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The discontinuous forms of the full Navier-Stokes equations are derived. A general method of
solving linearized initial and boundary value problems is discussed. The following specific examples
are solved: initial value problem in an unbounded domain, shock reflection from an insulating wall,
shock evolution in a finite shock tube with insulating walls, and reflection of a sound wave from an
isothermal wall. In all cases the dissipative parameters and the gas law are left arbitrary.

1. INTRODUCTION

N this paper we consider compressible flows gov-
erned by the Navier-Stokes equations and having

boundaries which are possibly moving. Solution to
specific problems, however, is greatly facilitated
by having a flow field defined everywhere. To achieve
this we define a flow field behind a material boundary
and regard the boundary surface as a distribution
of sources. The derivation of the Navier—Stokes
equations under such conditions is carried out in
Appendix A. It is found that the source strengths
have simple relations with the stress, heat conduc-
tion, ete., of the original problem.

In Sec. 2, after formulating the general problem, a
perturbation solution is sought. The perturbation
parameter is a Mach number, and to lowest order
one is led to the linearized Navier-Stokes equations.
It is then shown that the general solution to the
latter can be reduced to solving an integral equation
whose kernel is the solution of a comparatively
simple initial value problem. Several advantages of
this method now appear.

It is found that an asymptotic analysis of the
kernel (referred to as the fundamental matrix) can
be performed independently of any specific problem.
This analysis is carried out by means of a theorem
proved in Appendix B. The asymptotic fundamental
matrix is obtained in terms of elementary functions
in Sec. 3. It is, in fact, the case that this asymptotic
solution is the best that can be obtained from the
linearized Navier—Stokes equations. This is meant
in the sense that any higher approximation must
come from kinetic theory. The solution to any pure
initial value problem is then given in terms of a
single quadrature on known functions. For large
times this can further reduce to a closed-form ex-
pression only involving the total mass, momentum,
and energy added at the initial instant. The inviscid
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theory is briefly discussed and is shown to be a
nonuniform limit of the dissipative theory.

Another feature of the present method is that,
by defining a flow field in a complementary region
in an appropriate manner, the solution to the integral
equation can be considerably reduced and in certain
cases made trivial. In Sec. 4, problems involving
stationary insulating walls are considered. The in-
tegral equation is completely eliminated in this
case, and the problems of shock reflection and a
shock in a finite shock tube are solved.

In Sec. 5 the problem of a sound wave being re-
flected from an isothermal wall is considered. By
the proper choice of the complementary flow, the
problem is reduced to a single integral equation.
This is solved, and it is shown that the heat flow
at the wall can be obtained without a knowledge of
the full flow field. It is, in fact, a general feature
of the present method that one may determine quan-
tities such as heat flow and stress at a wall without
the full determination of the flow field.

A point of note in the method presented here is
that no assumptions need be made on the nature of
the fluid. In the general method and the problems
which are worked out, the Prandtl, Reynolds, etc.,
numbers as well as the gas law are left arbitrary.

2. FORMULATION

We consider compressible fluid flows governed by
the Navier—Stokes equations in domains with bound-
aries which are possibly moving. As becomes clear
in the later analysis, it is advantageous to have a
flow defined in all space. To accomplish this we
replace all boundaries by surfaces with distributions
of momentum and energy rates and also of stress
and heat flow. The resulting discontinuous Navier—
Stokes equations are derived in Appendix A, [(A12),
(A9)] and for the case of impenetrable boundaries,
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(A10), are
(9/98)p + (8/0x)pu = 0,
(8/0t)pu + (8/9z,)puu; + (8/9%)p — (3/9x)-P
= [pn — P-n] §(8),
(3/8Y)p(e + 3u’) + (8/8%)- pule + $u)
+ (8/3%)-(pu — P-u) + (9/9%)-Q
= [pu — P-u + Q]-n (S),
P)i; = pli; +u;s — 38:,V-u) + BV -u by,
= (ulun; +um; — fuen 8,] + Blu-n 5,,]) &(S),
Q = —«(3T/0x) + «[Tn] (S).

The notation is discussed in the Appendix A; in
short, S = 0 denotes the equation of the boundary,
n the normal to S = 0 (directed into the region of
interest), and [F] the jump of F across § = 0. The
flow field in the formerly excluded portion of space
can be chosen arbitrarily (provided it satisfies the
Navier-Stokes equations) and is referred to as the
complementary flow. For example, if we consider
flow past a finite body, S is closed and we can take a
constant state in the interior of S. The conservation
equations in (2.1) then can be interpreted as having
sources of momentum and energy rates which are
equal in magnitude and oppositely directed to the
comparable effects of the fluid on the body. In
practice, less simple minded complementary flows
serve to simplify solution to a problem.

