RESEARCH NOTES

particles, £ < S;. Therefore, from measured y dis-
placements, an equivalent particle size was cal-
culated using Einstein’s equation and from the size,
a uniform temperature fall velocity for the particle
was established. The difference between the total
fall velocity and the calculated uniform temperature
fall velocity is the thermal velocity from which the
temperature gradient was estimated. Because the
thermal velocity is the difference of two numbers of
the same magnitude and because the vertical particle
velocity error ranges from 4 to 409, and the uniform
temperature fall velocity error (~twice the particle
size error) from 20 to 409, a sizable uncertainty
in the gradient results. These additional data are
shown in Fig. 1. The cross-hatched bands are only
used to indicate the general data trend for the smoke
particles and the oil drops. Particles 5, 8, and 13
might have agreed more with the trend if the
gradient had been measured at the particle position
instead of being extrapolated as was previously
mentioned.

Several conclusions drawn from the work are listed
in the order of decreasing experimental certainty.

__(1) Anisotropy of random particle displacements
(Az®/Ay® # 1) is believed to exist and to have been
measured.

(2) The anisotropy is a function of the tempera-
ture gradient in the gas.

(3) A vertical (y) temperature gradient more
significantly affects the Brownian fluctuations in
the  than in the y direction.

(4) The change in anisotropy with temperature
gradient is approximately the same for oil and smoke
particles.

The region in which to begin an accurate analysis
of the effect on Brownian motion of particle material,
particle shape, particle size, temperature gradient
and mean temperature, particle velocity, and gas
composition would be in a constant-temperature cell.

Some of the measurements described here were
made at Lehigh University. The author acknowl-
edges the helpful discussions with R. J. Emrich,
C. W. Curtis, and N. Oshima and the thermal con-
ductivity measurements by R. U. Acton at Sandia
Corporation.

The author notes his appreciation of partial
support while at Lehigh by the National Science
Foundation and subsequent support by the Atomic
Energy Commission at Sandia Corporation.
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An extension of a previous paper on the equations governing
gas mixtures is presented. Revision of the relaxation time
of component velocities leads to a new diffusion equation.
Various dimensionless parameters of a binary gas are plotted.

In a previous paper' we examined the Chapman-—
Enskog procedure for gas mixtures. There, it was
discovered that in a variety of situations it is
necessary to include the effect of individual com-
ponent temperatures and, therefore, to consider
somewhat generalized equations. The key parameter
C in such a discussion is related to the Schmidt
number Se¢ through

_ 2p Se
¢ n(m, + mg) "’

where we have used the same notation as in I.
In Fig. 1 we have plotted the modified Schmidt
number C as well as Sc for an argon—helium and
a xenon-helium mixture, respectively. As in I,
the transport data needed for these curves are
partly based on experiment and partly on theoretical
formulas. It should be noted that C displays far
less dependence on m,/m; and n,/n than does Se.
For this reason it might be more useful to employ
C instead of Sc in a number of situations.

From I we recall that the derivation of fluidlike

L8

h _——— S
-~ =

0 ' AN 1 . s . 1
10090 BG 70 60 S0 40 33 20 10 ©
% He

Fia. 1. C and S¢ for Ar-He and Xe-He mixtures at normal
temperature and pressure.
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mixture equations from the Boltzmann equations
for mixtures follows from an analysis of three
microscopic scales. These are: A;', the time scale on
which component velocity differences vanishes; A\;*,
the time scale on which component temperature
differences vanish; A7!, the time scale on which the
component distribution functions become locally
Maxwellian.

RESEARCH NOTES

Owing to an incorrect estimate in considering
Au/A,, we erroneously stated in I that this ratio
is always greater than unity. In fact regarding
Eq. (62) of Ref. 1 we see that

lim (\p/Ay) = 2,
Ma/ms — 0,

pa/p— 1.

(This is the maximum of this ratio.) Then, in view
of the inequality below Eq. (52) of Ref. 1 we see
that A\, can exceed Ay. Rather than A, it is more
convenient to use the viscosity-based frequency

N = p/p.

(From I, Sec. IV-c, it can be seen that A\, & A,.)
Then, from Egs. (562) and (60) of Ref. 1

2
Ay _ P mr S
Ay — c,
A 2mqgn MaMg
where
my = p/n.

In Figs. 2 and 3 we have plotted Ay/A, and A/, =
C, respectively for rigid sphere molecules. (The last
is a replot of I; Fig. 2 in a more convenient form.)

