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The spectrum of density fluctuations in a simple gas is calculated by solving the linearized Boltzmann
equation as an initial-value problem. The analysis is based on the method of polynomial expansion and
on the use of generalized kinetic models. The numerical convergence of both types of solutions is
studied, and it is shown that the method of kinetic models is capable of giving very accurate solutions
to the Boltzmann equation at any wavelength to mean-free-path ratio. Explicit results are obtained
for two repulsive interactions, the rigid-sphere potential and the Maxwell molecule potential. It is
found that density fluctuations are not very sensitive to the details of the repulsive part of the inter-

molecular interaction.

I. INTRODUCTION

It is well known that the molecular description
of many processes and phenomena of interest in
kinetic theory begins at the level of the linearized
Boltzmann equation. For explicit calculations, how-
ever, this equation is sufficiently intractable that
instead most investigators have used simplified
kinetic-model descriptions. The model solutions
have proved to be exceedingly useful in both formal
analysis and physical applications, but little is known
about their convergence in a quantitative sense.
The purpose of this paper is to present certain types
of solutions to the Boltzmann equation in the context
of a specific initial-value problem. The results, which
are obtained numeriecally, are useful for two reasons:
they enable us to discuss the accuracy of commonly
used kinetic models and their extensions, and they
provide a means of studying the effects of different
interaction force laws.

The initial-value problem with which we are con-
cerned is the linear-density response of a gas to a
microscopie-density impulse, and physically it is
related to the problem of time-dependent density

. fluctuations in the gas at equilibrium. The connec-

tion between fluctuations and response is a con-
sequence of general statistical mechanical principles’;
in the present application it leads to an unambiguous
relation” between density fluctuations and the linear-
ized Boltzmann equation.

Studies of density fluctuations in gases have been
carried out using kinetic equations which are ap-
proximations to the linearized Boltzmann equa-
tion.>”® An attempt was also made to derive results
directly from the Boltzmann equation for Maxwell
molecules.® A method of polynomial expansion was
used in the calculation; consequently, the procedure
is not useful at small wavelength to mean-free-path

! H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951);
R. Kubo, in Lectures in Theoretical Physics (Interscience
Publishers, Inc., New York, 1959), Vol. I, Chap. 4.
( 923,:3]) M. J. van Leeuwen and S. Yip, Phys. Rev. 139, A1138

1 .

3 8. Yip and M. Nelkin, Phys. Rev. 139, A1241 (1964).

4 8. Yip and S. Ranganathan, Phys. Fluids 8, 1956 (1965).

5 B. P. Gross, Phys. Rev. 158, 146 (1967).

¢ S. Ranganathan and 8. Yip, Phys. Fluids 9, 372 (1966).
The matrix elements of Cy in the Appendix of this paper are
not correct; the factors 25y, 37vs, 155vs, —368ye, should be
replaced by 17vs, 29vs, 58y., —68y,, respectively.
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926 SUGAWARA,
ratios. In the present work we have extended the
previous kinetic model calculations to arbitrary order
for Maxwell molecules, and have formulated similar
calculations for rigid-sphere molecules. Exact solu-
tions to kinetic-model equations of arbitrary order
have been obtained, and the numerical convergence
of these solutions at sufficiently high order has been
established. In the region where the expansion
method also gives numerically converged solutions,
the two methods of calculations give identical results.
We can, therefore, conclude that the kinetic-model
approach provides an extremely accurate means of
solving the linearized Boltzmann equation at any
wavelength to mean-free-path ratio. Moreover, it
seems reasonable to regard the converged model
solutions as exact solutions to the Boltzmann
equation.

The initial-value problem of density fluctuations
is formulated in the next section where both methods
of calculation, the expansion of distribution func-
tion, and the use of kinetic models are discussed.
Maxwell molecules and rigid-sphere molecules are
then treated explicitly. In comparing the solutions
for different potentials the calculations can be made
consistent by adjusting the force constant in the
Maxwell potential and the rigid-sphere diameter to
give the same value of shear viscosity. Numerical
results are presented which permit quantitative
estimates of error in the low-order kinetic model
solutions. They also enable us to coneclude that
density fluctuations are rather insensitive to the
details of the repulsive interaction. A number of
remarks are given in the last section.

