
of the distribution function to a Maxwellian dis-
tribution (referred to as Maxwellization); and, in
addition, there is the equilibration of the species
(i.e., the vanishing of differences in velocity and
temperature among the species). Although the Max-
wellization of a species itself can take place in a
variety of ways, a suitable measure of this Max-
wellization is the scale on which the stress of that
species becomes isotropic (or, equivalently, the scale
on which the heat conduction relaxes). Maxwelliza-
tion can occur due to self-collisions alone, (e.g.,
the light gas in a binary mixture with disparate
masses but equal mass densities), or due to cross
collisions alone, (e.g., the heavy gas in the same
mixture), or due to a combination of these events,
(e.g., the light gas in a mixture with disparate masses
but equal number densities).*

* Present address: Department of Mechanical and Aero-
s%)a.cltz Sciences, University of Rochester, Rochester, New

ork.

1 The validity of these statements, as well as additional
examples will be demonstrated in later sections.

The equilibration of the species also does not
take place with a definite pattern. Velocity and
temperature differences may equilibrate on vastly
different scales, (e.g., the second mentioned mixture
above), or on the same scale, (e.g., the first mixture
above). Moreover, the events just discussed need
not occur sequentially but can occur concomitantly.

In the classical Chapman-Enskog procedure for a
simple gas, one examines the Boltzmann equation
for scales that are large compared with the mean free
path (or mean time of flight). An analogous procedure
for a mixture becomes difficult because of the mul-
tiplicity of length seales. Furthermore, equations re-
sulting from such a program may apply only to one
particular gas because account must be taken of
the specific relative scalings contained in the Max-
wellization and equilibration processes. In examining
the classical Chapman—Enskog procedure for a
binary gas (see Chapman and Cowling’), it be-
comes clear that the procedure is developed under
the assumption that all scales are roughly the same
order or that the phenomena to be examined is
smooth with respect to all collisional scales. In the
present study we present a method which is ap-
plicable to any gas mixture, and which considerably
relaxes the latter requirement.

Our analysis is performed in two stages. We first
consider the evolution of the mixture Boltzmann
equations under the Maxwellization process. This
leads to a system of equations in the density, tem-
perature, and velocity of each species. This form
is only an intermediate step in the perturbation
procedure since equilibration effects are not yet

28, Chapman and T. G. Cowling, The Mathematical
Theory of Non-Uniform Gases (Cambridge University Press,
New York, 1960).
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included. (These equations are shown to be ap-
propriate to situations widely removed from equilib-
rium.) The second and final step in the perturba-
tion procedure takes into account the equilibration
of the gas species. This results in a further reduction
of the equations notably by the introduction of a
diffusion equation. This contains, in addition to the
usual diffusion effects, a term depending on tem-
perature differences. Only under very special cir-
cumstances do we recover the Chapman-Enskog
equations for gas mixtures. For a binary mixture,
the criteria for Chapman-Enskog to hold is stated
in the abstract. Even for mixtures with equal mass
densities we find that a significant portion of the
cases exhibit multiple temperature effects. Despite
this delimitation of the Chapman-Enskog equa-
tions, it is also found that some fairly extreme
situations fall into the Chapman-Enskog framework.
This is discussed in Sec. IV.

In the final section we apply the new equations
to heat flow in a binary mixture. It is found that
slip boundary conditions for the individual species
must be considered. For example, under proper
conditions, only one species of a mixture may ex-
hibit a significant slip. This leads naturally to the
notion of relative slip for gas mixtures.

II. THE CONSERVATION EQUATIONS

In the interest of space and simplicity, the fol-
lowing analysis will deal only with binary mixtures.
This does not restrict the generality of the results
because the complexity of an n-component mixture
is contained in a summation of terms each of which
represents the effect of a binary collision.

We write the species number density distribution
function as f, and the corresponding Maxwellian as®

_ m, \} <—ma03)
fo —"a<z‘m“v:> *p\gpp. ) D
where
C.=¢-1U,, @)
po = mane = [ maf. dg, @

1 o
Ui = o= [ matid. ag @

= 3 — 3
Pofa = 2Pa = 3N

acht
T (E=UY
= f_ Ma =5 fad.  (5)
3 Only equations for the « gas will be presented if the

porresﬁonding 8 gas equations can be obtained by a simple
interchange of Greek subscripts.
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The species stress and heat conduction are defined by
Pl = [P} + 8 pa

= f: ma(§ — Un) it — Ud)ifa dE, (6)

and

Qi=3 [ mle-UIE-U @
The following conventions are used: Greek sub-
scripts denote components of the mixture, and Latin
subscripts (and superscripts) denote vector com-
ponents (the summation convention applies only to
the Latin scripts). The brackets, { }, denote the
symmetrized traceless portion of a second-order
tensor.

The Boltzmann equation for one component of
the mixture is

Dfa = Jaa + Jaﬂ = ch

where, using customary notation,’

(8)

0
(')x; !

a
D=a‘|‘fi

Talle 1) = [ Glfh = 1.1s0B0, V) a2 d, ©
and

= lfl - El

From the properties of the collisional invariants,

we have
-

1
[ maid & ae=o, (10)
£/2
fi mad us dE = 0, (11)
and
fm (maJﬂ{ i } + mﬂJﬁ{ £ W) it = 0. (12)
o £/2 £/2]

Using these, the mass, momentum, and energy
moments of the Boltzmann equation yield

d a
_a_t Po + 5}— anou' = 07 (13)
3 ad i
at ana‘l' + axi (anaani + Pa)
= [ midsar, a9
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Since we are considering component equations, the
right-hand sides of Egs. (14) and (15) are not zero,
and the equations are not in conservation form.
We nevertheless, refer to these as component con-
servation equations.

