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Plane wave solutions for the propagation of sound in a polyatomic gas have been obtained by em-
ploying the method of Sirovich and Thurber for polyatomic kinetic models. An asymptotic analysis
valid at small frequencies yields the correct continuum limits for the absorption and speed of propaga-~
tion, and numerical calculations were made for a wide range of frequencies and at several values of the
collision number for the relaxation of internal degrees of freedom. Caleulations using values of model
parameters suitable for nitrogen, oxygen, and air, over a large range of the rarefaction parameter, are
in very good agreement with dispersion and absorption measured in these gases.

I. INTRODUCTION

The kinetic theory of the dispersion and attenua-
tion of sound produced by a sinusoidally oscillat-
ing piston has been extensively studied by numerous
investigators in recent years. In particular,’™*? effort
has been directed toward theories that are capable
of encompassing a broad frequency range, from the
continuum (low-frequency) to the transition or near
free molecule (high-frequency) regimes. With few
exceptions, these studies have concerned themselves
with monatomic gases, particularly since the Boltz-
mann equation, and appropriate models of it, are
far better understood than its analog for internal
degrees of freedom.

Recently, however, it has been possible to obtain
higher-order kinetic models for the Boltzmann equa-
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tion with internal degrees of freedom.'® This was
done by employing in the Wang-Chang—Uhlenbeck
equation'* the technique first suggested by Gross
and Jackson'® for Maxwell molecules and later
applied to arbitrary cross sections.’® Thus, it was
possible to extend a polyatomic kinetic model equa-
tion obtained previously'” by an ad hoc procedure
to encompass a correct description of an arbitrary
(in principle) number of higher-order moments of
the distribution function. This was necessary for an
adequate description of sound relaxation processes
in a diatomic gas.

Certain of the conceptional and mathematical
difficulties associated with sound propagation in a
monatomic gas arise in the polyatomic case as well,
so perhaps it is pertinent to comment on these
briefly, since there has been considerable discussion
in the literature on the following points.

In the sound problem, the simplest method for
obtaining closure of the moment equations is by
truncating the (N 4 1)-order moments appearing
in the Nth-order moment equations (hereafter,
referred to as the Wang-Chang method).'®""* The
neglected terms stem from both the collision integral
and the streaming terms. The extensive numerical
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work of Pekeris et al.,'* which is based on a modifica-
tion of the Wang-Chang method, predicts that at
high frequency the rate of decrease of the attenua-
tion with frequency is much greater than for the
attenuation measured in experiments. It has been
shown®® that the analytical behavior of the attenua-
tion rate at high frequency predicted by the Wang-
Chang method is a direct consequence of the trunca-
tion scheme, and results in an incorrect description
of high-frequency sound propagation.

The use of model equations circumvents the
difficulties associated with the simple truncation of
the moment equations, in that only the collision
integral is truncated. Further, a model equation of a
given order retains an approximation to the ex-
pansion coefficients of the higher-order moments
(eigenvalues in the case of a Maxwell force law).
Thus, model equations retain the relaxation form
of the collision integral while giving the correct
representation of an arbitrary number of moments.
The higher the order of the approximation, the
more moments are represented exactly.

In the following analysis, employing appropriate
model equations, a dispersion relation will be ob-
tained for propagation of plane sound waves in
a polyatomic gas. Therefore, we do not attempt
solution of the full boundary-value problem but
rather focus attention on the nature of plane waves
which originate at an oscillating boundary. In a
full discussion of the sound problem the contribu-
tion of the continuous, as well as the discrete spectra,
must be considered.’'®*® Tt is almost a direct con-
sequence of the continuous spectrum that beyond
a critical frequency plane wave propagation ceases.’
Both the continuous spectrum and the critical fre-
quency are strongly dependent on the intermolecular
force and, in the case of models, on the order of the
model. In fact, the value of the critical frequency
increases with the order of the model. Due to the
form of the functions appearing in the dispersion
relation it may be analytically continued beyond the
critical frequency. The uncontinued sound mode
for higher-order models then is essentially similar to
the continued sound mode of lower-order models.®
Therefore, the results of plane wave propagation
employing model equations seem markedly in-
sensitive to the continuous spectrum. This would
seem to provide sufficient motivation for comparing
the results of the model equation analysis (containing
the analytical continuation) with high-frequency
experimental results. These are arguments based

20 1,. Sirovich and J. K. Thurber, J. Math. Phys. 8, 888
(1967).

upon considerations from the theory of monatomic
gases; however, they hold equally well for the dis-
persion and attenuation of sound in a polyatomic
gas.

II. CLASSICAL THEORY AND
PHENOMENOLOGICAL EXTENSIONS

The classical theory originated over a century
ago with the work of Stokes and Kirchhoff*! and is
essentially based on the Navier-Stokes equations.
Only the dissipative mechanisms of viscosity and
heat conduction are considered. Dissipation as-
sociated with volume dilation of the gas and relaxa-
tion effects due to internal degrees of freedom are
absent. In this theory, the speed of propagation is
the adiabatic speed,

¢ = (YRTo)}, (¢H)

where v is the ratio of specific heats, R is the gas
constant, and T, is the ambient temperature. The
classical attenuation « reflects both viscous and heat
conduction effects:

102__1_(4_ <7—1>2Lu)
w  2yr 3+ YR wl/’ 2

where, in standard notation, « is the frequency of
vibration, r = p/wp is the rarefaction parameter, u is
the coeflicient of viscosity, p is the ambient pres-
sure, and A\, is the coefficient of heat conduction
associated with translational degrees of freedom.
This theory is valid in regions of high pressure or
very low frequency where the effect of the relaxa-
tion of internal degrees of freedom is not important.