The conservation and constitutive equations (2.1)
now have to be augmented by thermodynamic rela-
tions which specify the fluid

(2 e(P; T): p= P(P; T);
p — p(3e/8p)r = —T(3p/dT),.

The last of these is, of course, just a compatibility
relation. Relation (2.2) holds piecewise in each flow
region.

It should be noted that in (2.1), (2.2) and in what
follows no restriction is made on the dissipative
functions p, 8, k nor on the gas laws.

We now restrict attention to one-dimensional
motions in the x direction for which u, = u; = 0.
In one dimension, bounded flows take place between
parallel planes. For simplicity we consider the bound-
ary to be a single plane,

2.1

2.2)

z =), U =dx/dt, 2.3)

where U is the velocity of the plane. The surface
singularity is

@T/61) + x(ou/o2) + (3Q/02) = (@] 5(5),

8(8) = o[z — xo(H)].
Next we introduce equilibrium quantities’
po; To, @y = [(3po/ apO)To]*} C, = (3e/0To),, (2.5)

an unspecified length scale L, and the following
normalized quantities:
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= Z — %ot 5= P P
z= L’ { j AR P 2 )
~ l o Cv ¥
u = ao ) T - (agT()) (T - To) 3 (2.6)
Pii = Pii/Poagy Q = Q/Poag(CaTo)%-

This normalization is carried out in all space and
the field variables 5, T, i are regarded as small
perturbations. The latter is equivalent to a Mach
number expansion. On carrying out the normaliza-
tion, linearizing (i.e. carrying only the first order
in Mach number) and restricting the equations to
one dimension, we obtain

(90/91) + (ou/dx) = 0,
(9u/d1) + (8p/97) + x(8T/d2) — (8P/0x)
= [p — P] &),
2.7
P = {(du/ox),
Q = —&@T/ox) + £[T] 8(8).

In (2.7) tildes have been dropped with the under-
standing that all quantities are dimensionless ac-
cording to (2.6).

Also, we have defined

= <ﬁ + fjEg)/aopolh

£ = k/p,C,Lay, (2.8)
x=@—Dn
and use has been made of
v = C,/C, = ci/as, (2.9)

which may be proved with some manipulation. ¢,
is the adiabatic speed of sound.
To solve (2.7) we introduce Fourier transforms,

e.g.,

p = f exp (tkz)p(z) dx, (2.10)
and on combining terms we have
(ov/at) + Av =G, (2.11)

1 Note that ao is the isothermal speed of sound.
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with

v={(p,u,T), (2.12)
0 —ik 0

A=|—ik ¥ —xikl, (2.13)
L0 —xtk &K
[0

G=\|[p—P exp [tkx,(t)]. (2.14)
LIQ] + <k¢[T]

Since by our formulation v is defined everywhere,
there is no difficulty in defining (2.10).

To solve (2.11) we introduce the matrix V(k, )
which satisfies

(av/ot) + A(—ik)V =0, V(i =0) = 1. (2.15)
Then writing
vt =0) = v, (2.16)
the solution of (2.11) is
v=Vv,+ VoG, (2.17)

where the circle denotes the time convolution

12
fog= fo (¢ — 9)g(s) ds.
Fourier inverting (2.17), we obtain

v(z, ) = V(z, 1) * %) + V(z, ) ® G(#), (2.18)

where the asterisk denotes the space convolution

fro=[ fe—yeway (219
and the circle and asterisk the space-time convolu-
tion [the latter takes a simple form as can be seen
from (2.14)].

We pause now to point out several advantages
to the present formulation. From (2.18) we see that
the solution of any problem rests on finding V,
which by (2.15) is the most elementary of initial
value problems. [V(z, ) is referred to as the funda-
mental matrix.] Subsequent solution of the problem
then involves an integral equation in G(t). The
solution of the latter problem then furnishes G
without an explicit knowledge of the entire flow
v(z, t). In many applications, only G (which gives
wall stress and wall heat flow) is demanded from a
solution. This therefore furnishes a short cut in such
cases. We find that a full evaluation of (2.19) is
unfeasible and asymptotics must be resorted to.
In the present formulation the asymptotic analysis

may be imposed on V alone, and this is a relatively
simple procedure. Lastly, it is once again emphasized
that, in the above analysis and that which follows,
no special assumptions on the nature of the gas
is ever made. This is true for both the dissipative
parameters and for the gas law.