The transfer terms on the right-hand sides of
these equations are evaluated in two parts, first
for Maxwell molecules and then for non-Maxwell
molecules. As in the case of a simple gas, it is found
that moments of the collision integrals for Maxwell
molecules [i.e., B** = B**() in Eq. (9)] can be
evaluated without a specific knowledge of the dis-
tribution functions. Employing standard methods,
we find,

f_ Mot ug dE = — Apups(Ua — Up)s,  (16)

2
My % Jaﬁ di = —[U(xi(Uﬁ - Uﬂ)’b

I.

3T, — T 2
+ Mol .~ 09 1)
where
8(71') ( Xap >%
4= T(2)Cu(ma + mg)” megMao/ * U8
and

m:x/(ma + mﬁ);

Xap I8 the constant of proportionality in the force
law and @, is a collision cross section.* For later
purposes, it is convenient to list the additional two
moments

| matesid., e
= —(2maod + 3meoB)ps{P'}
— (—2mgoA -+ 3mg,B)p. (P§'}
— (2A[mao% — Mgy ] + 3mﬂoB>pap,e
AUa = UpiUa — Up)si} (19)

4 @1(n) and Gg(n) are tabulated on p. 172 of Ref. (2). » is
defined by Eq. (

Mao =
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and

f_ Mok, % J s dE =

+ 4moompoBlpsQa: + 4mz(A — B)p.Qp:

5kT
T a2m

-[{2(7na0 fe _ Mgy p—")
P P

4 (Moo — mgg) + 22

- L(gmio + 77’L§0)A

D Pabs

Apapg(U 2m, + mg

Uﬁ)i -

}A + 4"nBOle

mn
'(Ua - Uﬁ)i(Ta - TB)) (20)
B = 3(@,/a)A. (21)

It should be noted that, in contrast to the follow-
ing, the evaluations above are exact.

For non-Maxwell molecules, moments of the col-
lision integrals will involve the entire distribution
function. To obtain a theory with wider applica-
bility than just for Maxwell molecules, we now
introduce approximate forms for these moments.

For power law molecules, Kolodner® has obtained
certain finite expansions for the required moments
of the collision integrals. We could, in fact, in-
corporate his expansions directly into the conserva-
tion equations (13)—(15), but this would lead to
expressions that are too unwieldy for practical ap-
plication. Instead, only those portions of the ex-
pansions which correspond to the terms for Maxwell
molecules will be used. The neglected terms, which
we refer to as off-diagonal terms, are quadratic in
the higher moments, and, in addition, have coeffi-
cients that are relatively small. (One result of this
approximation is the loss of the thermodiffusion
effect. This is small except under extreme conditions.)

The coefficients of the diagonal terms are func-
tions of the temperature difference and velocity
difference squared, and may be expanded in powers
of these differences. We make a further approxima-
tion in retaining only the first term in each of these
expansions. This does not imply that the equations
are applicable only to low-speed phenomena be-
cause the velocity and temperature differences appear
naturally in a form normalized with respect to a
sound speed and a temperature. It is only at ex-
ceedingly high Mach numbers that such terms might
become important.

Under these approximations, Kolodner’s expres-
sions reduce to Eqgs. (16), (17), (19), and (20)

5 I. Kolodner, New York University Report 7980 (1957).
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where now’ Kl KR _
, aPt s pU; =0, @7
A =80 (3 Mg i, + , , )
52 pU; + %‘ [UU; +P7'] =0 (28)
X (1~m)/2 ZkTa QICTg n/2 *
g e T omg @
Bt a0 a 8 & p(@ _l_ U2/2)
and
5 + 7 Qun) /2)+ UP7 4+ Q1 =0, (29
B =2 A. 23
10 @1(71) ( )
where
In these expressions, the molecules obey the force
law P = patps, N =n,+ng (30)
U = (pUa + U « + 08, 31
Fos= xia ’ 0 = ;; i 24) (o psUg)/(p ps) @1
r - 1r°
oo = 2 [ Imfo + mafsl(s — 0P d
Note that Egs. (22) and (23) reduce to Egs. ~e
(18) and (21) for Maxwell molecules. Then the uls .
expressions (16), (17), (19), (20), (22), and (23) are = Pata T pots t+ 5 p U. — Uy, (32)

exact for Maxwell molecules; for non-Maxwell mol-
ecules, they correspond to what Chapman and
Cowling® call the first approximation in the deter-
mination of the transport coefficients.

For intermolecular potentials other than power
laws, no general expressions for A and B appear
to have been calculated. Although these, no doubt,
lead to more complicated forms for A and B we
anticipate that our considerations still apply.

Substituting Egs. (19) and (20) into Egs. (14)
and (15) we obtain

tp“Ual—*— (anﬂ’an] +P

= _Apapﬁ(Ua - Uﬁ)i (25)
and
2 bte 2 ol + Quil + P

T

3k(T,
= —Apaps[ (Lo — Ty

m. + -~ — mgo(U, ——Uﬁ){l- (26)

The “mechanical energy” equation has been elim-
inated in Eq. (26). We repeat that these equations
are exact for Maxwell molecules and constitute
the diagonal approximation for non-Maxwell mol-
ecules.