II. THE SPECTRUM OF DENSITY
FLUCTUATIONS, S(k,0)

The phenomenon of time-dependent fluctuations
in an equilibrium system is most appropriately de-
seribed by the correlation function G(r, t) first intro-
duced by van Hove’ in the theory of neutron
scattering. Qur main concern here is to study the
spectrum of density fluctuations in a dilute, mon-
atomic gas. The spectrum S(k, ), is defined as the
space—time Fourier transform of G(r, t). Because of
translational and rotational symmetry G and S are
functions only of the magnitude of r and k, re-
spectively. We also consider only classical systems
in which case G is even in ¢ and S even in w. Thus,

Sk, w) = 2 Ref dtfd”’r GGG . (1)
0

7 L. van Hove, Phys. Rev. 95, 249 (1954).
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It has been shown that G(r, ) can be obtained
from a kinetic equation, and that this equation
reduces to the linearized Boltzmann equation when
incomplete collision effects are ignored.” It is, there-
fore, implied in using this deseription that variations
on the time scale comparable to a collision duration
(typically 107** sec) are of no interest. For a rigid-
sphere intermolecular potential this is not a restric-
tion. The fundamental equation fto be solved is,
therefore, well known®:

(2 + v-v)ie v, 0 = 10, @

J(f) = Mo f dQ f d31)1 folvy) IV - V11 I(B: lv - V‘l)
Q) + VD — ) — f(w)], (3)

and the initial condition to be used is a localized
density impulse

[, v, t = 0) = 8. (4)

In Eqgs. (2) and (3), n, is the equilibrium number
density, f,(v) the absolute Maxwellian (2xv2)~! exp
(—v*/202), v5 = k,T/m, and I(6, [v — v,|) is the
binary collision eross section.

The connection between density fluctuations and
the initial-value problem is given by®

6, 0 = [ @ 1@, v, 0. (5)

It is generally more convenient to consider the
transformed equation directly:

(o — &-V)fk, v, 0) = J[f(k, v, )l + 1. (6)

where
fk, v, w) = f dtfd3r e ETTeRf(r v f) (M
0

since the real part of the velocity integral of

faMfk, v, w)

gives S(k, w).

Two methods, both involving a successive ap-
proximation procedure, will be used to obtain solu-
tions to Eq. (6). The method of distribution funection
expansion is due to Wang Chang and Uhlenbeck.’

8 G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical
Mechanics (American Mathematical Society, Providence,
Rhode Island, 1963), Chaps. IV and VI,

® C. 8. Wang Chang and G. E. Uhlenbeck, University of
Michigan Engineering Research Institute ONR Contract
N60nr-23222 (1952).
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In terms of a complete, orthonormal set of functions
{y:} one writes

f(ky v, w) = E ai(k: w)‘l/f(v)) (8)

b
where a, is the scalar product

a;(k, @) = (¢, ). (9)

Equation (6) then becomes

> a;(k, )@ — ko) ¥ (v) —

i

; Jja'/’a(v)] =1,
(10)

where
']ia = (‘pa; J[‘/’:D = Jai (11)

and the z direction is taken along k. If the expansion
is simply terminated, i.e., at § = N, a finite set
of simultaneous equations results, after forming
scalar products with .,

N

iwu,, - Z a,‘(ikVin + Jin) = (\bn’ 1)

1

with V;, = (., v.¢;). These can readily be solved
for the coefficient a’s and the procedure can be
repeated for successively larger N’s until the com-
puted values of S(k, ») converge.

The basic advantage of kinetic models'® is that
they are capable of describing the hydrodynamie
and Knudsen regions properly, and between these
limits the solutions should represent reasonable
interpolations. It is reasonable to assume that
higher-order model descriptions should give finer
results; however, the convergence of this method
has not been numerically studied. The Mth order
kinetic model consists of taking'®'!!