3. EVALUATION OF THE FUNDAMENTAL MATRIX
AND SOLUTION OF THE INITIAL VALUE AND
AND RELATED PROBLEMS
From (2.15) we have that
Vi, t) = exp [—A(—1k){]

and therefore

3.1)

Ve, §) = 211;/ exp [—iks — A(—ik){] db.  (3.2)
The solution to the pure initial value problem, G =
0, v(t = 0) = v,, is given by
vV = V * Y,

1 @

= 5= | exp [—ike — A(—ik)tIva(k) dk.

(3.3)

The evaluation of V and also v rests on first evalua-
ting exp (—At). As preparation for this, we demon-
strate certain properties of A.

We observe that A is symmetric,

Ai,' = A,','. (3.4)

(Note that A is not Hermitian.) Denote the eigen-
values of A by d*(x = 1, 3) and the associated eigen-
vectors by q*. Then from (3.4)

@ — dq"-q" = 0. (3.5)

Therefore q* is orthogonal to q” if d* = d°, and by
construction one easily sees d* = d°, u # v. Note
that a vector may be orthogonal to itself under the
dot product of (3.5), i.e., the dot product is not an
inner product. However g, and hence q-q, may be
chosen to be an analytic function of z = 7k, so that
q+q = 0 at most on an isolated point set. This, as
is clear, is of no importance.
Consider the matrix of eigenvectors

S = - (3.6)

The inverse of S;; is
(™ = ¢i/d’+¢".
Denoting the diagonal matrix of eigenvalues by D,
D,, = d"5,, 3.7

we have

A = SDS™. (3.8)
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Substituting in (3.3) we obtain easily

3 © Bk o0
iz, ) = O & [ exp [—ha — iy LT g,
a=1 21 J_w q".q“
(3.9)
This summation splits the solution into modes which
are orthogonal under the dot product. These modes

have the character of waves as seen shortly. Note
that if a mode is absent in the initial data, it will

be absent for all time, ie., if q“+v, = 0, then
q“-vk) = 0.
Next we write
A =AY + A®, (3.10)

with

0 -k

AV = -k 0 —xk |.
0 —xk O

Choosing ¢ = (¢, ¢», gs) such that q-q¢* = 1 (¢*
denotes the complex conjugate) for the moment,
and forming

q*-Aq = d,
we see, since A' and A” are real symmetric,
Re (d) = sz IQ2|2 + £k2 IQ3]2 > 0.

Moreover Re (d) = 0 if £k = 0. Conversely, if
Re (d) =0, ¢; = 0,7 = 2, 3 and on substituting into
the matrix equations this proves that £k = 0. Hence
by continuity, Re (d) is bounded away from zero
for k # 0. Finally, we observe that A/t can be
regarded as the perturbation of a Hermitian matrix
and therefore susceptible to classical perturbation
analysis.” In fact, we find easily that d“ has a con-
vergent power series at the origin and that ¢* can
also be taken to be analytic.

For convenience we specify L of (2.12) so that
¢, (2.18) is unity. This choice yields an L which is
of the order of the mean free path.® The only re-
maining dissipative parameter, £, is inversely pro-
portional to a Prandtl number and hence is of O(1).
It is clear therefore that the series expansions of
q and d have coefficients of O(1). In fact, a straight-
forward analysis gives

2 K. O. Friedrichs, Perturbation of Spectra in Hilbert Space
(American Mathematical Society, Providence, Rhode Island,
1965).

3 The term “mean free path” becomes ambiguous for
nonsimple gases, and our use of this expression should only
be taken as a generic terminology.
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d' = dj + O(®) = vk* + O,
& =di + 0 = —~+Hk + ok® + 00,

8.11)
Q@ = q; + Ok = [1,4}, x] + Ok),
& = di + O() = vHk + ok + O,
q3 = (lg + O(k) = [—1} 7*7 _'X] + O(k))
with*
c=1+[(y—DHE »=¢&~  @B12)

From the already proved properties of d, we may
use the theorem proved in the Appendix B. This
permits us to replace d“ by d and ¢* by ¢% and obtain®

>~ 1 e . a5-q5 1
v- Yoo —ike — ) BB g 4 0, (2
2 o ) o (—ike 50 g 00

(3.13)

Vs + os(ﬁ).