Alternate expressions for the conservation equa-
tions are developed by considering the mixture as a
composite fluid. Adding the component continuity,
momentum, and energy equations, respectively, we
obtain

- f_i (maofa + mgfe)(E — U)(& — U), d&
= (P39} + (PY) + ”—p‘fﬁ (U= Ui(Uu— U}

+ b, [pa +ps+ 5 U - w] , (33)

Q=3 [ Dmfe + mifile — U)(5 0 ax

= Qui + Qs Rl (g — m)(Us — Uy
+ 21k — (U, ~ Uy,
L s [i*_pz_ 5 ngng(mg —Lna_):l
2p I3 3 np

Wa = Up*(Ua — Uy

+ [”f Py — £ {Pé”}]wa = Ui (39
These equations are exact for all molecular force
laws by virtue of the collisional invariants (10)—(12).
The expressions for P*’, @, and e are dictated by
general continuum theory.

III. TWO-FLUID THEORY

Although the various processes of Maxwellization
and equilibration can ocecur on a variety of scales,
it is possible to easily estimate these scales by con-
sidering an associated relaxation problem. Referring
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to Eq. (19), we see that the stress relaxation equation is given by

EYR I
{Ps'} [(2maoA — 3maoB)ps]
_|rx:: a5 A

)
Lol M+ LRy

where B.., Bg are given by Eqgs. (22) and (23)
with 8 = a and with « = B, respectively. The
Ns appearing in the last matrix are defined by
direct identification with the quantities of the pre-
vious matrix. A driving term, quadratic in velocity
differences, has been neglected in (35). As seen in
the next section, this contributes negligibly in esti-
mating the relaxation scale. Regarding (35) [and
also referring to Eq. (19)] we see that these terms
have their origin in three different effects: N\ % (self-
self), due to self-collisions of the a gas; N5 (self-
cross), due to collisions of the a gas with the 8 gas;
A& (cross—cross), due to cross collisions of the g
gas with the « gas, but appearing in the & gas equa-
tion. Corresponding remarks apply to the g gas
frequencies.

The relaxation frequencies are given by the eigen-
values of the matrix in (35). These are

A o= O £ [0 — N 4 47\'20)\95]%} (36)

with

NP =T L (37)
The branch of the radical is chosen such that A~
is the smallest eigenvalue (note, both eigenvalues
are positive). In the Appendix we demonstrate
that the heat conduction as well as all higher
moments have relaxation frequencies which are of
O(\") or larger. It is therefore the case that A\~
provides a measure of the scale of Maxwellization
of both gases.

We now consider situations for which temporal and
spatial variations, i.e., Df, s, are slowly varying
compared to the scale of Maxwellization. Then,
clearly, f. and f; are to lowest order just Max-
wellians. Depending on the relationship between
the (various) scales of equilibration and of Max-
wellization, these Maxwellians can depend on com-
posite or species quantities. For the moment we
defer a discussion of these relative magnitudes, and
allow ourselves the most latitude by basing the
Maxwellians on species variables [see Eq. (1)].

Writing f = fou + % and carrying terms to
first order, we obtain

3 [{P:‘:‘}} _ [[(—3Baapa> + (—2Maed — 3mpB)pg]

[(2maed — 3maoB)pa] H{P:’:‘}J
[(—3Bgsps) + (—2mged — 3maoB)pa)l L{Ps

(35)

(i) i}
<—é_t + Ee a7‘>f0a
= Jaa(an; ff:ll)) + Jua(fle)y Oa) + Juﬂ(an’ fﬁﬁ)
+ Jaﬂ(foru fé”) + Jaﬂ( Ez”: foﬂ)'

f&? does not appear on the left-hand side because
D by assumption is a higher-order operator. In
writing Eq. (38) we recognize that J .s(fo, fos) may
force certain terms into a higher order. This portion
of the discussion is deferred to the next section and
in the present section we consider only the significant
nonconservation moments of (38). By standard
manipulations® and substitution of the conserva-
tion equations, the left-hand side becomes

L0 B dInT,
e - 22

(38)

ox;
[% (P} + Apaps(Us — Ua),-]
b (el 1) (2 qu + pyy 2
[T, - 0 am) |

(39)

It is clear that the stress and heat conduction are
higher order compared to the other terms in this
expression.

Taking the stress moment, m,{ (¢ —U,):(§—U.);},
and heat conduction moment, im,(t¢—U,):(§=T,)?
of Eq. (38) with the expression (39) [also using
Egs. (19) and (20)] yields

_{ {x:, 0} N [x:c x;:} }[{Piq
0 N, A, N (P3|
_ 2[ u{aU,,,-/ax,-}} N [[—214 + 3B]mﬁoJ
Ds

{0Ug:/0x;} [—2A 4 3Blm.e

papp{(Ua — Up)i(Ua — Up);}. (40)
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!
{ {23 aaPa 0 |+
0 2B

- 4mio(A — B)ps

[ 5pak 9T, !‘{ ( ps _

_ | 2me x| _ 2\ Mo p o
5pek 9T { ( Pa _
21’1?;3 ax; 2 Mo p

S paps

2m, + ms (U‘! - Uﬁ)i(Tcx - T,s).

r((3m2ao + ?ngo)A -+ 4maom$0B)P5

1933

e

) + (Moo = ma) + & ”"}A + dmsB

a

—4mg(4 — B)p.
[(3"7'20 + mio)A + 4maomaB]

) + (mge — Mao) + ks — pa}A + 4mqB

(41)