Herzfeld and Rice,*” from the thermodynamics
of irreversible processes, and Kneser,”” from sta-
tistical mechanies, developed similar theories to
explain the attenuation in polyatomic gases for
the case in which the relaxation of internal energy
is important. They tacitly assumed that the relaxa-
tion processes of translational and internal degrees
of freedom are sufficiently decoupled and the excess
attenuation above the classical value results solely
from the relaxation of the internal degrees of
freedom. For a single internal degree of freedom,
the relaxation equation is

dEint . __[Eint - -Eint(TtJ]

at T

®3)

where 7 is the relaxation time and E;,(T,.) is

1 K. F, Herzfeld and T. A. Litovitz, Aborption and Disper-
ston of Ulirasonic Waves (Academic Press Inc., New York,
1959), Sec. 7.

2 K, F. Herzfeld and F. O, Rice, Phys. Rev. 31, 691 (1928).
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86 HANSON, MORSE, AND SIROVICH

the internal energy that would exist if the tem-
perature associated with internal energy were the
same as the translational temperature T,.. When
the relaxation mechanisms of translational and in-
ternal degrees are strongly coupled, the assumption
that these effects are additive fails.

Greenspan®'*® developed an ad hoc procedure
that combined the classical theory (both Navier—
Stokes and Burnett) and the relaxation theories of
Herzfeld, Rice, and Kneser for the case in which the
relaxation mechanisms of translational and internal
energy are coupled. The same combinatorial rules
for translational and internal relaxation as in the
Becker gas, whose Prandtl number is 0.75, were
assumed. These combinatorial rules replace simple
addition in the Herzfeld, Rice, and Kneser theories.
This method is mentioned since Greenspan used
it to explain his experiments in nitrogen, oxygen,
and air. However, it is apparent that a self-consistent
theory is desirable, one in which the combination
of translation and internal relaxation follows from
the theory rather than a combination assumed
beforehand. Such a theory (for the dispersion rela-
tion) will be developed below.

III. PREVIOUS KINETIC STUDIES OF
POLYATOMIC SOUND PROPAGATION

In their pioneering report on polyatomic gases,
Wang-Chang and Uhlenbeck'* briefly considered
sound propagation. They gave the ‘‘easy transfer
limit” (in the extended first Chapman-Enskog ap-
proximation) of the speed of propagation and the
attenuation:

¢~ (YRT)} = ¢, 4)
aCo

e L(Err g lf)-‘ )

A generalized Eucken factor is given by f = (y —
1)A\/uR where N\ = A, + \in: is the total heat con-
ductivity associated with the average flux of total
energy. The difference between this attenuation and
the classical attenuation is due to the appearance
of a bulk viscosity term (x/u) associated with relaxa-
tion effects, and the inclusion of a heat-transfer
coeflicient that is the sum of the heat-transfer coeffi-
cients for translational and internal modes. This
result for the speed and the attenuation is limited
to small frequencies and is essentially in agreement
with the Herzfeld, Rice, and Kneser theories.

2 M. Greenspan, J. Acoust. Soc. Am. 26, 70 (1953).
2% M. Greenspan, J. Acoust. Soe. Am. 37, 155 (1959).

More recently, Monchick,*® following the success
of Mason and Monchick®” in determining polyatomic
transport coeflicients, utilized the Wang-Chang and
Uhlenbeck equation to obtain a kinetic deseription
of the propagation of sound in a polyatomic gas.
Monchick modified the iteration of Maxwell, Trues-
dell, and Ikenberry,® in such a way as to retain the
feature of nonnormal solutions, i.e., solutions not
restricted to spatial and temporal dependence solely
through the number density, mean velocity, and
mean energy. The distribution function was ex-
panded about a local Maxwellian in which the
temperature characterized the total energy. The
main advantage of such a solution is to obtain
effective transport coefficients which are frequency
dependent, as in the relaxation theories. The itera-
tion involves the truncation of an infinite matrix,
as in the Wang-Chang method. Monchick calculated
sound dispersion and attenuation in nitrogen and
oxygen for both the extended Wang-Chang method
and the iterative scheme. These were carried out
to a relatively high order. The comparison with
experiment showed that Monchick’s iterative theory
did not agree with experiment to as high frequencies
as the modified Wang-Chang theory,*® but, qual-
itatively, they exhibit the same behavior.

Brau®® extended the Krook®' model to internal
degrees by expanding the collision cross section
rather than the entire collision operator. The linear-
ized version of this model is similar to the L'”
model of Ref. 13. The important restriction common
to these two models is that the generalized Eucken
factor f is equal to y'. Brau also studied plane
wave solutions using the model equation method
for collision numbers Z (the ratio of the relaxation
time for internal degrees of freedom, 75, to the total
collision frequency t.,;;) of order 10 and 10* and
for rarefaction r > 1. Brau investigated the limit
Z — o« in which the effects of the internal degrees
of freedom are frozen as long as Z — o faster
than r — o or as long as 7, — o for fixed 7.1
In this limit, the polyatomic gas behaves as if its
specific heat were that of a monatomic gas. Com-
parison with experiment is now being made.**

26 L. Monchick, Phys. Fluids 7, 882 (1964).

27 E. A. Mason and L. Monchick, J. Chem. Phys. 36, 1622
(1962).

28 B, Tkenberry and C. Truesdell, J. Ratl. Mech. Anal. 5, 1
(1956).

2 [,, Monchick, in Molecular Relaxation Processes (Aca-
demic Press Inec., New York, 1966), p. 257.

