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A complete discussion of the linearized, compressible magnetohydrodynamic equations is given.
No restriction is placed on any of the dissipative mechanisms, and moreover the nature of the gas
is unspecified. Fundamental solutions are obtained for arbitrary values of the pertinent dimensionless
parameters as well as field orientation. Use of the fundamental solutions is illustrated by the con-
struction of solutions for several problems. Various inviscid limits are considered, and restrictions

on inviscid theory thereby result.

1. INTRODUCTION

ANY investigations of magnetohydrodynamic
waves have been carried out using the Lund-
quist equations.' So far, however, little attention
has been given to dissipative effects in the waves.
In an early paper,” van de Hulst sketched the effects
of dissipation on magnetohydrodynamic waves by a
study of the resulting dispersion relation. In a
more recent paper, Trilling’ also considered the
dispersion relation. Another approach to the same
problem was taken by Whitham,* who described
the effects of dissipation by studying the equations
themselves.

In this paper the initial value problem for the
dissipative magnetohydrodynamic equations is in-
vestigated. In particular, we consider the evolution
of small disturbances from equilibrium. The method
of attack and analysis closely parallels an earlier
treatment of the same problem for the Navier—
Stokes equations® (hereafter referred to as I). Here
as in I, no restriction (other than linearization) is
imposed on the problem. A compressible fluid with
an arbitrary equation of state is considered. In
addition to compressibility, the effects of bulk, and
absolute viscosities, heat and electrical conductivities
are simultaneously included—and no condition is
placed on the resulting dimensionless ratios.

2. BASIC EQUATIONS

We denote equilibrium values by zero subscripts
and perturbed quantities by primes. Density, ve-
locity, temperature, pressure, internal energy, and
magnetic induction are represented by

! For a bibliography see A. Jeffrey and T. Taniuti, Non-
lliggag Wave Propagation (Academic Press Inc., New York,

4).

2 H. C. van de Hulst, in Problems of Cosmical Aerodynamics
(Central Air Documents Office, 1951).

3 L. Trilling, J. Fluid Mech. 13, 272 (1962).
(19‘5 GS B. Whitham, Commun. Pure Appl.” Math. 12, 113

9).
5 L. Sirovich, Phys. Fluids 10, 24 (1967).
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p=p+p, @=v, T=T,+T,
P =p, + 9, éE=¢ + ¢, B =B, + B,

respectively. Turther denoting space and time by
(x’, '), the linearized magnetohydrodynamic Navier—
Stokes (mNS) equations are

8/8t)p" + p V-0’ = 0, 2.1)

po(0u’/8t") + V'p’ + (Bo/B) x (V' xB’)
= B+ WV(VW) + V™, (22
po(8e’/t)) + p V' 0’ = kT, 2.3)
3/01)B' + V' x (B, xw') = (1/em) V"B,  (2.4)
Vv’-B' = 0. (2.5)

The viscosity, bulk viscosity, heat conductivity,
and magnetic susceptibility u, 8, «, & are taken
constant, as is consistent with the linearization.
Specifying

p=p31), &e=¢&31),
closes off the above system of equations.

As in I we desire a symmetric system, and to this
end we introduce the following normalization:

X = }I—{} ) t = t—lgg y P = f:: )
u=t, T (a—%,—oyT (2.6)
b = B'/(peain)?, B, = B,/[B,],
where L is an unspecified length scale,
a; = (8Po/3p0) . 2.7
is the isothermal speed of sound, and
¢, = (0e,/T,),, (2.8)

is the specific heat at constant volume. Then in-
troducing the eight-vector (in the interest of saving
space, vectors are displayed in row form),

v ={[p,u,T,b], 2.9)
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WAVE PROPAGATION

and the eight-by-eight symmetric matrix,

0 v
0 xV

LO —6(18,-V — B, V)

the mNS system can be written as

(8/8t)v + A(V)v = 0. (2.11)
The quantities ¢, 1, &, ¢, 6, x are given by
p=Btdn
aopol Lpoa,
i ;ﬁ—(lﬁ (2.12)
x = [(e/a) — 11}, 8 = (Bo/upear)?,
where
o = (8po/dpo).. (2.13)

is the adiabatic sound speed (s, is the entropy).
In (2.10) 1 denotes the unit matrix and, for instance,