There are then solved for the stress and heat conduction to give the constitutive relations

if - A B a aUa| B aU
{Pcz} = —‘[det S] 1[<1 + (%mﬁﬂ .BTS; + BﬁS) e )2 {635 } - ( 3mHOB + Mo B )2”3{ axﬁ}
A B\ p. ( 24 B )
2 A - A2
+ [(1 + <3m50 Bﬂﬁ + Bﬂﬁ) ) 3Baa + Bau mﬁﬁpﬁ
(b )+ B - 020 - 1]
(=3mm 2+ )= 2+ 2 |1V = U, ~ U]
al ., 8l
= ~2ﬁau{—5;} - 225{ - } + 1l (Ua — Ug)i(Ua — Up)s}, (42)
_ . 3 ., .1 z>__ _B,_),eg] T, . A=B%7,
Q. = —[det H] {[1 + (<2 Mgy + g Mao | B 4+ 2m0ng0 Bor) oo Ko oz, + 2miomi, = B, " o
B
+ [1 + (( mﬁo + 5 ’mao> B + 27naomﬂoB ) pa][( Mpgo + = ") BA Ps
9.2 2 A__Q( éfﬁ).‘é. ]__-__—.._516 — }
2m50m00 Bma Mao + Bﬂﬂ Pao M + mB (Uot Uﬁ}i(Ta - Tﬁ)
2 2
= —Raa 5 Ty = Reap = oz, -Ts + 0ap(Ta — Tp(Ua — Up)s (43)
where
_ A B ) Pa (2 B ) 2 _AB
det: S 1 + ( mﬁoB o6 + Bp + 3 maOB + ?nﬁﬂB + 3BaaBgﬁ 3
3 1 A B e
det; H = ]. + [(’2’ mﬁo + 2 mio) ‘_BT‘ + 2ma07n30 B ] P;
3 1 2 B P A2 AB
+ [(5 Moo + = mso) B.. + 2maomis B. ] PR (ma() — mp)’ o B..B, + Amaome 55— B..By’
and IV. GENERALIZED CHAPMAN-ENSKOG

Ba = Da/(BBaupa), ke = 5pok/(dmoBaopas). (44)

po and «, are the ordinary viscosity and thermal
conductivity of the a gas.” The corresponding ex-
pressions for the 8 gas follow by interchanging «
and 8.

Considering Eqgs. (13), (25), (26), (42), (43), and
their 8 gas counterparts, we obtain a determinate
system of equations. We refer to these as the two-
fluid equations.

PROCEDURE

The two-fluid equations derived in the previous
section furnish a self-contained description of a
binary gas. From the point of view of the perturba-
tion procedure employed in obtaining them, the
two-fluid equations are only an intermediate step.
This is so because the relative scales of equilibra-
tion have not yet been introduced. We find in this
section that within the framework of the perturba-
tion procedure, the equilibration scales can modify
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the two-fluid equations. We show, however, that the
two-fluid equations themselves are more useful in
situations widely removed from equilibrium.

The Maxwellization scale, A,,

Ae = N
is given by Eq. (36). One may show®

Nel/N LA <t

E. GOLDMAN AND L. SIROVICH

from which we get

A, & min (\7, M. (45)

This proves useful in future estimates.

In order to consider the effect of equilibration we
must consider the behavior of (U, — U, and
(T, — Tg). We consider the ‘“diffusion” first. Taking
appropriate differences of the momentum equations
(25), we obtain after some manipulation,

a3 i) 9 1
MU, — Uy = {& Ua — Ug)i + 3 U, + Up); oz, (Ua = Upi + (Us — Uy o, 2 (U(x + Uﬂ)i}

19

—

ps OL;

+ [1 O (Py)

Pa OT;

Py} +

ngna(ms — m,) 9

(papawa — Ua)2>:|
opn dz; 3p

pp_| 9. (&) 1.9 (n
+ PaPs [axi n + p dx;

where

)\U = Ap. (4:7)

It has already been assumed in the derivation of the
two-fluid equations that derivatives are slowly vary-
ing on the scale of A,. Therefore to compare the
curly-bracket term with the left-hand side of Eq.
(46) we must compare the velocity relaxation fre-
quency with the Maxwellization frequency. One
easily shows that

Mo/Ns > 1

and hence, velocity relaxation takes place at least
as rapidly as Maxwellization. Next from the deriva-
tion of {Piz} it is clear that the square bracket
term in KEq. (46) is small compared with the last
term, and therefore to lowest order,

n’ 9 (7.
o = Up): = T nang D“‘Sl:ax,- <n)

N Ng _ a

+ (mg — ma) oz Inp
1inan3k(Ta — Tﬁ):l

T (48)

D, is the coefficient of binary diffusion given by
D, = kT/(m,mgnA). (49)

The thermo-diffusion effect does not appear in Eq.
(48) since, as pointed out earlier, it vanishes for

6§ We continue to use Maxwell molecules to estimate
relative scales. In support of this we consider Eq. (22). For
purposes of estimates 1t is plausible to take the temperature
of each component as being the same. This results in a form
which is identical to the Maxwell molecule case for all mass
ratios.

n

Mek(T ., — Ta)) n sty — Ma) 9 In p] ,  (46)

m dx;

Maxwell molecules and is lost in the diagonal ap-
proximation for non-Maxwell molecules. A more
elaborate derivation would furnish the thermo-
diffusion effect and it seems justifiable to merely
include it in Eq. (48) in situations which require it.
Note that Eq. (48) contains a new diffusion effect
due to temperature differences.