30 C. Brau, Ph.D. thems, Harvard University (1965)

3t P, A. Bhatnagar, E. P. Gross, and M. Krook, Phys. Re
94, 511 (1954); P. Welander, Arkiv Fysik 7, 507 (1954)

2 C. Brau (pnvate communication).
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IV. THE MODEL EQUATIONS

The equation for which we wish to employ a
suitable model representation is the Wang-Chang
Uhlenbeck kinetic equation for gases with internal
degrees of freedom.'* This equation may be written
as

af:
ot

of.  ofs

TV T a

where §f;/6t symbolizes the collision integral and
fi is the distribution function for particles in the
Ith quantum state. The internal degrees of freedom
are treated quantum mechanically, and the transla-
tional degrees of freedom classically. The lowest
moments of the distribution function, appropriately
summed over internal states are given (in standard
notation) by the following:

n 1
nU v
2
me
%nthr 7
Jn<E>¥=IZfﬁE, ¢ fodv, (6)
P, me,e
mc
e N
Qint E;c)

where v is the molecular velocity, ¢ is the peculiar
velocity, and E, is the energy of the Ith state. The
summational invariants are 1, v, and ime® + E,.
For a gas with internal degrees of freedom, the total
energy (as opposed to the translational energy) is a
summational invariant. Kinetic models of this equa-
tion will be used in studying the propagation of
sound. Due to the inherent linearity of this problem,
an expansion of the distribution function about an
absolute Maxwellian, f;, = f}{(1 4+ g¢,), will be more
appropriate than the local expansion used in Ref. 13,

= foz(l + ¢1), )

where

£ = mQ"(T@(ﬁﬁ)* exp (~

m' _ I
2T, kT, '’

3
-1 mc El)
for = nQ <T)(2 kT) e"p( kT ~ %kT
and
g —p— LUy

-2B@ -3 + 66 - 9. + 6. ®

The notation is standard; Q(T) = >_; exp (E,/kT)
is the partition function and T is the total tem-
perature. The dimensionless macroscopic perturba-
tion variables and parameters appearing here are
given in Appendix A. The general form of the nth-
order model equation is

LY

( Thy )gl T @Quy)

where L is the approximate representation of the
collision integral 6f,/8.. These models have been
discussed in detail elsewhere,'* and here we will
be concerned only with the linearizations and nor-
malizations appropriate to the sound problem. The
N = 2 and N = 3 models are given below:

noL(z)/ (W%Qol’z)
= [P + &y — "(3 — ¢ )Tu + G(Gt - €)<€) - gt]

)

+ v5oler — o — Gla — &6
— r010[33 — £) + e — 91(& — 7),  (10)
noL® /(' Qus)
= [p + & — 38 — )7 + Gla — e
+ 3¢ — #)pu — 36 — S
+ (& — 988 — g1
+ v500ler — p — Gle — 8] 4
= vo1({&) — 7e)[3@ — &) + $e — 9]
— va0ol3E ~ 3)pui]
+ (3200 + 87010 (36 — EZ)E,S"]
— Woo[—(a — 968 + 35 — £)8ine)
— nola — §8Sinl. 11

The L' model correctly represents (in the sense
of Chapman-Enskog) the first four maecroscopic
moments of the kinetic equation, p, u, .., and (e},
and L® gives, in addition to these, the correct
representation for p,;, 8., and S;,.. These will be
referred to as the four- and seven-moment models,
respectively.

The dimensional cutoff coefficient

vy = —710/31\7(7!'3/2(20)_1

is chosen to normalize all other collision frequencies
such that »,, = —neB8 (7 Quwy)"". The »,, in
L and L*® are dimensionless, and 87*' are the
bracket integrals of Ref. 13, which are related to
the transport and relaxation coefficients. (See Ap-
pendix B.) For N = 2, v, = —n,82%(x*Q,)™" and
for N = 3, v = "“noﬂaoo("'iQo)—
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88 HANSON, MORSE, AND SIROVICH

In the dimensionless form of the collision model
just given, several collision frequencies have been
eliminated in favor of a smaller set of parameters.
In addition to »3,, and »g,,, whose coefficients vanish
when moments in velocity and internal energy are
taken,® v; and vo10, v200, and vy, are the only inde-
pendent frequencies in the seven-moment model.
For the sound problem, the viscosity, the relaxa-
tion time, the total heat conductivity, and the
specific heat due to internal degrees of freedom are
represented, respectively, by a more useful set of
parameters: the rarefaction parameter, r = pw/u,
the collision number, Z = 73/7.013, the total Eucken
factor, f = (m/c,,) (\i: + Aint), and the dimensionless
internal specific heat, G = ¢!/k. The collision num-
ber Z is defined as the ratio of the relaxation time
for the adjustment of the energy of the internal
degrees of freedom to the total collision frequency.
This parameter eliminates the strong dependence of
the relaxation time on the pressure. Therefore, it
is more convenient to use the viscosity rather than
the total collision frequency in caleulating the col-
lision number, since the viscosity is accessible to
measurement. In general, collision cross sections,
especially those for inelastic collisions, are not
precisely known, so the relationship between the
viscosity and collision frequency cannot be directly
calculated. As an estimate, the relationship between
the two is assumed to be the same as that for
Maxwell molecules: 7.,,1 = #[ul./p. The collision
number can now be expressed as Z = 2p[rg/ul,
where [ ], signifies the first Chapman-Enskog ap-
proximation to the transport coeflicients.

