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The Oseen equations in three dimensions for an arbitrary gas are considered. In particular, the
cases of supersonic and hypersonic flow are studied. The asymptotic flow field displaying all the dissi-
pative effects is found in terms of known functions. The explicit structure of the Mach cone and the
wake is presented. The latter is shown to decouple, to lowest order, into a viscous and to a heat con-
ducting wake, containing only entropy and vorticity perturbations, respectively. The above results
are shown, by means of the nonlinear Navier-Stokes equations, to correctly deseribe the far field flow

past a finite body.

I. INTRODUCTION

The present paper in the company of an earlier
paper' completes a study of the compressible Oseen
equations. In Ref. 1 the two-dimensional case is
solved and in the present paper the solution of the
three-dimensional problem is given. In all cases an
explicit asymptotic form of the fundamental solution
in terms of tabulated functions is now available.
The uses of the fundamental solution as well as the
nature of the asymptotic solution has been amply
discussed in Ref. 1, and a short digest of this dis-
cussion appears in See. I of this paper. In this
introduction we wish to discuss the use of the Oseen
fundamental solution in describing the far field flow
for steady motion past a body. In particular we wish
to evaluate the present linear theory with respect to
the nonlinear Navier-Stokes equations.

We start this discussion with the two-dimensional
results from Ref. 1. We denote the total drag (per
unit width) on a body by —D. To illustrate the flow
at large distances we consider the fluid velocity
perturbation parallel to the upstream velocity U
and for simplicity we ignore the effects of lift and
energy flux. It then follows from Ref. 1 that to
lowest order

— Dlexp (=y’U/4¢2)]

(RTo)"*p(4mrsUz) ™

U, ~

Py

N D
wRT)72UM* — 1)(maz)”?

.{eXp [_[?J — x/(M* — 1)1/2]2]

ax

[y + I/(sz - 1)1/2]2]}'

al

+ exp l:—

(For the normalization see Sec. II.) The basic

assumption characterizing the linearization of the
nonlinear Navier-Stokes equations is that

0
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All quantities are dimensionless under a normaliza-
tion which effectively leaves the Reynolds number
0Q1). It suffices to consider condition (1) in the
neighborhood of a Mach line, and we find

;Fgoiﬁ < 1. @)
But since® D/[u(RT)'*] = O(Re M) (Re is the
Reynolds number based on body size) condition (1)
is violated unless the flow around the body is well
into the Knudsen flow regime.

It is intuitively clear that the far field flow past a
body is a continuum flow even though the body
itself is in Knudsen flow. This has, in fact, been
demonstrated directly via a kinetic theory approach.’
Therefore according to (2), the two-dimensional far
field flow past an object in Knudsen flow is self-
consistently linear, and governed by the Oseen
equations. Otherwise, unless there is some other
special reason for a small value of D the linear
theory does not apply there. [This does not imply
that the linear theory is entirely invalid. For exam-
ple, in considering flow past a thin body, an entirely
different perturbation parameter, the thickness
ratio, enters. Thus, although the far field is not linear
unless (1) holds, there is an intermediate region of
validity for the linear theory.]

It is interesting to note that according to the
expression for u, above, the far field perturbations
are small (provided that the body is finite) even
where the linear theory is invalid. We have con-
sidered this point elsewhere and have demonstrated
that for finite bodies independently of the size of the
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ratio D/u(RT,)"* the far field is governed by a
system of Burgers’ equations, and the leading term
for the far field flow may be given explicitly.

We next consider the three-dimensional case and
again letting —D denote the drag we consider the
u, perturbation at large distances and condition (1).
This discussion is indicated in See. V and the three-
dimensional counterpart to (2) is,

k<
Again, we have restricted our attention to the
neighborhood of the Mach cone. It, therefore,
follows that independently of the body (finite), at
sufficiently large distances the flow field is self-
consistently linear.