Although spacial derivatives are formally regarded
as slowly varying [they are O(e) in the symbolism
of the previous section], it is not necessarily the
case that (U, — Up); is also O(e). (This is implicitly
assumed in the Chapman-Enskog theory.”) Due
to the presence of possibly large coefficients, this
term may in fact be large. In this section, however,
we regard (U, — U) and (T, ~ Ts) as being
small,” say O(8), although not necessarily in a way
that is related to e. Further we only carry out the
analysis to O(6). [This requires that § < O(é).]
Otherwise the expressions become too cumbersome
to be of use. This might for example be seen by
introducing Eq. (48) into the curly bracket term
of Eq. (46) and eliminating time derivatives in the
usual way in order to find the higher-order diffusion
equation. In situations requiring higher orders, the
two-fluid theory of the previous section should be
used directly. For even though the two-fluid equa-
tions carry some higher orders, there is no restric-
tion placed on the size of (U, — Ug) and (T, — Tp)
in their derivation. This issue becomes important
in a number of applications, e.g., in the shock
structure of mixtures.

7 In saying that for example (U, — Upg) is small, we
naturally mean that it is small when suitably normalized.

The é)roper normalization in most instances is the composite
speed of sound (vp/p)t.
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We have still to examine the behavior of (7', — 7).
The equation governing the ‘“‘temperature diffusion”

1935

is gotten by taking appropriate differences of the
individual energy equations (26).

2 o a T
—M(To — Ts) — [§ Ay kﬁ(p . o) (U. )21
= 20, — 1) + (U, ~ U)-VT + V-V, ~ T + 2TV, - Uy
+ 20, — T)VU = 25 VARV + g V-GV — (2"“ 2'I">{U- 32
3 T # # 3n.k  3ngk i
+ [(Ua ~U)-VT.-T)— Uy - 0):VTs - T) + 3T — DV-U, - 1)
2
= (Ts — T)V+(Us vQ. + %VT) — gk Qs + %VT)
+ gr g PV + 71U }2>~i({P“}U U] 50)
3n.k « ai,g s i 377,576 B8 8i,i M,y ’ (
with (13), (27); the momentum equation (28); the diffusion
g =z 42 =k R equation (48); the energy equation (29); the ‘“‘tem-
Ba = Baa T Hagy Ko ™= Kaa T Kapy (51) perature diffusion equation” (53). In view of the
Map = MaMp/ (M, + Mg) perturbation procedure the constitutive equations
and (42) and (43) are also considerably reduced. We
now have
Ap = (Zmaﬁn/P)AU- (52) P,',' =P 51';' - zﬂ{Ui,a‘}y (54)
It is clear by inspection that all terms contained in b= fe + @,
the square brackets of Eq. (50) are of a negligible
order. It now remains to consider Mr/\,. After some g — _ g7 4+ 3T naNp(ms — ma) U. — Uy
algebra we may in fact show that ’ (55)
)\T/)\a<]-' K:Ea+i€g.

Hence temperature relaxation is in general the
slowest relaxation process.

A. Two-Temperature Theory

With the exception of the case when Ap/\, = 1,
Eq. (50) cannot be simplified further than by drop-
ping the terms in the square brackets. The “tem-
perature diffusion” equation is

2.~ T) + U~ U)-VT + V-V, — T
+37Tv-U. — Uy + %(Ta — TyV-U

V ®VT)

3 ©VT) + 3

- £ (E—“— - ﬂ){Ui,,.}Z = —\lTo — Tp). (53)
For obvious reasons this will be referred to as the
two-temperature theory. The remaining equations
governing this regime are: two continuity equations
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We note that u and « are exactly the expressions
for viscosity and heat conductivity of a binary
mixture given by Eqgs. (12.5,) and (13.5,) in the
work of Chapman and Cowling.?

For purposes of application, we list the reduced
forms in fwo limiting cases of the two-temperature
regime (see the close of this section)

Case (a):
Mo /ms < 1, . /Mg &2 O(1),
= tall + (B/Boa)ps/pa)1 7",
= ko[l + (A/2B.a)(ps/pa)]™,
Be = g,
Case (b):
Mme/mg K 1, No /Mg K 1,
Bo = (Baa/B)pa/pptia,
Raa = 2Boa/A)pa/ pe)Kas
Mg,

Ea

Koo

Res = kg, Rapg = Rga

By = Rgs = Kp, Rap = Rga
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We refer to the theory just obtained as the two-
temperature theory. In contrast to the classical
Chapman-Enskog theory of mixtures where only
the composite temperature occurs, the temperatures
of each species now appear.

B. Classical Chapman-Enskog Theory
In the special case
M/ L (56)

a further reduction occurs. It is now clear from Eq.
(50) that (T, — T,) is O(€, 8). The diffusion equa-~
tion is immediately reduced to

n?
(Ua _UB) = —'m Dmﬂ

[o6) - movms]

which is the classical diffusion equation® (again
without thermo-diffusion). The temperature diffusion
is also considerably reduced,

(67)

Tp = —‘— [(U Up)'VT
+2r9.w, —uy - ( V- .VT)
3 « % " 8k Ka

_ﬁ%v.(zﬂvT‘) ~ (g_ B fﬁ)iU«f}z]' (58)

In this regime the governing equations are: two
continuity equations (13) and (27); the momentum
equation (28); the diffusion equation (57); the energy
equation (29); and the temperature diffusion equa-
tion (58). The latter decouples from the remaining
equations. That is, one can solve for (U,, U, T,
Na, Ng) Wwithout a knowledge of (T, — T;). In fact
it is just the classical Chapman-Enskog equations
which govern (U,, U, T, n,, ns). Therefore, only
in the limiting situation (56) can we expect the
classical Chapman—-Enskog theory to hold. It is
important to note that the temperature difference
between gas species is obtained directly by a sub-
stitution of the Chapman-Enskog solution into
the right-hand side of Eq. (58).