The collision' frequencies of the L‘® and L®
models may now be expressed in terms Z, f, G,

and r by the following relations:
vy = p/([ulweo0) = wr/va00, voro = §Gva00/Z,

Vior = (3 - 31’200)

8¢ , (5¢ 5 56+ 3 ]
[ +( +3>V01o+8 q f(Vom)

L7 9
[(‘é + %Vom)(G + %)f - g]
+ (31/200 - 2). (12)
For the four-moment model, vz = 1, by definition,
and it can be shown that v, = % for the seven-

moment model. For simplicity, the coefficients of
the first approximation are set equal to the actual
values of the transport coefficients. The approximate
representation of the heat transfer moment in the

33 The superscrii)t ° gignifies the contribution to the cross
section only from elastic collisions.

seven-moment model requires that f = ¥ or the
total Prandtl number be equal to one. Thus, the
four-moment model is determined by r, Z, and G,
and the seven-moment model by r, Z, G, and f.

V. PLANE WAVE SOLUTIONS AND THE
DISPERSION RELATION

We assume a plane wave form for the perturbed
distribution function as follows:

gz(E: Z1, t) = g(gi k) w) €Xp [('Lwt - kxl)]

The fixed frequency” of the boundary oscillating
in the z; direction is » and the propagation constant
is denoted by k. Solutions of the dispersion relation
k = k(w) are to be found for an induced oscillation
in a half-space.

Substitution of the plane wave into the model
of the kinetic equation with internal degrees of
freedom yields

(fw — k& -+ vw)f = vy + noL(N)/(ﬂ'ng),

where the perturbation of the distribution function
& has been added to both sides of the equation so
that it will not appear explicitly on the right-hand
side.

With these model equations, it is possible to
obtain a closed system of equations for the macro-
scopic moments without further truncation of the
moment equations. Dividing the above equations
by (iw — k&, + vy), we obtain

P (VNgl -+ nnL(N))/(T%QO)
gu (tw — ki, +ow)

where LY contains the perturbed moments and
known functions of velocity and internal energy.
Clearly, this division is permissible only if ({w —
k&, + wy) # 0. This equality gives rise to con-
tinuous or particle modes, as opposed to the discrete
modes to which we restrict this study. (From
the viewpoint of Laplace transforms, this prob-
lem does not arise.) To obtain a closed system
of macroscopic moments, we must take those mo-
ments of g, that appear in L. The moments taken
for the four-moment model (L'®) are 1, &, 1(¢* — 3),
e, — ¢& For the seven-moment model, we take
L(£® — BYE, £ — 1£% and (¢, — &)& as additional
moments.

In general, the moment equations take the form

(13)

(14)

(15)

N
2 (o — wwdia; = 0, (16)

where, for example,
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a4 = Py a, = ulv as = Tiry

ay = (e}, (17

a5 = P, as = Si., and a; = Si..

The coefficients c,; are too lengthy to be given here.**
For the L® model, N = 4 and for the L® model,
N = 7. The condition for the existence of a plane
wave is that the dispersion relation vanish, i.e.,
D(¢, ) = det (¢ — iwl) = 0, where { = (vy + 1w)/k.
In obtaining the moment equations, integration over
all velocity space and summation over all internal
energy states gives rise, in the matrix elements, to
singular integrals of the following type:

[§]

Fo) = [ o,

where w, = exp (—1£)/ (27r)*. All such integrals of
the form

T [ e/ - o1d

can be reduced to the sum of one polynomial in ¢
and the product of another polynomial in ¢ with
F(£). This integral F(¢) is simply related to the
plasma dispersion integral of Fried and Conte® and
is discussed in Refs. 3 and 4.

Following the example used for a monatomic gas,’
the dispersion relation is caleulated for Im (¢) < 0,
i.e., up to the cut of the function F({) on the real
axis in the { plane. This leads to a critical frequency
beyond which the discrete sound mode ceases to
exist for models similar to those used here.*'*'*°
The critical frequency, therefore, occurs when

Im (¢) = 0 or when vy Im (k) = w,,;c Re (k). When

Im () > 0, it has been suggested that the analytic
continuation of F({) be used in D7 (¢, w). This leads
to the analytic continuation of k(w) beyond the
critical frequency, Specifically, one uses

F7(§) = —i(3m)* exp (=3¢

.[1 - (1%)% ‘/:{NE exp (—3i#%) dt]

for all ¢ instead of for just Im ({) < 0. The integral
defining F(¢) for Im (¢) > 0 is related to F~ by

F(§) = F) — 2i(3m)* exp (—3¢7). (19)

This criterion for the critical frequency can be
put into more familiar terms such as the velocity
of propagation ¢ and the attenuation «. The velocity
of propagation is defined as the velocity of planes

(18)

# F. Hanson, Ph.D. thesis, Brown University (1968).
% B, Fried and S. Conte, The Plasma Dispersion Function
(Academic Press Inc., New York, 1961).

of constant phase. The phase of the plane wave is
twl — 2 Im (k)z; and hence ¢ = o/Im (k), if k is
independent of z,. The reciprocal of the attenuation,
1/a, is the distance necessary to change the am-
plitude by 1/e of its original value: « = Re (k).
Thus, the criterion for the critical frequency can
be stated as ac = vy or (@C/®)erie = Va00/Torit-
An explicit dependence of the critical frequency on
the model appears through the parameter vy which
varies with the order of the model.