19V* + {VV-

2 62 82
Vg axf $ oz, oz $ 9%, oz
62 2 62
h ¢ dz, 0%, Vit 6 az2 £ 9, 0%,
& 9 . 9*
Az, 01, 91, 0L, WS dzs |

At this point the undetermined length scale L
may be fixed as

L=max<ﬂ_4:ﬂ Bk _L>

2.14
Gopo oo’ PaCelo ' oA ( )

The dimensionless parameters £, %, ¢, ¢ are then
0O(1) or less. The quantity L may be regarded as a
mean free path for the gas.

3. ONE-DIMENSIONAL PROBLEM

We now restrict attention to problems with varia-
tion only in « and ¢{. We can then in full generality
take

B, = (B, cos @, B, sin e, 0). 3.1)

From Eqgs. (2.4) and (2.5), we immediately conclude
that b, = 0. The dependent variables are now seven
in number (p, ., Uy, w., b,, b., T) and are governed
by the following equations:
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0 0
xV 2 —6(1By-V — VBy) | 2.10)
—V 0
0 —elV?
d9p , U, _
at z 0,
2
e xS a2t S =0,
ou, b, u,
at iy o 0, 3.2)
aT du, 9’
ot T X% a2l =0
ob, ou,, ou, 3 .
ot oy TOG, Tt =0
du, ab, &
ot oy "% =0 3.9
ab, ou, 6
EY) * dx oz’ b. = 0;

where 8, = 8 cos a, 6, = 0 sin a. It is immediately
seen that (3.3) decouple from (3.2); the former are
referred to as the transverse or Alfvén mode.
Further, if 6, = 0, the (u,, b,) components also
decouple into an Alfvén mode. The remaining set
are just the gas-dynamic equations which were
solved in 1.

The method of solution follows that given in I.
For convenience we briefly outline this method. A
typical system of equations can be written as

((8/38) + A(d/9z)lv = 0, 3.4

where the matrix A and the vector v may be readily
identified with the terms of (3.2), (3.3). Introducing
Fourier transforms

v = [ " exp (ika)v(a) de, (3.5)
the system (3.4) becomes
[(8/8t) +_A(—1k)]v = 0. (3.6)

The vector v is easily solved for in terms of vo(k),
the transformed initial data, and on inverting we
have

v(z) = 2%_ f_ J;m exp (—ikx)

cexp [~ IA(—iR)]vo(k) dk.  (3.7)
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To avoid talking of specific initial data, we introduce
the fundamental matrix

Rz, ) = -2{; f_ exp (—1tkz)

-exp [—tA(—ik)] dk, (3.8)

so that

V@ = Reve = [ R =y 0w dy. (39

Denoting the matrix of eigenvalues of A(—7k) by
D and the corresponding matrix of eigenvectors by

S, we can write
A = SDS™', (3.10)

so that

@

e L _ N — -1
R =5 f _exp (—tka)$ exp (—1D)S”" dk.  (3.11)

One may easily show (see I, Appendix I) that the
eigenvalues of A (for & real) are non-negative, and
zero only for &k = 0. It can then be proved (I, Ap-
pendix IT) that

@

R=5-5 [ exp (—ike) exp (—1Dy) dk 57"

+ O(1/8) = Ry + O/, (3.12)
where
Sy = Sk = 0), (3.13)
D, = Dling + E(dD/dE)|i-0 + LE*(dD/AK")|1wo-

A discussion similar to I, Appendix II, shows that
the agymptotics are valid for dimensional time ¢’ 3>
L/a,.
A typical term of D, may be written as
d = iak + B,
with 8 > 0. Therefore a typical integral of R, is

1 -+ R R
I= 5;]1% exp (—tkz — tath — BE*t) dk

_ exp[—(z + at)’/481]
- (4xpt)*

As is implied by (3.12), the asymptotic forms are
restricted to®

(3.14)

[z — at| < O(t). (3.15)

8 See I, Sec. 7, for a discussion that suggests that the
Navier-Btokes equations are inaccurate outside this range.
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Therefore once 5, and D, aretdetermined R, is
immediately given by (3.12) and (3.14). Further,
the solution to a problem with initial data v, is
then given by

v~ R, *v,.