From the above remarks it is clear that the numerical
coefficient in the correction term is O(1). Further,
since ¢ is physical time normalized with respect to
the mean time of flight, large time in the asymptotic
sense can be very small on a macroscopic scale.’
Furthermore, Vyg is the ‘‘best” asymptotic form
which can be obtained from the linearized Navier—
Stokes equation. For, as is discussed in Appendix
B, the next approximation to V after Vyg requires
O(k®) in the expansion of d*, (3.11). From kinetic
theory” one finds that this term is given incorrectly
by the Navier-Stokes equations. Hence there is no
justification for seeking a higher approximation to
V than Vyg without resort to kinetic theory. An-
other feature of Vyg is that

Vas(t = 0) = 18(x). (3.14)

We may therefore use Vyg as a uniform approxi-
mation to V, and the above discussion justifies
replacing V by Vys.
Vs may be easily integrated, and one finds
1

Ve — &P (—2 /4v1) qoqg
NS —

(4mvt)t v
4 exp [— (= — 7 /40t] q3a5
(47r0t)% 2y
exp [—(z + +*1)°/401] qiq}
+ (4mat)? 2y (8.15)
¢ For an ideal gas of Prandt]l number 3/4, § = v, » = 1,

g = .

5 The quantity O;(1/t) has been defined in Appendix B
to be a quantity which vanishes, for large ¢, slightly less
rapidly than 71,

6 The mean free time in a simple gas under normal con-
ditions is O(1071°) sec.

7 L. Sirovich, Phys. Fluids 6, 10, 218 (1963).
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28 LAWRENCE SIROVICH

The solution therefore appears as diffuse waves
moving to the right and left with a speed ¥* and a
pure diffusion mode which remains at the origin.
The speed 4! is just the adiabatic speed of sound in
our normalization.

To complete the discussion of the asymptotic
evaluation (3.13), we observe that the error estimate
in (3.13) places a restriction on z. That is, the solu-
tion is valid only in regions for which it is of lower
order than O(1/t). In reference to (3.15), we have
for modes 1, 2, and 3, respectively,

lz], |2 — ¥}, |z + v}| < (¢ In

Further, from the remarks of the previous para-
graph and Appendix B, we know that a kinetic
theory analysis is necessary for larger regions. In
what follows it is tacitly understood that solutions
are valid in regions for which they are of lower order
than O(1/¢).

Inviscid Limit

One may now inquire about the inviscid limit. Due
to the normalization (2.16), some care must be
taken. To accomplish this limit we relax the con-
dition that the length scale L is chosen proportional
to the mean free path. The inviscid limit is then
found by taking £, ¢ — 0, and we find

- _ % Qo o _ .3
lim (Vys) = Y o(x) + 9y 8z — v%)

o, §0
3.3
+ %‘L 8z + +10).  (3.16)

As one may easily show this is exactly the solution
of the linearized Euler equations. One should observe
that the limit in (3.16) is not uniform in time, . In
other words, no matter how small the dissipation
may be, for large times the solution is not inviscid.

Solution of the Initial Value Problem

The solution to an initial value problem is simply
given by
3.17)

This furnishes a solution to the initial value problem
in terms of a single quadrature and is the best solu-
tion of the linearized Navier-Stokes equations in
the sense described above. In addition, from (3.14)
we have that (3.17) assumes the correct form at
t=0.

V(z, 1) = Vys * ¥,

Resolution of an Initial Discontinuity

For many forms of the initial data the quadrature
in (3.17) may be carried out. For example if

3
v, = |0| H(x — D) = hH(z — D), (3.18)
T
with 5, T, constants, we obtain
_ 1 D—=z|, 1,
vs(D) = 2y {erfc [ 26 JQqu h
D—(x— v’t)] a5
+ erfe [ 3oD)} g B
D— @+ v*t)] LR }
+ erfc[ 30D D) hp. (3.19)

This solution describes the evolution of a weak
shock initially at # = D. For later purposes, it is
convenient to consider the complementary problem
having the initial data

Vo = hH(D - x).
Denoting the solution of this problem by ¢4, we have
. _ 1 z =D\,
V(D) = 2 {erfc ["’_2@0; jl%% h

_ _ 2.2
+ exfo [D @ 'yt)] 6

2(ct)t 2
D—(x+ v*t)] qiqs, }
+ erfc[ 2D} B h,. (3.20)
Period of Final Decay

A useful solution is the fundamental solution. This
can be regarded as the evolution of a ‘“point ex-
plosion” at the initial instant,

3
a| é(x) = f 8(z),

T

v, = (3.21)

where f is a constant. The fundamental solution
which we denote by v, is given simply by

V, = Vst.