(12)

M

J[ﬂ = Z aa(‘]ai + A Bai)'ﬁi - >‘f-

a,j=1

(13)

We follow an earlier convention'® by taking A =
[Jarsr,ar+1]. With the substitution of Eq. (13),
Eq. (6) becomes

(iw — kv, + N, v, o)

=14 Z au(k, @)Ba; ;i (V),

a,i=1

(14)

where

Bai = Jai + }\5,,. (15)

( 9;’91)3. P. Gross and E. A. Jackson, Phys. Fluids 2, 432
1 .
1 1, Sirovich, Phys. Fluids 5, 908 (1962).
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The set of integral equations is easily reduced to
algebraic form by using the notation introduced in
Eq. (9). Thus,

M

Lt I 7SN
> aalk, w)l:5an - ’; Bai(w"’ i — thy, + )\)]

- (=) ©

III. MAXWELL MOLECULES

When the intermolecular force law is of the form
F(r) = x/7°, the scattering cross section I(6, |v — v,|)
becomes inversely proportional to the relative speed.
This is the only case for which the linearized Boltz-
mann collision operator has been studied completely
analytically.” We denote the eigenfunctions using
the same normalization by ¢, , as in Ref. 12. The
spectrum of eigenvalues A,; is known to be an
infinite, purely discrete set. An extensive table of
their values has been compiled by Alterman et al."”
To apply the methods discussed in Sec. II it will
be necessary to replace the double subscripts (r, 1)
by a single index j. Two methods suggest them-
selves,'” depending on whether the ordering is to be
based on the magnitude of the eigenvalues (A
ordering) or on the polynomial degree in the eigen-
functions (p ordering). For the polynomial expan-
sion method (Wang Chang—Uhlenbeck) a general
expression for V;, is needed. This has been derived
by Mott-Smith.'*

Introducing the dimensionless variables

= w/V2Zkvy, Y= |\a|/V2 kv,
from Eq. (12) we obtain
. Y . r+14+3% :r
(”‘ SV )“" ’{l[(m THel+ %
_ l[ r+1 ]"
el + D@l — 10 %™
r+144 ]
+0+ D[(zz DRI+ 3]

) =)
-+ 0 i) -

1

=T & n1y 17
kvo\/é 5 ( )

12 1,. Sirovich, Phys. Fluids 6, 10 (1963).

18 Z. Alterman, K. Frankowski, and C. L. Pekeris, Astro-
phys. J. Suppl. 7, 291 (1962).

14 H, M. Mott-Smith, Massachusetts Institute of Technol-
ogy, Lincoln Laboratory Group Report V-2 (1954).
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where the various indices are related according to
n=(r1, n = (@, — 1),
n,=0+1,1-1, n=(1+1),
ne=(—~11+1).
With either ordering,
S(z, y) = 2 Re [a,(z, v)]. (18)

Application of the kinetic-model method requires
the determination of the scalar products in Eq. (16).
General expressions for these are given in Appendix
A."® By expressing velocity and time in units of v,
and N7, respectively, we find from Eq. (14)

(A — £)fk, &, w)

= V2 yr Z ai(k, B 0:(®) + (o)™, (19)
where
y* = Nkoov2, A = V2 (iz +y*), B;; = Ny + 1.

As a result, Eq. (16) becomes

M

f—

an(x) y) = X Yin + ; a,-(a:, y)Bii‘Yim (20)
where
Yin = \/Q y* f d3£ ‘l’:(?i’ﬁ(i{o(a (21)

and the closed form expression for +v;, is to be
found in Appendix A. The spectrum of density
fluctuations is now determined from Eqs. (18) and
(20). Notice that y* is model-dependent whereas y
depends on k, vy, and the foree constant x.

For explicit calculations it is necessary to know
the absolute magnitude of the eigenvalues which are
specified by x for a particular gas. A way of determin-
ing this constant is to require that the transport
coefficients derived from the Boltzmann equation
agree with the measured values. Since the Maxwell
molecule potential gives the correct Eucken ratio,®
one can specify y in terms of either the shear vis-
cosity or the thermal conductivity. We will use the
viscosity # because it is generally a more precisely
measured quantity. The relation between 4 and one
of the eigenvalues is®

l)‘n.zl = pv3/n, (22)

15 1, Sirovich and J. K. Thurber, in Rarefied Gas Dynamics,
J. H. de Leeuw, Ed. (Academic Press Inc., NewYork, 1965),
Vol. 1, p. 21. In this paper, Eq. (F.2) contains a number of
misprints; also, in Table II By .30 should have a positive sign.
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where p is the mass density. Since the ratio of )\, ,
to No, 2 18 %, we have

\/Q pZ)O.