We mention in passing that when (22 + z2)
such that (3) is not valid, a nonlinear theory re-
sembling that of the Burgers’ equation has been
derived and this “not too distant” far field may be
analytically deseribed.

To conclude this introduction, we comment on the
relation of the results of this paper and its relation to
other work. In Ref. 1 the two-dimensional problem
was solved by using a boundary layer analysis on
the wake and on the Mach cone, and the same
method may be applied to the problem studied here.
(In fact, Salathe® in an independent investigation,
uses the formulation and method of Ref. 1 to
study the present problem.) We will, however,
use a different and much simpler approach, based on
the reduction of the problem, by Fourier transforms,
to the evaluation of integrals. The integrals are then
shown to fall into a class which have already been
asymptotically investigated.>® From this analysis
it is found that as in the two-dimensional case,' the
wake decouples into two different wakes. One is
structured by the viscosity coefficient and contains
only vorticity disturbances. The other is structured
by the heat conductivity and contains only entropy
perturbations. (It should be noted that the wake
alone was studied earlier by Ryzhov.”) The analytical
forms describing these wakes involve only elemen-
tary functions and the dissipative structure of the
Mach cone is also explicitly found in closed form.

It should be noted that Ref. 1 and the present
work are greatly different than the pioneering con-
tributions in dissipative gas dynamies by Lager-
stom, Cole, and Trilling® and Cole and Wu.? In
addition to their restriction to two dimensions most
of their work is of a qualitative value (except in
Ref. 9 where a special Prandtl number and the ideal
gas yields a solution) since a number of assumptions
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were made in order to achieve specific results. Also,
though their modal decomposition gives an interest-
ing view of a flow, we do not find it necessary here.
This modal decomposition may, however, be easily
derived from our final results.

Finally, although we do not consider nonlinear
theory here, we mention the important contribution
by Chu and Kovaznasy'® in this direction. They
consider nonlinear theory by following the above-
mentioned modes in their interaction. With the
results in Ref. 1 and here, this may be carried out in
more specific detail.

II. FORMULATION OF PROBLEM

For completeness in this section we briefly review
the formulation given in Ref. 1.

We consider a steady flow past a body whose
surface s is denoted by s(x) = 0. For convenience,
we specify a steady internal flow inside the body and
treat 8 as a singular surface. The discontinuous form
of the Navier-Stokes equation is

V’(Pu) = 0) (4)
V:(puu + p1 — P) = [pl — P]-nd(s), (5)
V'l:pll (ei+ g) +pu — Pu+ Q:I = [Q]-né(s),
(6)

Py B_2 “us.
" = U;; +u; F <# 3) V-ud;;, ™

2 1 V7 = [T, ®)
No restriction will be placed on the dissipative
coefficients u, K, and 8, and we write

. 30

- o,
P pap-—T

p = plo, T),

The last is the compatibility relation for the first
two.

A. Oseen Approximation

To normalize our variables, we introduce the
following upstream equilibrium quantities:

~ a_@g) i|1/2 B (@Q_)
Do po, To, Wo, G [(apo 7, ’ G oTo/,.’

1/2
6 = [(i&) ] .
3po/ s,

Then, we define the following dimensionless quan-
tities:

&)
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g=7, p=bt gt
L Po (22
. c, 1/2 . P
T = <a§T0> T —-T), P= el (10)
0=—r~—p, U="2 =2 P,
poto(c,T'o) 2o a’ Poag

For the time being, the normalization scale L is left
unspecified.