To find another interpretation to (3.21), we con-
sider the solution to the initial value problem (3.17),
for initial data which may be said to have finite
extent. More explicitly, we consider initial data of
the form®

(3.22)

lz| > e/L.  (3.23)

Recall that 2 has been made dimensionless with

Vo = Vo(.’.l:) = 0, for

8 By more careful estimates, the same results hold, for
example, for initial data which is of exponential type at .
Our choice of compact support initial data is made only for
convenience.
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respect to L, the mean free path. Therefore £ meas-
ures the extent of the initial disturbance in dimen-
sional units, Taking the Fourier transform of this
initial data, we obtain

vo(k) = f 7 exp (kv de
2z (3.24)
= £+ O(ik £/L),
with

f= [_m vo(2) dx.

The estimate of (3.25) is obtained by straightfor-
ward expansion f, the lowest order, is immediately
identified with the total mass, momentum, and
energy of the initial data. Applying the same pro-
cedure used in finding the fundamental matrix, we
now have for the solution to the initial value problem
(3.23),

(3.25)

v = v, + (8/0)0,(1/9).
From (3.15) we therefore have
Vo~V
for dimensional time, 7,

> (&/L){(L/a).

29

The right-hand side is the product of the inverse of
a Knudsen number based on the extent of initial
disturbance, with the time it takes a sound wave to
traverse the initial disturbance. = is referred to the
period of final decay. In summary, the period of
final decay is described by the fundamental solution
associated with the total mass, momentum, and
energy addition of the initial disturbance.

4, BOUNDARY PROBLEMS

‘We now restrict attention to boundary problems
involving a fixed wall in which case we have

xo(t) = 0. 4.1)

Further, in such problems it is convenient to con-
tinue the problem by reflection in the fixed wall. That
is, we take

po(—9) = po(¥),

To(—y) = To(y), ,(4-2)
u(—y) = —u(y).
An immediate consequence of this is that
(T]=0=1[p— Pl (4.3)

Using the asymptotic form of the fundamental
matrix Vys (3.15), we then have from (2.18)

) v loo(®) + Yhuo®) + xTo(w)] dy

P X
SRS SN AR O € Bl _
= ‘)’(47?9(‘1)% f_m exp ( 4t ) 0 |lxpo(¥) To(y)] dy
T -1
. 1
L [ e —y— o)
+ 2v(4rot) f_w exp (— 4ot
- ; —1
_ 1 [ _e—yty
'27(4»-0'15)5 f_m expg(— Aot

-X

‘exp [—z/4y(t — 9)]
vldxy(t — 9}

X
0 Q)] ds
~1

-,

1 ‘J x[Q(s)]

o), 1[4««@ — 97 =P (

4o(t — 8)

=+ =9F

Qi) v [=po(®) + Yhuo(y) — xTo(¥)] dy

1

) |+ exp (__[x + 4}t — 97

Al
4o(l — ) )(—7* st. 4.4)

x |

(Note the boundary condition u = 0 at = = 0 is automatically satisfied.) If we consider an insulating wall,

[Q
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30 LAWRENCE SIROVICH

and the solution is immediate. For now the boundary
terms vanish and our solution is given by a pure
initial value problem by means of a reflection princi-
ple. This is illustrated by the following two problems.

Reflection of a Weak Shock off an Insulating Wall
We consider the initial data
v, = h[H(x — D) + H(—=z — D)]. (4.6)

By symmetry we see that the solution describes
the reflection of a shock, initially located at ¢ = D,
off an insulating wall at z = 0. This solution is
easily given in terms of (3.19) (3.20),

v = vg(D) + ¥s(— D).
Finite Shock Tube with Insulating Walls

4.7

The above can now be generalized to describe
the gas motion in a shock tube of length L with an
initial discontinuity (weak) located at D. Taking
the initial data,

vo=hi {H(x — 2nL — D)

— Hlz — 20 + )L + DI}, (4.8)

it is clear by symmetry that this leads to a de-
scription of the above problem; the solution is

v= Y f{vsx —2nL — D)

— vg[z — 2(n + 1)L + D]}.

Again by symmetry the walls are insulating.

4.9

5. REFLECTION OF A SOUND PULSE FROM AN
ISOTHERMAL WALL

To consider a sound pulse impinging on a wall,
we regard the wave as originating from a point
“explosion” at a distance D, i.e., we take initial data

Po -1 1
U |=—q v |8(z— D)+ g|+}| 6@z + D), (5.1)
T.. —x X

(d/v)*{p[p + (7/46)]}}e—(D/v)lp+(7/4v)l’+vt+(D7’/2a)

g measures the strength of the wave. This partic-
ular data give a single pulse moving to the left in
the right-hand plane®.