It 1s also to be noted that (3.14) (I) takes on the
delta function property as ¢ — 0 and therefore that
the asymptotic solution Ry * vo — v, a8 t — 0.

4. ALFVEN MODE

We consider the pure Alfvén mode separately.
It should again be noted that in the event that
B,, = 0 the system (3.2), (3.3) decouples into two
pure Alfvén modes and the pure gas-dynamic case,
the latter having been solved in I, In order to more
clearly reveal the nature of the method outlined
at the close of the last section, we now mimic the
steps indicated there.

With an obvious change of variables, we write
the basic system as
ou _ B 9 au

_,0u 9 _ 59
at o et at oz

— = e

(4.1)

On introducing the Fourier transforms for u(z)
and b(z), we obtain

{Z‘J = 51; f_: exp (—tkz) exp (—At)(:o] dk, (4.2)

Ao Foz in]
iBk &k’
and u,(k), b, (k) denote the transformed initial data.

A convenient representation of the solution is
in terms of the convolution product

[u} R [uo(x)]
For the case 5 = ¢, the solution for R is easily
found to be

_exp [—(z 4+ B)*/4et] [2 1]
R(-'l’z') it (4:1!'60% [1 lJ

where

(4.3)

(4.4)

I3

exp [—(z — Bi)*/4el]| 1 —1]
+ (4’:7"6t)% [_ 1 J. (4 5)

raf= N

This is immediately seen to give a diffusing wave
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moving to the right with a speed B and one to the
left with a speed — B.

When 7 # ¢, we must seek an asymptotic solu-
tion. The asymptotic solution only depends on the
power series representation of the eigenvalues and
eigenvectors. These are easily computed, and if we
denote the eigenvalues by A, and A_ and the cor-
responding eigenvectors by ¢, and q_, their series
representations are

\e = kB + 3(n + Ok’ + O,

qt=(i1-+0@y
i1

(4.6)

4.7

As is shown in I, the above terms are sufficient for
the lowest-order calculation of R(x),’ which is then
easily shown to be

Re) ~ SR [=C + BO/2( + )] { J

(S

(27 (e + 1]

)

_%}- (4.8)

This has the same form as (4.5) and for 4 = ¢ is
exact. The asymptotics hold for dimensional time

¢ >> max [(u/agp0), (1/05a3)];
|z £ Bt| < O(th).

[

4 &P (=@ — BY/2c + 1)
2e(c + 1]

(S
[

The time scale is roughly the mean free path and
80 is quite short under normal circumstances. More-
over, (4.8) has the é-function property as ¢ — 0,
and so we recover the correct initial data. This lends
support to using the solution for all time.

As an illustration of the use of (4.8), we consider
the following simple problem for Eq. (3.3). Let

b.(t =0) =0, u(t = 0) = UH(-2),

where U is a constant and H(x) the Heaviside func-
tion. The solution therefore gives the evolution of a
transverse shear discontinuity. A simple calculation,
using (4.8), then gives

wi, t)| [1lU e+ Bl
L):(ac, tJ B L I <[2<e ¥ n)t]*)

+ [_ j % erfe <ﬁé—f+)tt];> ,

x(2) —

AV e + (m+ Oy + ¢sin’a + (9 + 6] — v(29 + ¢ + &6 cos’ a — 76 cos®

375

where erfe (x) denotes the complement of the error
function. This leads to diffusing waves moving to
the right and the left with Alfvén speed B. From
the properties of erfe (x), i.e.,

lim erfe {(z/t) — 2H(—2),

t—0
it is easily seen that as ¢ — 0 the initial data are
recovered.

An important feature of the fundamental matrix
(4.8) is that as B — 0 the transverse velocity and
field perturbations remain coupled, whereas the same
limit (B — 0) taken in (4.1) uncouples these effects.
The latter is correct; the nonuniformity is due to
the series representation (4.6), (4.7), which is not
valid as B — 0. (It is, however, valid when ¢ ~ 1,
as is easily seen.) The same type nonuniformity
appears again in Sec. 5.