VI. ASYMPTOTIC ROOTS OF THE
FOUR MOMENT MODEL

We first wish to examine the roots of the dispersion
relation in the continuum limit. Thus, we consider
the behavior of waves for the case in which w — 0.
We can then restrict attention to those roots for
which k(w) — 0, since these correspond to con-
tinuum modes. (Although roots where k(0) = 0
do exist, they have no bearing on the sound problem.)
These considerations lead to two pairs of asymptotic
roots such that w/v, = O™ and w/v, = O ™).

From the behavior of these roots, we see that
¢ — o in the continuum limit, and we obtain the
following asymptotic result for large ¢:

1 1 3 15
F(f)"’g_(l+§_2+§_4+§6+ )
Although no fundamental difficulty exists in con-
sidering Dy(f, @) = 0 in the continuum limit for
N > 4, for simplicity we shall consider the case for
N = 4. After a straightforward calculation, the
following asymptotic results for small w are obtained:

pise = (i)

2

3 2
+ 03(7: 2) + (’L 2) Cz + (7/ S)Cl + Co,
Vo, V2 Vg

where

_22_ 13 — 6y )—2
3+"—'—‘3 Wit

+ [—36 + (33 — 18)W]¢™*,

o

CsNW+(

3 W>§_2
-4 — @3y + YW,

10 22 + 16y )
3 3 Wg-?

(20)

€ ~ “'YW.('_Z + (

Co ™ 7W§'_4~
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Further,
3 £ 5 v
W = (1 + %)Vow = (c:_:Vom = ﬁ )
_ 1 +526)
YT U+ 3/20)

We will first consider the case w/v, = O™
which corresponds to sound propagation. It is con-
venient to introduce the following notation:

4] Y

We now wish to find the expansion of s in terms of w.
This proves difficult since W can vary from O(1)
to an arbitrarily small value, corresponding, respec-
tively, to the limits of very easy and very difficult
transfer of energy. In order to find a description
which is uniformly valid in W we write

s = b(p, W)p + b,(p, W)p* + 0(5%).

We now seek to determine b, and b, in the limit
P — 0 under the single assumption that b,, b, = 0(1)
which will be verified a posterior:. Substituting this
and the expansion

l=s(l—p+p°--0)
into (20) we obtain,
D. = p’{(1 — b $)p + W(l — by)]
+ p'[(105! — 106,, — 128) — &

+ Whbs + 2vb; — 2ybib, — 39y + 4bi]}
+ 0@*W) + 0@ = 0. (21)

Clearly, whatever the value of W the first term of
Eq. (21) is of the lowest order and we set it equal
to zero. Next, the second term is clearly of lower
order than the neglected terms. Proceeding in this
manner we obtain [to the order indicated in (21)]

_ ﬁ+W_)*
b i<’ﬂ7+‘7W’

by = b, (22)

AWvby 4 2y — 39y + 9] + (@) A0b; — 12)} )
2yW + 10p/3

For k(w) these results are uniformly in the limit
@ — 0, independently of W. It should be noted
that both b, and b, are complex. In order to find
the speed and attenuation rate, the value of W is
fixed and the coefficients b, and b, are then separated
into real and imaginary parts. We now examine two
limiting cases.

First consider the following limit: W ~ 0O(Q1),
(w/v: = r”' —0). This is the case of “easy”” transfer
of energy, and after some manipulation we find

E_ L 1
Ve (’Wﬁ

I e )
(23)

In more common terms, the reciprocal speed ratio
is ¢o/¢c ~ +1 and the attenuation is acy/w ~
(£1/2yr){y + % + [(5 — 3v)/3W]}. These represent
two plane waves, one propagating in the plus zx,
direction {Im ({) < 0] and another in the minus
x, direction [Im (¢) > 0]. The sign of Im ({) separates
the asymptotic roots of the proper dispersion rela-
tion D({, w) according to the direction of propaga-
tion. For these roots, the sign of the attenuation is
equal to the sign of the speed of propagation. The
sound mode is immediately identified by the fact
that the speed approaches the dimensionless adia-
batic speed ¢, = (v)!. Since x/u = (5 — 3V)W,
then acy/w ~ (1/2yr)ly + % + («¢/u)]. This attenua-
tion is the same as that obtained by Wang-Chang
and Uhlenbeck,'* when the total Eucken factor is
taken as v, which is the correct value for the four-
moment model. Also, when W is very large, the
attenuation for the classical Stokes—Kirchhoff gas
with f = ¥ is obtained. Clearly, the limit of equi-
librium between the degrees of freedom, i.e., the
bulk viscosity x tending to zero, corresponds to
the Stokes-Kirchhoff gas.

Now consider the limit W — 0 first, and a fixed
but small w. This corresponds to a “freezing” of
the internal degrees of freedom, which occurs in
the high-frequency limit for Z > O(1). The internal
modes fail to respond to the high-frequency oscilla-
tion. For this case

- )

co/c R £(3v/5)},
aty/w 2 +=(3/5r)3y/5)t.