For use in application we give the reduced forms
of the transport coefficients in some of the unusual
limiting situations in which the Chapman~Enskog
theory holds (we justify these limits shortly).

Case (a):
ma/mg ~ O(l), na/na <1,
ﬁa = ﬂa{[%muO(A/Baa) + mﬁO(B/Baa)]pﬁ/pa}—l7

GOLDMAN AXND L.
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Hp = pa,
ka{[(Gmao + $mpo)
“(A/B.a) + 2maoman(B/B.)(ps/ pa)} "
s = Kp.
Case (b):

No/Ng 3> mno/mgmg 2 0(1),
Ba = pa, Ko = Ka,

pei(3(4/Boa) + mpo(B/Baa)lpal o8} ™

ks = xa{[3(A/Bgg) + 3moo(B/Bgg))pa/ps}™

C. Delimitation of the Classical Chapman-Enskog
and Two-Temperature Theories

The criteria for the Chapman—Enskog regime to
hold is that the ratio Az/A, be near unity. For a
number of reasons this is not a convenient param-
eter to use. This is mainly due to the presence of the
Maxwellization scale, A,. This quantity is not
readily obtainable from experimental measurements.
Also, A, does not explicitly occur in either the two-
fluid or Chapman-Enskog equations, but is in
fact buried in the composite viscosity, u. In order
to find a substitute for \,, we define a mean free
path for the mixture based on the simple gas result,

L= u/(po)". (59)

From this we obtain a relaxation frequency

A= p/ M-
Using the inequalities displayed at the beginning
of this section, we may show
NN .
(na/TNs + (a/m)N

Although A, is not a conservative estimate of A,,
it is a good approximation to it (e.g., if \* = ),
M. = A,). Using A, instead of A,, we define

~
u ~

)\T 2[1.

TN (ma + memD,s
This parameter is used to indicate the importance
of two-temperature effects. ¢ is related to the
Schmidt number [= u/(oD.s)] and we refer to it
as the modified Schmidt number.

In Fig. 1 we have plotted curves of constant C,
for Maxwell molecules. For simplicity the force
constants in the intermolecular force law have been
taken equal. In Fig. 2 we have the similar plot for
rigid sphere molecules. In this all molecular di-
ameters have been taken equal.

(60)
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EQUATIONS

c=4097¢=58 =64l
@ [
~ m
nﬁ/na —%'%
|
S
€=.666
"a/nﬁ /\
0 ] ] [} 1 1 1 1
A\ 2 3 4 5 6 1 8 9
ma/mB

Fia. 1. Modified Schmidt number for Maxwell molecules.

Table I contains a list of values for the modified
Schmidt number, Eq. (60), as computed from ex-
perimental data.®"*'*° Diffusion data were not avail-
able for all the mixtures listed and an approximate
computation was then performed. Using the simple
gas rigid sphere viscosity formula,” molecular di-
ameters were calculated for individual gas com-
ponents. The interaction diameter was then simply
taken as the arithmetic mean of the molecular diam-
eters. This method of caleculating the diffusion coef-
ficient, D, is discussed in Chapman and Cowling,?
and they point out that it leads to values which
are within 109, of experimentally correct values.
This approximate calculation is referred to in the
table as the semi-experimental determination.

On comparing the noble gas mixtures listed in
Table I with the comparable values given in Figs.
1 and 2, we observe that the experimental values of
C fall below the theoretical values. The plots 1 and
2 may therefore be regarded as conservative. On the
other hand, the other mixtures can have values of
C which are relatively large. This however only
reflects the effect of the internal structure of in-
dividual gas components.

We can now give a simple interpretation to the
results of this section. For simple gas theory the
Chapman-Enskog equations are generally regarded
as applicable when typical scale variations are large
compared to the mean free path [. For gas mixtures,
this must be altered to say that Chapman~Enskog

8 J. O. Hirschfelder, C. ¥. Curtiss, and R. B. Bird, Mo-
lecular Theory of Gases and Liguids (John Wiley & Sons,
Inc., New York, 1954), p. 257.

®J. D. Breetveld, R. DiPippo, and J. Kestin, J. Chem.
Phys. 45, 124 (1966).

10 J. Kestin, Y. Kobayashi, and R. Wood, Physica 32,
1065 (1966).

FOR GAS MIXTURES 1937
o -
& 3BX-5 o666 ¢=.800
©
W
5 "
ng/ng |° %:/b
!
c=833
nQ/th
5
C=.882
0 L R
4 2 3 4 5 86 7 8 9 |
m, /mg

Fia. 2. Modified 8chmidt number for rigid sphere molecules.

theory is applicable when scale variations are large
compared to !/C. The two-temperature theory on
the other hand restores the statement to the simple
gas stipulation, i.e., it may be regarded as applicable
for scale variations large compared to the mean free
path, Eq. (59). Since C can be quite small this can
be of considerable importance. In addition we recall
the earlier remark concerning the diffusion. If the
last is not small [i.e. << O(eb)], neither the Chapman~—
Enskog nor the two-temperature theories furnish
a self consistent set of equations.

V. ONE-DIMENSIONAL HEAT FLOW
As an example of the equations which have been

discussed we consider one-dimensional heat flow

TasLe 1. Experimentally based values for the modified
Schmidt number C. All values of the table are for NTP and
equal number densities.