For comparison, we note that the solution in the
case of an insulating wall is

p 1

__4q _M> i
v = (droi)? exp ( 40t Y
T X

_Qx_‘_*i)_:_ﬁ)f> ; l

1ol (5.2

+ exp(
X

Restricting our attention to the right half-plane,
we see that the pulse moving to the left with the
adiabatic speed v* arrives at the wall at a time Dy
and is then reflected. It should be noted that no
residual effect is left at the origin.

In contrast to the above solution, we consider the
same problem, same initial data, (5.1), but with an
isothermal wall. In this case, [Q] # 0. On.imposing

the boundary condition that 7 = 0 at z = 0, we
have from (4.4) v
L X (D =AM
70,9 =0= (rot)t exp ( 4qt )
17 _[Q@]ds
1] o
[l =S g 69

To solve this equation for [Q(¢)], we employ the
Laplace transform. Denoting the transformed vari-
ables by the same letter we find

__2vqx(p)* exp (Dv'/20)
o'lp + (/491 + x*6p)?

o[ -Blrg] o

where p is the transform variable. Inverting the
transform

Q@) =

Q] =

9 { f
271'%. T

/) — X'Ip + /%)

dp

2~ (D/o}) [p+(y/40) 1 +pt+(Dy1/20)
f x'pe
1

[(6/r) — x'Ip + (v/4)

dp} = [Q@®]: + [Q()] 1. (5.5)

® This initial data are chosen so as to exclude the modes of pure diffusion and motion to the right. This is done purely
for simplicity since no complication arises in the more general situation.
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The second integral of the bracket may be inverted
directly.’® However, a much simplified expression
is obtained by recognizing that D is large in any
meaningful situation (since it is normalized with
respect to the mean free path). In order to evaluate
[Ql:, branch cuts between —v/4¢ and 0 and between
— o and —v/4c are made. The second integral,
[@l11, only requires the latter cut, and, we may move
the path of integration to the left of the origin so
that the integral is exponentially small for large
times. It therefore suffices to consider times

t =aD

with & = O(1). The evaluation of [Q({)];; then lends
itself to the saddle-point method. Denocting the
saddle point by p,, and the coefficient of D by E,
we have

I S 2
Po= 40 T 4g’
-1 4y
B = —f= @ — 1,
d’E _ 2
dp2 Po B 20a !

and after some manipulation we find

[ ~ X'qyD(D*=yt) exp [—(1/4e)(D—ty*)*]
T Al = XND =) Fy (o n) P arto)
(5.6)

The analysis of [@]; is the same as above when
t < D/y% For larger times the saddle lies on the
branch cut, and as a consequence leads to a higher
order result. The contribution from the branch cut
is readily evaluated by asymptotic means. To the
lowest order for all times we obtain

_ DyqxH(D — 4*)(D* — v8)} exp [—(1/408)(D — t})’]

QI =

@) o) — X1D* — +) + (yo/v)¥*)

. 3 4 yi2 — D2)5 _ (7152 —
+ 2xq(ﬂ3> H(v* D){erf ( Tol

Combining (5.6) and (5.7), we obtain [Q]. This
quantity, however, is just twice the normalized heat
flow at the origin. We therefore see that the heat
flow at the wall has been determined without knowl-
edge of the full flow field. To obtain the flow field,
the form for [@)] just obtained is substituted into
(4.4). From the latter one sees that after the pulse has
been reflected a residual layer remains at the wall
and further that the reflected pulse is modified. We
mention in closing that the interaction of an arbitrary
pulse with an isothermal wall is obtained from the
above result by convolution with the suitably formed
initial data.

ACKNOWLEDGMENTS

The derivation of the discontinuous equations
found in Appendix A was worked out jointly with Dr.
E. P. Salathé. A more general derivation, including
magnetohydrodynamic effects, will appear elsewhere.

The results presented in this paper were obtained
in the course of research sponsored by the Office of
Naval Research under Contract Nonr 562(39).

APPENDIX A: DISCONTINUOUS NAVIER-STOKES

EQUATIONS
Consider a closed surface
Fz,H)=0

10 Bateman Manuscript Project, Table of Integral Trans-
jorms (McGraw-Hill Book Company, Inc., New York, 1954),
Vol. 1, p. 246.

DZ)% ex <_ t27 . D2>}‘
P 4ot

and a scalar field p(z, t), then as is well known

a _ [ 9 / .
dtf,,pdx_j;atdx+ FpundF.