In this limiting situation the gas behaves as if it
were a monatomic gas with y = §. This approach
toward the “frozen limit”’ is actually unrealistic.
For a gas in a particular experiment, W does not
change significantly once the ambient temperature
is fixed; the pressure can always be changed such
that 1/r < W.

(29)

and
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Now we briefly consider the roots that behave
as w/v, = O0(™%). Expanding ¢ in half-integral
powers of w, we obtain

cofc ~ £(yr/2)} and ac,/w ~ %(ar/2)}.

This asymptotic plane wave, with the real and
imaginary parts of the propagation constant equal,
is often called the diffusive wave because of its
resemblance to the solution of the diffusion equation.
For large r this mode is too heavily damped in
comparison with the sound mode to dominate the
solution. '

Although we have focused attention on the case
of forced oscillations the case of free waves can
easily be treated. We recall that this involves finding
complex w in terms of a k which is pure imaginary.
By merely inverting the expansions found in this
section the free wave results are obtained directly.

It is also possible to caleculate the asymptotic
limits of the analytically continued dispersion rela-
tion for large frequencies. These limits have not
been computed for the four-moment model. How-
ever, the qualitative behavior of the roots for models
of the type considered here should follow the results
found in the case of simple gases.”” For the speed
of propagation, c;/¢c ~ r(—In r)7}, and for the
attenuation acy/w ~ (—In )7} as 0 —» o (or
r — 0). Both tend to zero as »r — 0. This behavior
is markedly different from the behavior of solu-
“tions employing the Wang-Chang method.

VII. NUMERICAL RESULTS

The sound mode of the analytically continued
dispersion relation was calculated numerically for
the four- and seven-moment models. The method
of solution differs for two ranges of r values. For
large , the function F({) is calculated from asymp-
totic solutions which are obtained for the range
40 < r < 120; for the seven-moment model,
asymptotic solutions are obtajned for the range
27 s r 5 8.For107% < r < 2.7, the caleulation
is based on numerical integration of the differential
equation of F({).** In the small region where the
numerical and asymptotic solutions overlap, the
difference is negligible.

Above the critical frequency, an analytical con-
tinuation of the dispersion relation has been em-
ployed to extend the discrete solutions to positive
Im (). The ecritical frequency depends on the model
equation and on the properties of the gas, Zy, f,
and c¢;/k. The values of the ecritical rarefaction
parameter [r..i. = (p/wu).ri.] were calculated for
different values of the collision number Z, and
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F1a. 1. Attenuation of sound according to the seven-mo-
ment model with Z,, as a parameter, ¢,i/k = 1.0, f = 2.0,
v = 14, Pr = 0.7.

for the specific heat due to internal degrees of
freedom ¢i/k = 1.0. The collision number Z, is
based on the model collision frequency wy. It is
related to the collision number Z defined previously
by

—_ — 4
ZM = VUNTRp — ?)'Z/Vggo.

The critical frequency was higher (r..;. smaller)
for the seven-moment model than for the four-
moment model, and slightly dependent upon Z,.
Some characteristic values for the four-moment
model (f = 1.4) were Zy = 1, r.;, = 0471; and
Zn. = 10% r.;. = 0468. For the seven-moment
model (f = 2.0), Zy = 1, 7o;ie = 0.321;and Zy =
104, 7o;i. = 0.315. The critical frequency is rather
insensitive to variation in Z,. ,

There are numerous combinations of the many
physical parameters, and it is, therefore, necessary
to summarize our numerical results. In particular,
the results of the seven-moment model will be
studied. For both the four- and the seven-moment
model, sound speed and attenuation depended only
weakly upon the internal specific heat, and for the
seven-moment model the dependence upon f, the
Eucken factor, was negligibly small for § between
1.4 and 2.5. For the N = 4 model, f is fixed at 1.4.

Figures 1 and 2 display the attenuation ac,/w
and the reciprocal speed ratio ¢,/c versus the rarefac-
tion parameter 7 for the seven-moment model and
for each of the model collision frequencies: Z, =
1, 10, 100, 1000, and 10 000. The specific heat of
the internal degrees of freedom is c¢i/k = 1 (i.e.,
an average of two internal degrees excited).

The curves for large collision numbers are note-
worthy for r approximately 70. The attenuation
for Z,; = 100 exhibits a behavior typical of thermal
relaxation phenomena. The speed for Z, = 10°
and 10* is nearly constant at the frozen limit,
co/c = (3y/5)}, while the speed for Zx» = 100 is
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Fi1a. 2. Speed of propagation according to the seven-
moment model with Z,, as a parameter, ¢,’/k = 1.0, f = 1.4,
v =14, Pr = 0.7.

between the frozen speed and the adiabatic speed,
co/c = 1. The speeds for Z,, = 1 and 10 are very
close to the adiabatic speed or continuum limit.

For r near 10, the attenuation begins to rise
steeply with decreasing r and the speed ratio begins
to drop, indicating the onset of translational relaxa-
tion. For Z,, = 10, the attenuation is larger than
that for other plotted values of Z, and no higher
point is apparent. For this value the internal and
translation relaxations are coupled.