Substituting these into the governing equations
(4)-(8), carrying only the first-order terms (Oseen
approximation) and dropping the tildes, we get

U.-Vp+ Veu =0,
U.-Vu + Vo + xVT — {Vu — yVV-u
=n-(pl — P)i(s),
U-VT + xV-u+ V-Q = (n-Q)s(s)
— xU-(pn — P-n)s(s),
Q = —§{VT + inTs(s),

(1)

where
= _ﬂj_"f ¢ = _k_ £ = K
polteL agpoLi ’ poCo Lty ’
2
C. C
x=0—-D" y==2=23.
v a‘O

B. Reduced Problem

For a typical boundary value problem of uniform
flow past a fixed body, let the solution of (11) be e,
the Oseen operator be L, and the source terms be F.
Then, formally, we can write (11) as

Lo = F 5(s). (12)
The fundamental solution Q satisfies
LQ =1 4(s) (13)

_and from it, we can write the solution @ in the form

o) = [ @k - y)-F@) ds).  (19)
Regarding @ as known and restricting x to be on
the body in (14) we are led to an integral equation
in the quantities F(y). Comparing (12) and (11) to
identify the components of F(y) we see that this

U.-v v
Av=| V U.v — V2
Lo xV
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procedure results in the direct caleulation of the
forces and heat transfer at the body. That is, the
flow field itself need not be found in order to find
these quantities.

C. Far Field Solution

Closely following the development in Ref. 1, we
formally expand the source term

(F](s) = f F&)6(x — x') ds(x’)
- f F(x') ds(x’)5(x)

~ / F&)x' ds-V 6(x) + - - - (15)

The leading term here is

[ 10,01 - P), 3-8 — p1)- U

+ n-Q, n7] dsé(x)

= [0, F, 3¢, Q]6(x) = G,6(x). (16)

In our subsequent discussion we will illustrate
various aspects of our solutions by means of the far
field flow. For this reason it is worthwhile noting that

F = fn-(pl — P)ds

represents the total force of the body on the fluid
(this includes the lift, drag, and lateral forces).
Also in

50 = f a-(P — pl)-U + n-Q] ds

the first term represents the rate of work done by the
body on the fluid and the second the rate of heat
flow from the body.

From (12)

0~ Q(x):G, 7)

D. Fundamental Solution by Fourier Transform

To simplify the caleulations, it is desirable to have
a symmetric operator. Thus, if we substitute the
heat conduction equation into the energy equation,
then instead of Lo, we get

0 i p
—7VV- xV ul (18)
U.V — eV AT
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Denote by V(x) the fundamental solution which
satisfies

AV =1 (). (19

Then, for example, from (17), the lowest order far
field solution is

0’ 0
v~v,=Vx | ¥+ aVV® |0 (20)
i_ff(’, |

Introducing the Fourier transform into (19) yields
A(k) V(ik) = 1,

where k = (k1, ks, ks) is the transform variable.
Therefore,

V(ik) = A7'(ik)

and

VE) = (—2&? fff exp (tk-x)A™'(¢k) dk, dk, dks

- (2%)5 f [ f exp (k-x) gl%{—) dk, dk, dks,  (21)

where C is the classical adjoint of A and |A| is the
determinant of A.

III. ASYMPTOTIC EVALUATION OF THE
FUNDAMENTAL SOLUTION

We now fix the unspecified scale L in (11) by the
condition that

max (§ », §) = O(1).

L, therefore, is a scale length based on the dissipa-
tion. (From the point of view of kinetic theory the
scale L becomes a mean free path.) In this section
we search for the solution to V(x), (21), for |x] large,
1.e., in the limit of dimensional distance large com-
pared with the dissipative scale L. (Again, from the
viewpoint of kinetic theory this is the limit of
dimensional scales large compared to mean free
path—which is, in faet, the limit under which the
Navier-Stokes equations are derived from the
Boltzmann equation.)

To begin the calculation we consider the explicit
form of the 5 X 5 matrix A(<k),

iU ik 0
AGk) = | & @hU + k)1 + nkk  ixk :
Lo ixk iU + &

(22)
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where a combined matrix dyadic notation is em-
ployed. It will also be convenient to split the matrix

into its dissipative and nondissipative parts.

where the matrix 7A, refers to the Euler operator
given by

WU k0 |
AGk) = | kK KUl xk
L0 xk kU

The determinant of A is of ninth degree in k,, and
we write

9
det A = C [] [k, — r;(k1)], (29)
i=1
where
ky = (k5 + K)'”°
and

C = U + ).