5. GENERAL ONE-DIMENSIONAL CALCULATION

From the outline of the method of solution given in
Sec. 3, only the eigenvalues, \, to O(k*) and the
eigenvectors, q, to O(1) of A(—1k) are necessary in
the asymptotic evaluation of the fundamental ma-
trix. Symbolically, if we write

N =AY + B + 03, (5.1)

q=q" + 0®k),

only AV, A, q” are necessary for all the eigen-

values and eigenvectors. The calculation of these

quantities follows from standard perturbation

methods (see Sec. 6 where a slight departure oceurs),

and we merely list the results of these calculations.
One determination leads to

(5.2)

N = [E/6¢ + DIF + OF), (5.3)
qo = [Xy O} 07 _ly 0] + 0<k): (54)
g% =7 + Ok). (5.5)

The four remaining eigencalculations are intimately
connected, and we have distinguished the above root
by a zero subscript. The remaining roots are given by
N = G0+ £ (6 +)° — 08D, (5.6)

where we have written v for x> 4+ 1 (this can be
shown to be the ratio of specific heats)

2NV20° 4 4) — 476 cos’ a !

5.7
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" sin @
N P? gin o
= fOA") =00 "* — q) cosap + OF).  (5.8)
q
x\" sin
ADAD? )

Henceforth we adopt the convention that g rep-
resents only the lowest order.

The factor (A\*"’) has been inserted to exhibit the
arbitrariness in q and can take on different values
for different A\“’. The “inviscid eigenvalues” A’
are, of course, the normal wave speeds of hydro-
magnetics. Removing the normalization (2.6), (2.12),
we can write A" as

A = £ (1/a) (b5 + ¢ = (B + )’
S T H ) GRS
where
b = Bi/upo, Ag = (5.10)

Here A, is the so-called AlMvén speed and b? is
the equilibrium magnetic energy per unit mass.
It is customary to write A’ as

\© +(c;/a,), F{c./a,),

b2 cos’ a.

(5.11)

where ¢, denotes the value of the slow locus and
¢, the value of the fast locus. This, of course, de-
pends on the relative magnitudes of ¢, and b,.
For our purposes we find it more convenient to write

v = £(1/a)(3{b; + c5 + sgn (5 — b))
(e — ba)* + 4c3bi sin® ) ))?
+G{6" + v +sgn (y — ¢
"y — 6) + 46 sin® ),
where sgn ( ) represents the signum function. {The
branch of the square root is chosen such that
l(c; — ) = |2 — b%.] We then see that A

reduces to the acoustic speed when b, — 0 and when
sin @ — 0. In the same way

+(1/a0)(3 {5 + ¢ + sgn (b — &)
[ ~ b + 4c3b3 sin® a)t})}

= 2G{¢ + v +sgn (6 — 7)

1l = 6)° + 446 sin’ o )},

so that A" reduces to the Alfvén speed when
sin a« — 0 and when b, — 0 \{” = 0). Furthermore,
we take the eigenvector normalization f(\) so that

(5.12)

1
)\()

(5.13)

E. P. SALATHE AND L. SIROVICH

)\(1)

)\(1)’
_ 1
Qe = os [H (B — )]

~( =y eote |,

1)
*a

DAY — y)/8sina

(5.14)
A sin «
)\(l)’ : in o

1
cos [aH{(c; —

Qia = ()\“) - 7) cosa |,

b3)]
WY sin «

(1)()\(1)’ ’Y)/0 |

(5.15)

where H( ) represents the Heaviside function. We
also require the eigenvector magnitudes which are
given by

(th)z
_2D\(6° ~ y cos2a) 4 (v — 6)y cos’a] (5.16)
- cos’ [aH(c; — b3)] >
(qta)2

2[>\‘” (8* — v cos 2a) + (y — 8"y cos’ o] 6.17)

sin’ a cos® [aH (b5 — c5)]

The choice of normalization was dictated by the
desire to obtain representations which are uniformly
valid for all & and 4.