For smaller 7, the attenuation reaches a maximum
and slowly descends. The attenuation for Z, = 1
is much higher than for larger Z, values which do
not differ significantly in attenuation. This can be
expected since a gas with a high collision number is
less likely to follow the high-frequency sound vibra-
tions. The speed ratio continues to decrease. At
r = 0.001, the speed itself is about five times the
adiabatic speed (co/c ~ 0.2) for all Z,,.

The results of the four-moment model are qual-
itatively similar to the seven-moment model. The
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F16. 3. Comparsion of attenuation rates according to seven-
moment and four-moment models with Z,, = 10, ¢,?/k =1.0,
f.= 14,4 = 1.4, Pr = 1.0,
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F1a. 4. Comparison of speeds of propagation according to
seven-moment and four-moment models with Z, = 10.0,
co'/k =10,f =14,y = 14, Pr = 1.0.

prominent difference between the results for the
models is that while the attenuation predicted by
the four-moment model goes through a very broad
maximum around » = 0.6, the seven-moment model
predicts a relatively narrow maximum about r = 0.8.
For very small r, the continued seven-moment
dispersion relation predicts another maximum in
the attenuation. A direct comparison of the two
models is made in Figs. 3 and 4, with Z,, = 10,
¢i/k = 1.0, and f = 1.4. The four-moment model
predicts larger reciprocal speed ratios in the transi-
tion regime (near r = 0.3) and much higher attenua-
tion for r < 0.6 than the seven-moment model.

Comparison of the present seven-moment theory
with high-frequency measurements of Greenspan in
nitrogen, oxygen, and air at 300°K are shown in
Figs. 5-7, respectively. This comparison is ap-
propriate because the measurements exhibit one
relaxation time. The present theory is not ap-
propriate for gases with widely spaced internal
relaxation times since it is tacitly assumed that the
relaxation times of all the internal degrees of freedom
can be represented by one relaxation time. Air is a
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F1a. 5. Attenuation and speed of Eropag?,tion in nitrogen
at 300°K. Comparison of theories with experiment (O, Green-
span, Ref. 29).
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Fic. 6. Attenuation and speed of propagation in oxygen
at 300°K. Comparison of theories with experiment (O, Green-
span, Ref. 29).

complicated mixture of polyatomic gases for which
the present theory is not strictly applicable, but its
behavior at 300°K does not differ significantly from
the pure gases N, and O,.

The attenuation and reciprocal speed ratios are
exhibited on a logarithmic scale. The experimental
measurements were carried out in a finite geometry;
a tube terminated at both ends by a transducer.
When r is small (i.e., the collision frequency is small
compared with the sound frequency), the available
measurements are limited to receiver—transmitter
separations which are small with respect to the mean
free path. The width of the transition regime between
the regime dominated by intermolecular collisions
and the regime dominated by surface-molecule col-
lisions (i.e., free-molecule flow regime) is uncertain.
The experiments are not conclusively in favor of
either the free-molecule theory or the theory em-
ployed here as long as the separation distance is not
too small. Analytic continuation has been used here
to extend the discrete sound mode to small values
of r below r,,;;:. The motivation for this has been
discussed previously.

The following values of gas properties were used
with the seven-moment model:

Gas Z f ci/k
N, 5.08 1.96 1.0
0. 3.97 1.96 1.0

Air 4.62 1.98 1.01.

The properties § and c¢i/k are taken from Prandtl
numbers and specific heats in Ref. 36. The values of
the collision number Z are not as accurately known

38 J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano,
H. J. Hoge, J. F. Masi. R. L. Nuttall, Y. S. Touloukian, and
(Hg5W) Woolley, National Bureau of Standards Circular 564

1955).
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Fic. 7. Attenuation and speed of propagation in air at
300°K. Comparison of theories with experiment (O, Green-
span, Ref, 29; shaded, Meyer and Sessler, Ref. 38).

as f and c¢i/k and are not tabulated with other
gas properties. For the present model equations,
the collision number Z is determined in a manner
similar to the way in which Greenspan deter-
mined Z from his own attenuation measurements.
At a high value of r (r = 85 for the seven-moment
theory), the Z parameter is adjusted until the
attenuation of the model is within the uncertainty
of Greenspan’s least-squares fit of his aftenuation
measurements. The final adjusted values of Z,
tabulated above, are within or near the range
of uncertainty in Greenspan’s determination of Z
based on experimental values of the Eucken factor
and his ad hoc combination of continuum theories.

A similar fit using the four-moment model yields
Z = 6.36 for N, and Z = 5.18 for O,. These higher
Z values compensate for the Eucken factor f = 1.4
specified by the four-moment model.

The critical frequencies are

GaS rﬁrit(’?) rarit(4)
N, 0.34 0.49
0, 0.35 0.49

Air 0.35

Below the critical frequency, the seven-moment
results compare very well with the measurements.
The four-moment theory did not compare as well
with experimental measurements in N, and O,, and
was not calculated for air.