3 nk

@3)

1IV. RIGID-SPHERE MOLECULES

Mott-Smith'* has derived the general expression
for the matrix elements J,; using the Maxwell
molecule eigenfunctions ¢, ;. Recently, a method for
obtaining similar matrix elements for any repulsive
force law has been developed by Ford.'®* The sound
problem has been treated with rigid-sphere kinetic
models,"””'" and in this work a large block of J.,;
was computed. The relevant results for the present
calculation are summarized in Appendix B. These
are included here to avoid confusion in normalization
factors and to make clear the explicit connection
between y and the transport coeflicients.

The fourth-order expression for the shear viscosity
of a rigid-sphere gas is"®

5.08 (k,mT\} 1
=55 ) 3, @

Ky
where d is the hard-core diameter. We define y as

Y = |Joz.0el /k0oV2 (25)

and so

?/* =Y IJM+1.M+1]/|J02,02|' (26)

Combining this with the expression for Jgs 0, from
Appendix B we find
y = 0.508v2 2. 27)
nk
The result can be compared with Eq. (23). The
ratio of rigid-sphere to Maxwell molecule y values

is seen to be 1.52. This result is essentially the same
if we had used the thermal conductivity.

V. NUMERICAL RESULTS

It can be seen from the remarks made in Sec. II
that the polynomial expansion method (Wang
Chang-Uhlenbeck) should give rapidly convergent
results at large y, the parameter which is a measure
of the wavelength to mean-free-path ratio. As y
decreases the results obtained with a particular

16 (3, W. Ford (private communication).

17 ¥,. Sirovich and J. K. Thurber, J. Acoust. Soc. Am. 37,
329 (1965). ‘

18 8, Chapman and T. G. Cowling, The M athematical Theory
of Non-Uniform Gases (Cambridge University Press, New
York 1953), Chaps. 7-10.
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2} 4 .4 ]
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Fia. 1. The behavior of S(k,w) for Maxwell molecules as™a
function of wavelength to mean-_free-path ratio. Results are I
given as R(z, y) = kvoS(x, y)/V2 x, withz = w/\/2 kvo and 3

¥ =.M,1/VZ kve. Various orders of truncation in the poly-
nomial expansion method are shown, N = 30 (

46 (—--—--—), N = 60 (— — —). Also shown is the kmetlc
model result ( ) for M = 21.

truncation order (fixed N) would diverge, the value
of y where this occurs decreases with increasing N.
The general behavior is depicted in Fig. 1, where
the variation of the dimensionless function 2kv,S (x, %)
for Maxwell molecules is shown for several values
of z. The kinetic model results used for this com-
parison correspond to the solutions with M = 21.
As we will see, from a numerical point of view the
latter results can be regarded as convergent, and it
is, therefore, plausible to regard them as exact.

Even though the kinetic models are capable of
interpolating between correct asymptotic limits, the
accuracy and rate of convergence of these descrip-
tions in the transition region (y around unity) have
yet to be investigated in detail. Ranganathan and
Yip® have considered the models with M = 5 in
computing S(%, ), and Sirovich and Thurber'” have
employed models with M < 11 in their analysis of
sound propagation experiments. We have obtained
S(k, w) for successively larger M until numerical
convergence is achieved. The results for Maxwell
molecules are given in Figs. 2 and 3. As expected,
the convergence is less rapid at intermediate values
of y. At y = 5 (not shown) there is essentially no
change beyond M = 9. In all the cases examined,
M = 21 is found to be sufficient to insure complete
convergence at any z. Although both p-ordering
and A-ordering solutions converge to the same values
as they must, the superiority of A ordering is clearly
displayed in Fig. 3.

Kinetic model solutions have also been obtained
for rigid-sphere molecules. A similar study of their

5 7 e 13 5 17T 19 2
M

F1c. 2. Convergence of E(z, y) for Maxwell molecules as a
function of kinetic model order M for y = 0.4. The open circles
denote the results obtained with eigenvalue ordering and they
are simply joined by straight lines.

convergence is shown in Fig. 4. Convergence rate
is generally slower compared with the case of Max-
well molecules, especially at small values of z. The
comparison of Maxwell molecule and rigid-sphere
results provides a systematic means of studying the

ri T T T J
12 . ~
AY
AY
L " X0 p
il W T 4 - — - X
(o] ol \ s - -
\
5 4
- =
r 7
1.0 —
I x=04 .
R
8 ; _
= -
%
: - %
[\Y)
9 .
X =08
’- .. = == - g —na
e
T —
L
4
x=t2
[, 8 JRUPRROP A
2 -
R N T A W T , |
375 7 91 13 15 17 19 a1 23