As an illustration of the general one-dimensional
solution, we consider the simple problem of weak-
shock initial data. Let

= 5H(-2),

where § is a constant vector giving the strength of
the jump. Then, from (3.9), (3.12), and (3.14), we
have

b quO T
= f
(g)® 2 ° A/t
-4, )\(l)t
+ Z q)% 2;(4-;:(2)0% ; = =%a, :!:A,

where g,, A, and A\{*’ are given in (5.7) and (5.12)~
(5.17). This solution represents four diffusing waves
traveling at the normal wave speeds of nondissipative
magnetohydrodynamics and a residual effect at the
origin.

In the limit o« — 0, the solution breaks up into
the Alfvén mode discussed in Sec. 4 and the con-
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ventional gas-dynamic mode discussed in I. When
the applied magnetic field is normal to the direction
of variation, there are only two propagating waves.
These are given by the general solution in the limit
o — 3m. The other two waves no longer propagate,
but form a residual effect at the origin which is not
given by the limit of the general solution as a — i.
This case is discussed in the next section.

6. PERPENDICULAR APPLIED FIELD

When the steady magnetic field is normal to the
direction of variation, several unique features pre-
sent themselves. As already mentioned, this cal-
culation must be performed separately in as much
as it is not given by taking the limit of the solution
in Sec. 5.

First we note that the five equations (3.2) de-
couple’ as follows:

[(8/3t) — ikA, + K*Alv = 0, (6.1)
with
p
ve= %! 6.2)
T
b
0100
a=|t0x "] 6.3)
0 x 00
0 6 00
[0 0 o000
a=|0 EF 000 (6.4)
0 0 0
10 0 0 e
(0u,/dt) + 7k, = 0. (6.5)

The latter is just the diffusion equation, and its
solution is, of course, immediate. We now con-
centrate on solving (6.1).

It is advantageous to briefly discuss the inviscid
solution gotten by setting A, = 0. The fundamental
matrix for the equations is given by (3.8), with
A = —gkA,. A straightforward calculation shows
that the eigenvalues of A, are

AN=20,0, —y, +v, (6.6)

. 7 Note also that the transverse mode (3.3) also decouples
into two diffusion equations.

IN COMPRESSIBLE MAGNETOHYDRODYNAMICS
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where
v = (6 + 9} 6.7)
and the corresponding eigenvector matrix is
¢ X 1 1
s, = 0 0 —v ’ 6.8)
x0 -1 x «x
-y 0 g 6

where the columns are the eigenvectors. On carrying
out the integration, we have for the fundamental
matrix

8y O 0 0
Re=s/ 0 @ 0 0 s (6.9)
0 0 o4 0
0 0 0 3z — »i)

where S;! is the inverse matrix of S;. This then
leads to waves moving to the right and left with
speed », as well as a residual effect at the origin.
If, for example, we take as initial data®

b)
0
Vo = | |H(—2), (6.10)
0
0
then the solution is
0H(—2) /v’
v, = 65; (X/'Y)H(—'x) (6.11)
(1/25H(—2z — »t)
(1/2H(t — )
The expression for density, for example, is
P -1 )
= § (L"F‘—)H(—-x) + 51/—2[{(—1; — i)
+osH—z+v).  (6.12)

The evolution of density is indicated in Fig. 1.

An important feature of this calculation is that
A = 0 is a double eigenvalue. Therefore, aside from
normalization the corresponding two eigenvectors
may be chosen in an infinite variety of ways. This
has no bearing on the inviscid solution but is ex-

b“ This corresponds to a devsity discontinuity in a shock
tube.
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Fre. 1. Evolution of a density discontinuity for perpendicular
applied field—nondissipative case.

tremely important in the dissipative solution as
we now show.
The fundamental matrix of (6.1) is

1 7 .
R= 2 j; exp (—1kx)
-exp [(ikA, — K A.)t] dk. (6.13)