Modified

Mass ratio Schmidt number ¢

Mixture

Xenon-Heliume 0.03 0.170
Krypton-Helium? 0.047 0.216
Argon-Heliume 0.1 0.325
Helium—Nitrogen® 0.143 0.391
Xenon—Nitrogens 0.215 0.500
Krypton—-Neon? 0.24 0.566
Xenon-Argon® 0.30 0.600
CO,—Neon® 0.459 1.150
Krypton-Argon® 0.476 0.666
CO,—Nitrogen?® 0.637 1.300
Argon—Nitrogend 0.70 0.816
Oxygen—Nitrogen® 0.87 0.796
COy—-Argon? 0.908 0.666
* Values obtained from the formula of Hirschfelder, Curtiss, and Bird
(Ref. 8)

b Experimental values in Ref. 10.

¢ Experimental values found in Ref. 2.
d The semi-experimental determination.
¢ Experimental values in Ref, 9.
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Fia. 3. Heat flow between parallel plates.

in the absence of convection. The two-temperature
energy and temperature equations are

N N i
%Bm+de—o, (61)
2 d (, dT)_ 2 d( )
3n.k dy \"* dy) T Sngcdy \"* dy
= N(To — Tp). (62)

From the momentum and diffusion equations one
obtains

P = n kT, = const = p%,

(63)

P = nngﬁ = const = p?x.

[For Chapman—Enskog regimes the diffusion equa-
tion (57) should be used. This leads instead to
n.kT and ngkT being constant. Within the frame-
work of the Chapman-Enskog derivation this is
compatible with Eq. (63).] Introducing Eqs. (61)
and (63) into Eq. (62) we obtain

_ _ 2 (T. Ze)i<~ ‘E).
T = To) =35, <p3 ) ay & ay

From the definition of composite temperature we

obtain
-3 (2
P T/ \TI. ’

which with Eq. (64) determines T, and T, It is
clear that (T, — Tj) vanishes if %, and % have the
same functional dependence on T. Since the heat
conductivity of simple gases can exhibit widely dif-
ferent functional dependences on temperature (this
is even true among the noble gases®) two tem-
perature effects can be expected in most gas mix-
tures. Since the calculation of (T, — Tj) can easily
be accomplished in particular examples, we do not
pursue this further.

A possible second source of two temperature
effects is the wall. However, in deriving the two-
temperature equations we have, because of a singular
perturbation, eliminated one temperature boundary
condition at the wall. Only 7 (or an equivalent)
may be prescribed at the wall. To investigate this
further we reconsider the one-dimensional heat flow
problem with the two-fluid equations.

(64)

AND L.

SIROVICH

Assuming no convection, the two-fluid equations
(see Sec. 111) become,

d

~_‘pm = 0)

dx (65)
d ar, . . d
.d—x [Eaa —gx— + Kag C-l.; TB:I

_ 3T — Ty)

- Apapﬂ M, + mg

The remaining equations are obtained by setting
a2 B in the above. For simplicity we restrict atten-
tion to small mass ratio, ms >> m,, in which case
.5 and 7, are negligible.

First we consider the boundary conditions on T,
and T’ It is clear from our perturbation proecedure
that the form of the distribution function within
the two-fluid approximation is

My g -31C24
fe ”“(mT) ¢
ar

]. 7na d ’Zaa ) Y a
(-t () e - 90 %], o

where

C. = ¥m./kT ).

In the above, we have introduced the conditions
of the heat flow problem and associated the £,
direction with the z direction. We first consider the
lower wall and denote all quantities evaluated there
by a zero subscript (Fig. 3). Denoting the wall
temperature by 7, and assuming diffuse reflection,
we have

o a My } -3C%a0
faO(Sl > O) - n0<27rkTo> € i (67)

where ng denotes emitted particles and,

~ ma %
Car = (kTO> ¢
The zero flux condition yields
nZ(To)% = na0<Ta0)%-

The temperature slip is computed according to
Maxwell’'s method, i.e., we take,

— f maEIEZ
Qa _/:J 2 faO df)

where f,,(& < 0) is given by Eq. (66) and f,.(& > 0)
by (67)."" This yields

It For a simple gas this method is known to give results
which are within 209 of the exact value of 1.
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ar',

ade)

] o Faa (27rm> ar.,,

T Bngok \kT oo/ dx
with similar expressions for slip and [,,, at the wall
with temperature 7. Instead of also considering
temperature slip for the 8 gas, we restrict attention
to those cases within the two-temperature theory
for which

Too— Ty =1
(68)

i<l Kd,

where [, and Il are, roughly speaking, the mean
free paths of the o and 8 gases and d is the plate
separation. [An example of such a case is m,/mg <
0(1), n./ns < O(1).] If we choose I, as a length
scale, we “spoil” the I layer. The boundary condi-
tions on T'; are therefore

—3d) = T,, Te(3d) = T,. (69)
We next introduce the normalization
¥ = x/la: ta = Ta/TH tﬂ = Tﬁ/T” (70)

T, = %(Tl + To):

where T, is the reference temperature. Substituting
for the densities in Eq. (65) the equation for the
o and 8 gases becomes (recall that we are considering
cases for which /.5, #5. ~ 0)

_d_— it _laz s
dl‘, Ko dx' a — tatﬂ ] (71)
d _ d by — g
a g T T
where
PO . A PET,
a Aparpﬂrm mﬂ Kaa) <72)
. _ - FReg
KB Ky i('(xa

Taking (7, — T,)/T, to be small, we expand
about T,,

=14 tW 4 (P + ...