The graphs for N, and O, also show Monchick’s
theory®®** for local and absolute expansions trun-
cated at nine polynomials. Also shown, for all three
gases, is Greenspan’s combined theory, and the
Herzfeld, Rice, and Kneser, and quasi-Burnett
theories.”® Both calculations of Monchick® depart
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from the N, and O, attenuation data near r = 2
and rapidly tend to zero for small . Comparison
with sound speed measurements remains good.
Greenspan’s theory gives good agreement with his
experiment for values of r near or greater than 0.5.
The reason can be traced to the superiority of the
Burnett theory (derived by the Chapman-Enskog
method) in depicting sound attenuation in mona-
atomic gases.’” The attenuation from the Burnett
theory is close to the experimental attenuation until
r ~ 0.5, while the attenuations from the super-
Burnett and the Navier-Stokes theories are close to
the experimental attenuation only until r ~ 3.
Monchick’s theories, without considering the addi-
tional moments for internal degrees of freedom, are
analogous to a “Navier-Stokes” theory derived by
the Wang—Chang method. At the critical frequency,
and certainly beyond it, only the present seven-
moment theory seems to follow the trend of both
the attenuation and speed ratio data. Even if our
theory is not calculated beyond the critical fre-
quency, it is the only self-consistent kinetic treat-
ment that gives good agreement with experiment
over the whole range in which it is proper to consider
only the dispersion relationship.

Also shown in Fig. 7 for comparison are Meyer
and Sessler’s measurements in air at 20°C, an
11-moment theory for a monatomic gas of rigid
spheres® and Meyer and Sessler’s free-molecule the-
ory.” Although not shown here, comparison, using
the values of Z for Greenspan’s data, with Sessler’s
measurements in nitrogen and oxygen at 20°C is
also very good.

VIII. CONCLUSION

The method of Sirovich and Thurber has been
applied to obtain a dispersion relation for four- and
seven-moment polyatomic kinetic model equations.
The agreement with experimentally measured prop-
agation and attenuation rates for oxygen and nitro-
gen is very good over a wide range of the rarefaction
parameter. Asymptotic analysis of the four-moment
model for small r yields qualitatively the same results
for attenuation and propagation as found by Wang—
Chang and Uhlenbeck, and phenomenological the-
ories. These results furnished the starting iterates
for the numerical ealculation of the roots of the
dispersion relation.

Numerical calculations show that the four-moment
model, as compared with the seven-moment model,

37 M. Greenspan, in Dispersion and Absorption by Molecular
Processes, D. Sette, Ed. (Academic Press Inc., New York,
1962), Vol. 27, p. 73.

% 1. Meyer and G. Sessler, Ann. Physik 149, 151 (1957).

somewhat exaggerates the effects of ¢! and §, although
the variation of attenuation and propagation over
the range of f and ¢! for gases of interest is small.
In the case where Z is very large, the polyatomic
gas behaves as if it were a monatomic gas. The
attenuation reaches a maximum value and the speed
of propagation appears to approach the value for a
monatomic gas. This case is often referred to as the
“freezing of the internal degrees of freedom.” This
is similar to the results obtained by Brau.*’ As r
grows unbounded for fixed Z the speed eventually
approaches the equilibrium or adiabatic limit. In the
case where the magnitude of Z is small or moderate
and is of the same order as r, the maximum in the
attenuation rate and the apparent approach to the
“frozen speed” is not noticeable since the relaxation
of the translational and internal degrees of freedom
is strongly coupled.

As r decreases from unity, the attenuation rate
would tend to zero more rapidly than these curves
predict (e.g., as rapidly as the attenuation rates
predicted by the Wang-Chang method), if the
processes contributing to the attenuation and prop-
agation of sound were merely the relaxation of the
molecular degrees of freedom. While one must be
careful in interpreting the physical meaning of the
analytically continued sound mode, it seems plaus-
ible to attribute the slow decline of the attenuation
rate to the streaming terms. The analytically con-
tinued portion of the sound mode for the polyatomic
gas will furnish a good approximation to the experi-
mentally measured sound mode even though the
polyatomic kinetic model does fail to prediet this
mode above the critical frequency.
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APPENDIX A
The dimensionless parameters introduced here are

£ = V/RTOr € = El/CiTm

fwg, dg,

U,/(RT)},

(RTo)gf(t)/nm pr =

[

Wi

p = (n — ng)/n, Uy
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=cf = — 3
Ter = (Ttr - TO)/TOy € = EE Xp( ET'T/’kTO) ’ G c'/k’ VN n‘)ﬂN/("r QO),
: ‘) ’ x = wd/(RT,)}, b= wyd,
E b —
(& = e, — € P = (P — p)/Do, g = (fi — f’,’)/ﬁ,
S, = (Qn)l/[po(RTo)}], Sine = (Qinz)l/[poG(RTo)%]y b = (fl - fol)/fm-
APPENDIX B
Relation between relaxation parameters and transport coefficients
_ nﬁggg _ _ b —VNVoo1 = nBég?l/r%Q = —1/[rzh,
e TR T Tl
nBé?;o —VnVi10 = nﬁﬂg/ﬂ'iQ =n %ngg H 6(1)(1)0)/ iQ
~VnVoi0o = T3 = -3 _/[TR]ly
Q)
2 (¢ = '%1“ - §c_v/[7'12]1
= —g (c—> p/[l(];, [#]1 9k ’
nBivo _ _(202)* / (ra] nbor _ 1 (_%)*&6?3"
1r§Q 3k Bl wiQ T 2\2¢ WW’
ey B 2¢ 1
ST QT T3k el \
le, | 2plreh m\l )/( 4 m\L , 2¢ mL )
J1 4+ =2 £ 14+ = 20
( 3R @)/ Ut s G T o Gplrald)
—VNV300 — '—%VNV200 = nﬁggg/ﬂ'%Q = ’nﬁggg 7F§Qy
= _71)/[”]1-
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