M

F16. 3. Same as Fig. 2for y = 0.78. Also shown are the results
from polynomial ordering (closed circles) and those obtained
with the polynomial expansion method (crosses) for N = 46.
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—_ . . - - e e

| I
3 5 7 9 Ul
M

N
13 15 17 19 21 23

Fic. 4. Convergence of R(z, y) for rigid-sphere molecules as
a function of M. Value of y, now defined by Eq. (25), is1.2275.
Polynomial and eigenvalue ordering results are denoted by
closed and open circles, respectively.

quantitative effects of different interaction potentials.
To be consistent one only needs to use corresponding
y values according to Egs. (23) and (27). Table I
contains the numerically converged kinetic model
solutions. The maximum deviation between the 1/r*
and rigid-sphere potentials is seen to be about 3%,.

VI. DISCUSSION

We have investigated two methods for computing
the spectrum of density fluctuations for a dilute gas.
Although both methods are capable of giving ac-
curate solutions to the linearized Boltzmann equa-
tion, the kinetic model approach is preferable be-
cause it provides an effective interpolation procedure
which is valid at any ratio of wavelength to mean
free path. Our results indicate that in a quantita-
tive calculation of S(k, w), a high-order (M > 21)
model equation possesses essentially the same phys-
ical content as the linearized Boltzmann equation.
The former is obviously much more tractable.

The fact that fine details of the collision cross
section are not clearly reflected in S(k, v), is in-
dicated by the present comparison of results for the
Maxwell and rigid-sphere molecules. A general ex-
pression for the J matrix for any repulsive force law

AND SIROVICH

is now available,'® and in principle, the corresponding
S(k, ») can be computed. The results, however, are
not expected to be very different from those given
here since Maxwell and rigid-sphere molecules rep-
resent the limits of soft and hard potentials for a
neutral gas. It is clear that we can only conclude
that S(k, w) is not very sensitive to the shape of
the repulsive potential because the effects of attrac-
tive interaction are still unknown. The computa-
tional problem for a two-body potential with an
attractive tail is more difficult, but would be worth-
while studying when very precise determination of
Sk, w) (e.g., light scattering) becomes available.
It has been proposed that light scattering be used
as a means of testing the Boltzmann equation; in
this application our results provide a quantitative
basis for the interpretation of recent experiments."®

It is generally recognized that sound propagation
and light scattering are closely related phenomena.
In the long wavelength region it is easy to see their
connection in terms of the dispersion relation. In
the kinetie region, where the presence of a source
in the sound problem has to be treated explicitly,
the relationship is less clear. The Maxwell molecule
and rigid-sphere potentials have also been used in
the calculation of sound speed and attenuation.'®'!’
The variations due to the difference in potentials
are more pronounced than those observed in
Table 1.

Finally, we mention that the present method of
calculations can also be applied to general response
and correlation functions involving any macroscopic
variable. The formalism most appropriate for this
type of investigation has been developed by Martin.*’
Although only preliminary ecalculations have been
considered,’ it appears that such studies should lead
to detailed information about the frequency and
wavelength dependence of transport coeflicients.
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TasLE 1. Values of 2R(z,y) for rigid-sphere and Maxwell molecules. Ratio of y values for the two
cases 1s 1.524 and is determined by using Eqs. (23) and (27).