MIXTURES 1939

I
Tl'

ts T

T

fﬂ\ r

T,g;;
To
T, Zt,
-d' 0 aq'
. 4
2t /3, TV, 28/ %

Fre. 4. Temperature distribution in a binary gas between
parallel plates.

and Eqgs. (71) become

2 - t(l) . tél)
Gl = T ; (73)
dZ w Rar (t(l) t;(gl))
dxiz tﬁ = Kﬂr 3 ’ (74)

Rqp 1S kK, with 7,, evaluated at the reference tem-
perature. Under the condition that l; « 1,, it can
be shown from the previous analysis that

’Eﬁr >> ka'r‘-

Since the right-hand side of Eq. (74) is small com-
pared to that of Eq. (73), Eq. (74) is now taken to
be

(d/dz"®)t = 0. (75)

The solution of Egs. (73) and (75), subject to
conditions (67) and (69), is

Tox

w _ Tt —Tezx
tg = T 4 + 1, (76)
m (T, — Ty z
f A
+ C, exp [—(ﬁ/la’.d)] + C, exp (x/la’-‘%)) 7

where

(e exp [—(d/2LkD] ~ Lo, exp (@/21kD|(Ty — To)/T.d

€, =

_ 1o, exp (d/21 .k

201 + (l.o/1. Ka>] 1 — {4/, Ku)] sinh (d/!, Ki) !
) — Loy exp [— (d/zlaKa)]](Tl - To)/Td

Cs AT + Lo/ LADL —

These solutions are shown qualitatively in Fig. 4
This problem illustrates the interesting fact that
the thermal slip of individual gas components can
occur on vastly different scales. A similar statement

(Las/Lk2))* sinh (d/1.k2)

may be made for velocity slip, however this situa-
tion requires further discussion. The slip velocity
of a composite gas is found by taking the mass-
density average of the individual component slip
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velocities. Both the Chapman-Enskog and two-
temperature theories replace a momentum equation
by a diffusion equation (48), (57). Therefore we
expect that only one (vector) velocity boundary
condition may be imposed, viz., the composite gas
slip velocity. Hence for both the Chapman-Enskog
and two-temperature theories, individual component
velocity slip cannot be specified. Moreover the dif-
fusion equations (48), (57), themselves, furnish
relative slip velocities at boundaries. (These cannot
in general be expected to be correct.) This situation
was to be expected inasmuch as a number of scales
were ‘‘spoiled” in order to obtain the Chapman-—
Enskog and two-temperature theories.

On the other hand, the two-fluid equations (13),
(25), (26), (42), and (43) do allow specification of
individual component slip velocities. Furthermore,
they relax to the two-temperature and Chapman—
Enskog equations. We can therefore expect the two-
fluid equations to give a description of the relative
velocity slip layers.

APPENDIX

In Sec. IV, A, was taken to be a measure of the
Maxwellization scale of both gases in a binary
mixture. We now discuss this in more detail and
show that the stress relaxation can indeed be used
to estimate this event. Several partial discussions of
the relaxation theory in mixtures are to be found
in the literature®™** as well as a complete discussion
for mixtures of Maxwell molecules.”® These are
largely based on the eigentheory available for Max-
well molecules.””****~*” The discussion given below
follows that given in Ref. 15.

We consider the linearized, spatially homogeneous
Boltzmann equations for mixtures of Maxwell mol-
ecules,

12 L. Sirovich, Phys. Fluids 5, 908 (1962).

13 C. F. Curtiss, University of Wisconsin, Department of
Chemical Engineering, Report NSF-7 (1957).

14T, F. Morse, Phys. Fluids 6, 14 (1963).

15 L. Sirovich, Phys. Fluids 9, 2323 (1966).

16 J. Naze, Compt. Rend. 215, 854 (1960).

17 C. 8. Wang Chang and G. E. Uhlenbeck, University of
Michigan, Department of Engineering, Report (1954).
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3. _
at

B [ fuudoddl + 6 — 6. — 84

-B*%(9) de db d&s, (A1)

where standard notation has been used. fo.¢. de-
notes the perturbed distribution function away from
the absolute Maxwellian f,.. The polynomials

_ (Ezma)
AV

(where S; and P7 are Sonine and Legendre poly-
nomials, respectively) have been shown to be char-

acteristic for the linearized collision integral.'® From
this property we have for a binary gas,

Viim

(ma >% ! m imz
£ BT P7{(cos 8)e'™, (A2)

0 = 9 _ .na)\fz + nguy NgVey Orim
et 8 8 s |’
NaVer nﬁ)\rl + Nallrt Qrim
(A3)
where
af{m — f ‘l/rl—m(baan dE . (A4)

f‘b:xl—m‘//:!lmf[)a df

Explicit expressions for the eigenvalues A, g, » can
be given, but for our purposes only the following
properties are needed'’:

veo = 0, Vg > Vo > 0 for m >7r >0,

Vo > Vii, v, —>0 as [r4+1—> =, (A5)
Moo = 0, uy <0 for rorl =0,

Beo > Bmo Tor m >1 >0, Hro > He1, (AD)
Mo = A1 = A = 0 otherwise \,; <0,

Mo > A, Mo > Ao for m >7r > 0. (A7)

Regarding the matrix of (A3) we see from (A5)-(A7)
that the diagonal elements are nonincreasing and
that the off-diagonal elements go to zero. It is there-
fore clear that the relaxation frequency of a low-
order moment is representative of the time in which
the distribution functions become Maxwellian. The
stress [for which (r, [) = (0, 2)] relaxation time can
therefore be taken as a measure of the time of
Maxwellization.
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