To carry out the integration we need the eigentheory
of the matrix —kA; + k’A,. Using the methods of
I we may show that the eigenvalues of this matrix
are non-negative and are zero only for ¥ = 0. Then
the theorem of I states that the power series rep-
resentation is sufficient for the asymptotic evalua-
tion of R.
Expanding the eigenvalues

N = 1ak + BK* 4+ O(K"), (6.14)
and the eigenvectors
q = x + iky + 0, 6.15)

we obtain the following equations in the first two
orders:

(A, + a)x = 0, (6.16)
(A + o)y = (8 — A)x. (6.17)

Equation (6.16) has already been solved in (6.6),
(6.7), and (6.9). One point remains to be discussed
in connection with the degenerate eigenvalue A = 0.
For the inviscid theory, any two eigenvectors
spanning the null space of A, could be chosen, For
the dissipative case now under study, we have the
additional condition that (8 — A,)x must be ortho-
gonal to the null space of A, (since A, is symmetric).
In this case we must therefore write

x=1[0,0, 0, —x] + 2[x, 0, —1, 0] (6.18)

and determine z by the orthogonality condition.’
The algebra is straightforward, and we are led to

B. = tl((6° + 1) + P F {{[(1 — 6°) — yP.°
+ 46°(1 — P)YH/2(68 + 01,  (6.19)

® Choosing z = 8/y and z = o (ie, 1/z = 0) gives the
previous choice of eigenvectors corresponding to A = 0.

AND L.

SIROVICH

2o = [(6Pn + (6 = 1) = {{1 — &) — vPu)

for the two roots @ = 0. The quantity P, is defined
by

P, = e/t = poc./opx (6.21)

and it is referred to as the magnetic Prandtl number.

The calculation of 8 for the remaining two eigen-
values is more straightforward, and in an obvious
notation

Bu = (¢ + m) + Xt + 6°1/2°. (6.22)

The expressions (6.18)~(6.22) furnish all the terms
of S, S;', and D,, and with (3.12), (3.14) the
present problem is solved. Inasmuch as the expres-
sions under study are unwieldy, the explicit form
of the solution is not given in the general case. In-
stead, we consider three special cases. This is suffi-
cient to show the nature of the solutions in general
and their relation to the inviscid case (6.12), (6.14).

CaseI, P, =1 (e = &).
B: =¢€ 2, =0,
B- =¢/¥’, 2. = (" —1)/9,
Bar = DHE + m) + 0" — /2" = 8,;
0 »»—-1 1 1

(6.23)

S, = 0 0 —v v
6 —X X X
—x — 8 ¢ @

S;' is obtained by transposing S, and normalizing
each row of the resulting matrix.

ek’ 0 0 0
0 &4 0 0
D2 =
0 0 —ik+ 8K 0
0 0 0 +ivk + BE
The asymptotic fundamental matrix R, is therefore
—e—z’/4et 1
(4rel)? 0 0 0
0 Ve—v’z’/4e¢
_ (4ret)? 0 0 -
RO—SO 0 .
0 e-(z+rt)’/4ﬂ,t
O TGy O°
0 O e-—(z~vt)"/4ﬁye
] O Tamy
(6.24)
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Applying this to the weak-shock initial data (6.10)
we obtain

f— 0 ]
ot c[ ]
2y 2@ et)
v = §S, 1 t] (6.25)
—§ ’
1 erfo l:x — Vt:l
|47 T 28,07 ]

and, in particular, the density is given by

= 6[ 22 5 1 erfe (( t) ) 12 erfe (322;;;)4)

+ 37 enfe <(2;3—t) )]

The evolution of density is sketched in Fig. 2.
Case I1, P,, — 0.
B ~¢/(6 + 1),

(6.26)

B- ~ H(E + DY,
8y NV 0; _(1/0);
o~ [P+ 1) + X5/ =8,

In obtaining these expressions, we have retained
terms of O(¢P,) = O(e¢). This is necessary, as
shown momentarily, to ensure uniform results.'®
In addition, we have regarded £, {, # as being of
the same order, as is the case for most real gases.
An expression for S, is

(6.27)