That r; = r;(k.) follows from symmetry.

We now demonstrate that the imaginary part of r;
cannot change sign and also that r; can only be zero
when &k, = 0. Suppose that the imaginary part of
r, does become zero for k; # 0, then there exists a
k, real (k, and k; are, of course, real) such that
det A = 0. But this implies the existence of a vector.
(complex, in general) v such that

AGK)v = 0. (25)
On taking the inner product and using (20) we have
—i(v, Av) + (v, Apv) = 0.

But both A, and A, are real symmetric and hence
this implies that

(v, Apv) = 0.
But if k = 0, this can only be true if
v=1(1,0,0,0,0)

and on substituting this in (25) and taking note of
the form of A this is impossible. Next assuming
k, = 0 and k, = 0 and repeating the argument again
leads to a contradiction.

Next, a simple perturbation analysis can be
performed to find the roots r; for k, small. This
leads to

r; = —ia; + Oky), =14  (26)

where the four constants a; are positive and their
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specific form will be of no consequence. (They, of
course, vanish with vanishing dissipation.) We can
write the remaining five roots as

ri = fik) + OkD), =59 (27)
with
fo = e 4 B,
5 = M = )7 1Bk,
fo = _( ky )1/2 + 'tﬁk
(28)

fv* ]J.v fs=f9=

S
=
[l %}

The constant 8 is given by

3

b= g b+ + 6 =D @9
and M = U/y'"*is the Mach number which we take
greater than 1. Using the results of the previous
paragraph we can conclude that r;, j = 1, 4 always
lie in the lower half of the complex k; plane and r;,
j = 5, 9 always lie in the upper half-plane.

Next turning to the matrix in the numerator of
(21), C(ik), we notice that its entries are polynomials
in k. However, a direct calculation shows that it may
be written as

C(ik) = (k. — ro) B(ik), (30)

where B too has only polynomial entries. The double
root rs = r, may thus be eliminated and using (30)
and (24) in (21) we can write

V@) = (—Ql;)g [ exp (1k-%)

8

BER)/{C II ey — ri(k.)]} dh ke, (31)

We first perform the k, integration and note that
for z; > 0 we may close the path of the integration
in the upper half of the complex k; plane and for
2; < 0in the lower half-plane. Denoting the corre-
sponding contours by £, and £., respectively, we
may write

V@) = @% [H(x.) L dk + H(=2) f£ ) dkl]

© 8
f dk, exp (k-x)B/C [] (e, — ), (32)
—co i=1
where H(z) represents the Heaviside funetion. But
we have already shown that only r;, j = 1, 4 lie in
the lower half-plane. Since the a; are all positive,
continuity shows that the imaginary part of r;,

T. H-. CHONG AND L. SIROVICH

j = 1, 4 are bounded away from zero and hence
H(—2,) V(x) is exponentially small. Therefore, on
performing the k&, integration (32)

Hiz,
V) ~ 2271_()3:2 2 ff_m dk, exp (k. -R 4+ ir;z))
B kak) /TG~ 10, 39)
tei
where R = (z;, ;). As we have already mentioned,

the error estimate in (33) is exponentially small.
It is now convenient to split the integrands in (33)
into two parts.

Vme = glg{f,g, 2. f dk, exp (ik; R + ir;x;)
Bk k) /T 6 =, @9
{=1
V., = zgr()?(,)" f f_ ) dk, exp (ik, ‘R -+ ir;z,)

Bk k) ) TL 6 — 0. @)

As indieated in the expansions (25) and as will be
clearer in the following, V¢ governs the structure
of the flow in the neighborhood of the Mach cone and
downstream of it, and V, governs the structure of
the wake.