The volume integral is over the interior of F = 0,
and the normal velocity u-n given by
_oRfot _
|VF|
(n the outward normal of F, i.e., parallel to VF).
If, further, u is defined and differentiable every-

where,
4 = [ (% . )
dt_/;pdx ./; <6t + V-pu] dx.

‘We now consider a surface
S, ) =0

not necessarily closed. Further, p(z, ¢) and u(z, ¢)
are differentiable up to the surface S = 0 but may
be discontinuous across this surface. Now let F = 0
include a volume cut by S = 0, and consider

5.7

olr

I p dx.

= zd-z .
Denoting the volume cut out by ¥ = 0and S = 0
by F, and F,, then we may write

[=2

d
=7 p,pdx_*_dt F‘pdx.
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Then if

_38/at
VS|’

we have on adding and subtracting the appropriate
surface quantities

U-n =

d
I=fm (%?+V-pu>dx-|— . <5§:l—v-pu)dx

- fs [f(U —w]ndS, (Al

where S° is the portion of 8§ = 0 intercepted by the
interior of F and | ] denotes the jump across S = 0.

We now employ (Al) in deriving the discontinuous
forms of the Navier—Stokes equations. Also we allow
S = 0 to have source rates of mass, momentum, and
energy o, =, 7, respectively. We then have, using
the above notation,

d
dtﬁde—/ga’dS,

([ L)( + 5% P“) dx = fs {oc + [p(U —w)]-n} dS

(ﬁ-{—f )(atpu—i——puu +-—p——x-P>dx=fso {= — [(pn — P-n) — pu(U — u)-n}} dS

d

L[ e+ 1) ax
F

Y

We also need an integral form of the constitutive
equations, and this is taken as

P,

—Q — pun +uPm)dF + [ ndS. (A2
Se

—dx = f (um; + umn; — 2un 8;;)
F M F
+Byms, ar + [ Sigs
I S M (A3)
Q.. - _[ h
fpxdx— fFTndF+fS°KdS.

In the last two equations, account has been taken
of a surface distribution of stress, S;;, and heat
production h on S8 = 0. The ratio of viscosities
B/u is taken as constant. The formula (A1) may now
be applied to each integral, and we obtain

+ 9 ple + 3 + i-pu(e + 3u’) + i'(pu — Pu+Q)pdx
- r./ 0t ax ax

(+ L)

- f

aT\
ax/

ui'; + %5.‘,’ V'u - ;B;V'u 6,‘,’) dX

(A9)

(A5)

= [ 1= lpu = Pon = sl + 1I(U —w) +Qm} a5, (46)
+ P 8n s |

um; +umn; — 3uns,; + #u-n 6i,J} ds, (A7)

x= [ {‘—; - [T]n} ds. (A8)

Lo+ L)+

The integral form of the equations hold in arbitrary
domains and in particular in F; and F, so that the
left-hand sides of (A4)-(A8) vanish, and we have

_[P(U - 11) 'n],
= = [pn — P-n — pu(U — u)-n],

1= [pu — P-u — p(e + 3u°)(U — u) + Q]-n,
(A9)

Blu-n 5],

o =

S.',' = —u[um,- + un; — %u‘n 6,’,‘] -

h = «[Tn].

This has the following interpretation: Given the
source strengths on a singular surface and values
on one side of a singular surface, the values on the
other side are determined by (A9). In the work of
this paper we adopt the alternate view, that the
jumps determine the source strengths.

In applying the above formulation, we replace
material boundaries by singular surfaces, and fur-
ther, we consider only impenetrable boundaries;
hence, we take

(U—wen =0. (A10)
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In order to obtain the differential expression of
(A2) and (A3), we define

59) = [ 11 stes — u) as9)

(where N is the number of dimensions). As is easily
seen, this has the property

(Al11)

[ 1@ s ax = [ 1as,

where the volume integral is over all space. The
differential expressions then are

(8/98)p + (8/9%)-pu = 0,
(8/0t) pu + (8/0x;) puu;
+ (8/9x)p — (8/9%) P = = §(5),

L oo + 1) + L pute + 1)

d 9
+ o n — Pau) +2Q = 1 5(8),  (A12)

P =p; +u,; —%6; V)

+8V-u 8:; + Sii 5(8),

Q = —«(8/3x)T + h &(8S).

As a word of caution, the usual reduction of the
energy equation should not be carried out since it
leads to products of distributions which, in general,
are not defined.

With the above derivation the boundary con-
ditions appear explicitly in the equations them-
selves. Although the notion of surface discontinuities
has proved useful in perfect fluid studies, their use
does not seem to have entered other branches of
fiuid mechanics. To our knowledge the above deriva-
tion is novel.