] —X 1 1
5, = 0 0 —y ¥
0 #+1 x x
-1 —x# 9 6

The asymptotic fundamental matrix R, is easily
obtained, and if it is applied to the weak-shock
initial data (6.10), we obtain
& + 1)*] ]
2t

iy

erfe (

—x . )

2°(1 + ¢) 26" + DAY/ |
1 z + vt
™ erfe <~——~;(2 8.0) )

_L x — vl
i 3,7 erfe ((25,0*) J

0 The limit P, — 0 must be viewed as ¢ — 0, as is re-
quired by the comment at the close of Sec. 2 in regard to L.

v~ 85 (6.28)
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Fia. 2. Evolution of a density discontinuity for perpen-
dicular applied field—dissipative case with magnetic Prandtl
number P, = 1.

In particular, the expression for density is given by

oo 4221
P O £ 1) O\ 2t

2

X v
570 1 &) ot <[2g(02 F 1) t]*)

+ 1 erfe (____;x + Vt) + L (——-—fgx — yt)}'

° (28,1) 4° \ (28,1
It is now clear that ¢ cannot be set to zero since it
oceurs in combination with {. We have, however,

that for ¢ bounded
1 b
Q—i_t ) ] — 2H(—x).

2
lim erfe [x(e
€0

The evolution of density is shown in Fig. 3.

It should be noted that the “wave’” which re-
mains at the origin exhibits a discontinuity within
the structure of the wave. For long times this por-
tion exhibits two different structured regions interior
to the wave.

Case III, P,, — .
Bs~ E/'Y; B~ 75/1’2; 1/Z+ ~ 07
1/z2. ~ /8, B, ~ €07/2°.

In correspondence to the previous case,'® this
limiting case is to be viewed as ¢ — 0. Again we
have regarded £, ¢, » as being of the same order,

{
7 i
‘—q‘\#‘ﬁ 8% I
3 E 2v2
]

-l
ton~! &

_I_

(6.29)

(6.30)

(6.31)

Fia. 3. Evolution of a density discontinuity; P, = 0.
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F1a. 4. Evolution of a density discontinuity; Pn = <.

which accounts for their absence in 8.,. An expression

for S, in this case Is
6 x 1 1'5
0 0 —-» ¥ )

x0 —~1 x x
{—y 0 g 8

The asymptotic fundamental matrix R, is easily
obtained, and on being applied to the weak-shock
initial data (6.10), we obtain

9 erfe (__’ii?__)
v (2yet)?

% erfe [x(%i)%]

1 <2v(fc + Vi))

P~ 65(} (6.32)

rel LAWY

1 2v(z — i)
| 37 erfc( 8(2e0)F )

In particular, the expression for density is given by

JU S S [ (:Lﬂ
p 6{27”2 erfe ((27«511)*) -+ 9 erfe iz 3%

1 g_gx+pt> _l_(&x—vt)
+ 4z e (e et ) T \e @/ 639

AND L.

SIROVICH

For t bounded we may proceed to the limit § — 0,

lim erfe [x(x/2¢0)1 — 2H(—x).

0
Again we mention that this limit is not uniform
in time. No matter how small £ may be, for suffi-
ciently large { the wave is diffuse.

The evolution of density in this case is shown in
Fig. 4. The “wave” at the origin again exhibits
a discontinuity in its interior, and for long times
two different structured regions appear.

In both limiting cases (P, — 0, P, — ), the
wave structure which resides at the origin contains
a portion which is “stiff” for a long time on the
scale of the diffusing portion. Inspection of the
coefficient in (6.28) and (6.32) shows that these are
of a different form in each of the cases. For all
situations it is easily seen that the inviscid solution
(6.11) is recovered formally by allowing the dis-
sipation parameters (£, n, ¢ {) to vanish. This
limiting procedure is not uniform in time, and
ultimately the diffusing solution takes over. As the
two cases P,, — 0, P,, — « show, a further non-
uniformity ocecurs when the dissipative parameters
are of different orders. We then find that a portion
of the solution remains *stiff”’ (retains an inviscid
form) while the other parts of the solution diffuse.
The part that remains *‘inviscid” cannot be fore-
cast from an inviscid theory as the analysis of this
section has shown,
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