The integrals in (34) and (35) are special cases of
a general asymptotic analysis given elsewhere.’’
Under the properties already demonstrated for the 7;,
it is proven that for z, large the asymptotic forms of
such integrals are obtained by replacing r; by f; and
further retaining the leading term in the expansion of

B fI (i — 10

=g

for small k;.
A. Wake Calculation

Define the vector

= (—X} 07 0) O) 1) (36)
and the matrix
[0 0 o 0 0]
0 ik 0 0 0
B = ;01— 0 K —kk O (37)
1
0 0 —kik, k 0
0 0 0 0 0|

Downloaded 16 Jun 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



STRUCTURE OF SUPERSONIC AND HYPERSONIC FLOW

Then, carrying out the asymptotic approximation
outlined in the previous paragraph from Ref. 5 we
have

_ H(x,)
Vw(x) - (27[')2U"Y

” £
-[aa f_m exp <1k¢‘R U
+ f exp (zkl-R _ %}chf) B dkl]

0*( —3/2

where the symbol O*(x;”) represents a quantity
which vanishes, for z, large, slightly less rapidly
than z;®. Each of the integrals is straightforward,
and we find

A xl) ko.

yUR®
W@l = Hw) [mx, P (“(4&1))
0i20;2 UR? I
gz, © (‘(4;%)) + W] + 0@ (38)

with the matrix W having only four nonzero entries
given by

W = L {sz o (_ UR2>
2 = 3R \2¢ CP\ T (d5zy)
2’ UR?
(=) [1- e (25}
1 22U UR?
W44 21I'R2 {2131;‘ (_ (4{271))

39)

o UR?
T (1 - ET) [1 — exp <_(4§'x1)>:|} :
W34 = W43
Lo UR? RU
= 7UR* [1 - P (_(4;951)) (1 + 4g~xl)]'

Since £/(yU) and U/t are positive independently
of the Mach number, the wake calculations are
valid for all Mach numbers (i.e., at subsonic speeds
also). This portion of the calculation is developed
under the limit

z. z.E

U >1, SU > 1.
Therefore, in the hypersonic limit U — o, the
development can only be presumed valid at relatively
large distances.

We also point out that as in the two-dimensional
case,' the viscous and heat conducting effects
decouple to lowest order. From (38) and (39) we see
that the wake structured by the heat conduction

1995

coefficient ¢ only carries density and temperature
variations, and that the pressure variation is zero so
that this may be identified as an entropy wake. The
wake structured by the viscosity coefficient ¢ only
carries velocity changes and since the divergence of
velocity vanishes there, this is a vorticity wake.

B. Mach Cone Calculation
We define the vector

% - ( U - ="k,
= (Uz . 7)1/2 ’ (U2 . 7)1/2 ’ kJ. ?
"k U
';CJ_ . ’ (Uz x_ 7)1/2) ° (40)

Then, carrying out the asymptotic analysis discussed

above, it follows that®

Voo = H(z,)
MC T (2m) Uy
«© 'lc
‘Re f_ exp (zkl-R + (Mal‘i—x—ll—)m - kaxn)

xxde, +0°(Ls), @
1
where g is defined by (29). Unlike the wake calcula-
tion, the integrals involved in (41) are not straight-
forward. The following types of integrals (not
unrelated) enter in the caleulation:

1
= e
® ik
‘Re j; exp (ik_q_ ‘R + (M: in)”z - kaxl) dk,,
1
Ii - (21I')2
-Re f exp (zkl R+ (M:klxll)l/f - 6kfx1>
.k—.l. ko.) t= 2; 37
1
161' - (27!')2
‘Re f_ exp (ikl'R + Wé@‘fv—i‘)va - kaivx)
Blae, =23 @
41