Rigid sphere Maxwell Rigid sphere Maxwell
z y = 3.0 y = 1.9685 y =20 y = 1.3123
0.0 1.3347 1.3579 1.1282 1.1414
0.1 1.1787 1.1826 1.0693 1.0721
0.2 0.90579 0.89048 0.94196 0.92875
0.3 0.70990 0.69199 0.82303 0.80407
0.4 0.61051 0.59703 0.74851 0.73334
0.5 0.58808 0.58164 0.72471 0.71907
0.6 0.63790 0.64111 0.74993 0.75792
0.7 0.77538 0.79368 0.81710 0.84109
0.8 1.0067 1.0428 0.89138 0.92443
0.9 1.1375 1.1581 0.87358 0.89076
1.0 0.82178 0.80428 0.68495 0.67537
1.1 0.42609 0.41135 0.43628 0.42108
1.2 0.21353 0.20720 0.25431 0.24490
1.3 0.11466 0.11231 0.14813 0.14378
1.4 0.066460 0.065688 0.089188 0.087515
1.5 0.041069 0.040912 0.055886 0.055440
Rigid sphere Maxwell Rigid sphere Maxwell
z y = 1.17 y = 0.767 y =05 y = 0.32808
0.0 1.0326 1.0305 1.0487 1.0378
0.1 1.0138 1.0093 1.0379 1.0308
0.2 0.96731 0.95848 1.0103 1.0109
0.3 0.91379 0.90336 0.97528 0.98037
0.4 0.86968 0.86224 0.93811 0.94112
0.5 0.84130 0.84087 0.89621 0.89344
0.6 0.82529 0.83416 0.84143 0.83543
0.7 0.80888 0.82617 0.76654 0.76402
0.8 0.77015 0.78977 0.67183 0.67724
0.9 0.68642 0.69865 0.56580 0.57689
1.0 0.55586 0.55580 0.45964 0.46984
1.1 0.40791 0.40010 0.36164 0.36596
1.2 0.27820 0.26958 0.27599 0.27409
1.3 0.18246 0.17634 0.20423 0.19902
1.4 0.11823 0.11484 0.14663 0.14130
1.5 0.076918 0.075440 0.10255 0.098813
APPENDIX A (ERES B3 NGRS T8 VA
. . - 7 ’
In this appendix we summarize the results for @+3 -0+ 3 — )
fzalculatmg 7.i- We begin with the expression given  The quantity I,.., is defined by
in Ref. 15 [Eq. (B.15)]. In the present notation
277 = (5ao(Dm-p=0
AN 172 ) I 1172 ) = (1, I.o 2/m=p=q (A4
S VB X D D 3 TR % @, Lo E § (e oy )
i=0 j’'=0 k=0 k'=0
I (A1) and
Lydr tktk'—i—i' 1+ —=2(k+k")y Al . .
I, =14A,, — iAl,_,, (Ab)

where» = (r, ) and j = (+, l') ,

o where A, = 2"%(%),,, for n = even, otherwise, it is

Cpopr = (=) (2D zero, and
. 2§(l+l’)+l{(1)l(1)l’}2

|_@+ner+y |
[<1>,<1>,,(%>,+,+1(%>,,ml]’ (42

1 A
I, = — W(*—. )
¢ \/é V2 (A6)
The plasma dispersion function® W (z) is defined by

it ae it ekrkioiti —r—r—2ekn O — 7+ 1)
F:k:[}a' = ()iHiHRERI I rre2terkny (T i+ 1);
i = () ) we =

L =7 £ 1, (= 2k + Do (U = 26" + Dawe ™ w'p D Fried and S. D. Conte, The Plasma Dispersion
(1);- (D 1) Function (Academic Press Inc., New York, 1961), p. 1.

(A7)
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The symbol (b),, is the Barnes symbol which means
®=bb+1)---b+m~—1)

and [I/2] is Gauss’ symbol denoting the largest
integer which does not exceed 1/2.

APPENDIX B

Here we give the matrix elements J,;, defined by
Eq. (11) for rigid-sphere molecule. In this case

Jii = ng, f dsf ¥(B)fo(®)

[ ae [ @ et 15 - &) 1 - &

: {‘P:('ﬂ) + %(f’) - %(Ex) e ‘!’:(E)}: (Bl)

where ¢,(¥) is the Maxwell molecule eigenfunction
given in Ref. 12, Using the result derived by Mott-

SUGAWARA, YIP, AND SIROVICH

Smith' [his Eq. (41)], we obtain

Jii = Ny 6[1/7|' d2
[ 11 (20 + DERV 4+ 1) ]4 (20! 1
e+ 1+ 3Hre + U +5H1 T+ §) g+
min (r,7") 1 4n11(l —m + r + T, . 2n _w%-)—B"
= oam (= ml =) (" —n) "
(B2)
where
s mE+2n4+ DY 2" m 4+ 1)
Bu = @n + D!m! n! m! ’
I'm! Pm! (B3)
By =0,
and ¢ = (n, I}, § = (', '), d is the diameter of the

rigid sphere. Eq. (B2) differs from that of Mott-
Smith in the normalization of ¢, and in the def-
inition of dimensionless velocity variable.
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