APPENDIX B: ASYMPTOTIC EVALUATION OF THE
BASIC INTEGRAL

The theorem, proved below, is the one-dimensional
form a result which holds in any number of dimen-
sions.'! Because the one-dimensional form is of basic
importance in the calculations of this paper, we
include a proof.

Theorem: Consider

©

1= f exp [—u(k)t — ikzlp(e) dk,
with

1 T, Sirovich (to be published).

W [ p@ldE <M< =,
) max [p(8)| < M,

(3) Re (w) 20,
4) wk) =0 ifandonlyif &k = 0;
(5) wk) = +iak + gk° + O(|k[*), @, Breal, B # O;
6) uk) € C.
Then

I= f exp (—Bk*t — iakt — tkx)p(k) dk + 0;(%)

B1)
The symbol 0,(1/¢) signifies a quantity of O(1/¢'°),
where 8 > 0 is small.

Proof: Denote the real part of u by u,. From
(3), (4), and (6) we have u, > u, > 0 for |k| > ko >
0, i.e., u. is bounded away from zero for |k| bounded
away from zero.

From (3) we have that 8 > 0.

Consider all ¢ > 0 such that

ue — 568 >0
for |k| > e This set is nonempty, since
B — 362 = 36K° 4 38(K° — &) + O(k[).
Denote by ¢ the maximum such & (which may be
infinite). ,
Next from (5) we have

u — iak — B,
lkla _'C)

lim

k—0
from which we obtain

. 2
1p — dok — G| “l"]fls_ Bl c 1 40 =c¢
for '
Ikl < €.
Set
€ = min (El, 62).

Choose ¢ > ¢ > 0 and write

I

f exp [—ikz — u(k){p(k) dk
lkl>e

n f| . {exp [—u(k)1] — exp liakt — K1)}
-exp (tka)p(k) dk
+ exp (—ikx — iakt — BE*t)p(k) dk

Tkl<e

Il

L+ 1, + I,
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Then
I, = exp (—3B¢t)

o (ks — (u®) — 18101008 d,

17, < exp (—3B)M.

Considering I,,

IL| < M f lexp [—(u — Bk* — ak)l] — 1| dk

« Cne3n+1tn
<M e T

The only restriction on e thus far is
0 <e<e.
We now choose a 8 > 0, small, and set
e= 1/
for
t> gl

From this we have

L] = Ofexp (=), |L| = 0@/£™) = 0,(1/9),

which proves (B1). (An exponentially decaying term
is neglected there.)

It is clear from the above proof that if an expan-
sion of p(k) is made only the leading term enters.
This, however, may lead to a large numerical coef-
ficient in the correction term, and therefore it is
best not to perform this expansion without first
considering the value of this numerical coefficient.
For example, for the case under study in Sec. 3,
p(k) = g(k)v°(k), where g(k) results from the eigen-
vectors and »° from the initial data. An expansion
of g(k) leads only to a numerical coefficient of O(1),
whereas the similar term from ¢°(k) may be very

large for highly oscillatory initial data. In this case,
it is appropriate to expand ¢(k) [and retain only
g(k = 0)] and not expand v°(k). This point is further
amplified in the contents of this paper.

A noteworthy feature of the calculation is that the
restriction on z is not explicit. Only after the evalua-
tion of the integral of (B1) can the restriction on
z be found. That is, restriction to those z is made
for which the correction term is of higher order.
Examples of this are to be found in calculations
(see remarks in Sec. 3).

It is clear from the analysis of this section that
more terms in the expansion of u(k) could have been
taken. This results in a higher-order error estimate
in (B1), e.g., one finds that if O(k°) is included the
error estimate becomes 0;(¢t"}). However, this sort
of generality is tempered by the fact that one must
be able to evaluate the resulting approximate in-
tegral. In general, we are only guaranteed the evalua-
tion of integrals with cubic exponents. We do not
consider this case since u(k) to O(k®) is not given
correctly by the Navier-Stokes equations (see re-
marks in connection with Ref. 7). For completeness,
however, we include the evaluation of the cubic
integral.

Consider

B = f exp (—iak — b + ick®) dk
with a, b, ¢ real. Defining
w=[a+ (/39)], v = (2b"/27") + (ab/3c),
we find

B = (307} exp () Ao[u/(3 |c)*].

A, is an Airy integral .’

22 J. C. P. Miller, The Airy Integral (Cambridge University
Press, New York, 1958).
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