In view of the fact that Ay/A, can be small (the
upper left-hand portion of Fig. 2) the full two-fluid
equations (I; Sec. III) have a wider application
than was suggested in I. This is also of importance
in connection with the generalized Chapman-
Enskog procedure (I; Sec. IV). In fact, when Ay/A,
is small the curly-bracket term of Eq. (46) of
Ref. 1 can no longer be regarded as ignorable.
Since the generalized Chapman—Enskog procedure
(I; Sec. IV) considers situations in which (T, — Up)
is small (i.e., when properly normalized as noted
in Ref. 7 of I), the curly bracket can be simplified.
To accomplish this we note that

Ua + Uﬁ - pa)(Ua - Uﬂ)_
2

—y g e o )

| Substituting this into Eq. (46) of I and proceeding

with the perturbation procedure of I: Sec. IV, we
obtain instead of the diffusion equation [Eq. (48)
of IJ,

a 9

Y U. — Uy + F (U;U. — U] + AU, — Up)
_ [V(@) L V(wM)
Pabs n P n
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In the above we have included the thermodiffusion
effect which was ignored (I). Expressions for » may
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be found in the literature.? The heat flow equation
[Eq. (55) of I] must then also be augmented by
the diffusion-thermo effect and we have instead

Q = —«VT +ng@—%(—m‘;-_—m“—)(Uu —Up)

e pnUs — V). 3

_|_

Therefore the equations of the generalized
Chapman-Enskog procedure now are: Eqgs. (13),
(27), (28), (29), (53), (54) of I and (2) and (3)
from the above. When Ay/A, = O(1) we return to
the two temperature equations of I. To see this we
merely note that the differential operator on the
left-hand side of (2) becomes negligible compared to

>\U(Ua - Uﬂ)

and this equation reduces to the diffusion equation
[Eq. (48) of I]. Finally the classical Chapman-—
Enskog mixture equations are obtained as before
under the condition of Eq. (56) of I. In this last
situation two temperature effects are higher order.
The expressions for component temperatures can
then be computed from the flow field through the
“temperature diffusion” equation (58) of I.

The results communicated in this paper were
obtained in the course of research sponsored by
the Office of Naval Research under Contract
Nonr 562(39).
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The analytic expressions for the transport cross sections
of a cutoff Coulomb potential agree with the numerical
results of an exponentially screened potential if the cutoff
radius is suitably related to the screening Debye-Hiickel
length and the Landau length.

For transport processes in weakly ionized plasmas
it is desirable to describe the interactions of charges
(approximately) by means of binary -collisions.
This description facilitates the comparison of these
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effects with those of chargeneutral interactions.
For the latter the binary collision description is
justified because of the short-range character of
the interaction potentials.

Since the integrals for the collision cross sections
diverge for a Coulomb potential (because of its
long-range character), it has to be modified to
ensure convergence. From a physical point of view
the most satisfying modification is an exponential
screening in accordance with the Debye-Hiickel
theory' of charge clouds around a test particle.
Unfortunately, the velocity dependence of the
corresponding collision cross sections cannot be
completely expressed in terms of analytic functions.
Consequently, the temperature dependence of the
(velocity-averaged) transport cross sections has to
be computed numerically for a wide range of
temperatures.”

This disadvantage can be avoided with a cutoff
Coulomb potential. Of course, this crude modifica-
tion is physically less satisfying than the exponential
screening. But the velocity dependence of the
collision cross sections can be expressed completely
in terms of logarithms and derivatives of Legendre
polynomials; the temperature dependence of the
transport cross sections is expressed by exponential
functions and exponential integrals®

For the temperature dependence of the transport
cross sections the advantages of both models can be
combined by an appropriate choice of the cutoff
radius ¢ in the cutoff Coulomb potential

. | vt for <
U@ =§ﬁ—{ "=

1)

0 -1

for r > o.

The collision cross sections Q" (g) for a binary
collision between charges ¢, and g, are given* by
the integration of 1 — P; (cos x) over the differential
cross section d@Q(x, ¢). (g is the relative speed; the
Legendre polynomials P; depend on the deflection
angle x.) The transport cross sections ¢“'™ times
the most probable relative speed are velocity
averages of gQ“(g) with ¢*" times the Maxwellian
velocity distributions of both colliding partners as
weight functions.® They are directly related® to
the @ of Hirschfelder—-Curtiss-Bird.®
With the Landau length

4 = L% (L L)(M; 2kT,-)“
T dweo \m;  my/\ m; m;
>0 for repulsion

attraction,

the (dimensionless) quantities ¢*"'™ /x(24)* depend
only on the ratio of ¢ and a characteristic length
of the interaction potential. This ratio is d/c for
the cutoff Coulomb potential (1) and the plasma
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