Consistent with the error estimate in (41) a second
asymptotic analysis may be performed.® This is
carried out in the Appendix, and all the entries of
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(42) are evaluated in terms of known functions to 1 hy
within the error estimate given in (41). V= 53 f f f exp (k-x)A7" dk. (46)
Analogous to (40) we define (@) o

U —y 2 Although not straightforward, we delete the calcula-
TN =97 R tions in obtaining V. Again the solution can be
e described in terms of its behavior in the Mach
Y o . xU 1ﬁ)' (43) cone Vyc and in the wake, V5. That is, writing
BOey V= Vi + Vi (47)
We then find we find
H 1 - et
Vi = ghw@ﬂHwWWa @@[%®M=mm@$%mm9
The function b(x;, R) is given in terms of a parabolic Bi2diz 4 sz W‘?«) 48
cylinder function by (AS). + v ()2 + Wi #8)
where
IV. THE INVISCID LIMIT 0
% = b deae) + g (1 _2@)
It is of interest to consider the comparison of the 8 = op M) T o RE R/
asymptotic solution found in Sec. III with the .
analogous inviseid solution. If we denote the inviseid Wz, = Wi, = 1?0?34 , (49
operator by ) . 0y
z
A, =A¢=0 £=0, 7=0), (5) e = 577 3@)ded) + 3pey; <1 “F )
the inviscid fundamental solution V°is given by with all other entries zero and
Ut Uy Uy Uy XU ]
L R (G N G K
2 3/2 3/2 U
R i e K N G
H U
ng(x) = %ﬁ vl z» 154 - Z‘U—z‘x%‘fy')"f/‘z 1|, (50)
U
Vs - ETJ’EX‘Z_—;')T/E I,
2rr2
i Fol
where

Hlx,/ (M — D) — Rl a/M° — 1)
27!' H-%/(MZ _ 1)1/2] _ R}3/2{[x1/(ju-2 __ 1)1/2] + R}3/2 ]

I =

I'l.' A(xlyR)r i= 27 3v

z;
R
Hlz,/(M® — 1D)'* — R]

21

A(xly R) =
( Rx,/(M® — 1)
o/ — D] = Ry e/ — D] + RY([2:/(M° — D] + {2/(M* — 1] — B}

+ L+ [2/(M* — D)at/(M* — 1] — R {77 )
{[xﬁ/(Mz - 1] — R2}3/2([$1/(ﬂ[2 _ 1)1/2] ¥ {[x?/(ﬂ/lz ] - R2}1/2)2 ,

I.‘,' = - 1 + (‘EI%_QZ:L - %i)B(xly R), 7/:.7 = 21 31
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_HI[R, — &/(M* — D*] _ Hlz/(M* — 1) — R]
TR’ 2%

B(xly R) =

Rz /(M? — 1)

’({[wl/<M2 - D77

— B {a/ Q07 = D71+ BI(/OF = D7 + {@l/ = D] — B

20 + [/ ~ D {[2/(M° — 1)™*] — B*}™'?)

@A — D) - B) 2@/ — D71 (@/0F — D] - R2}1,2)4)-

When we take the inviseid limit of the viscous
solution, we find that the leading terms of the wake
solution (34) give the whole inviseid solution V..
On the other hand, the limit of the Mach cone
solution (44) gives

~—H(z)
Uy

- H[:L‘I/(Mz _ 1)1/2 . R]
(32T2R)1/2{[x1/(M2 . 1)1/2] — R}3/2

which is only the leading term of V3, after we make
the expansions in {[z,/(M* — 1)'*] — R} = O(R'?).
Thus, while the asymptotic solution V, contains the
whole inviscid solution V, we have Vy blending
into Vi at far field.

Vuo(x) ~

Tt

(51)

V. THE FAR FIELD

We consider the far field solution of flow past a
body. Denoting the drag by —D, the lift by —L,
the lateral force by —F, and for simplicity, taking
Q@ = 0in (20), we have

0]

v(x) = V) EFJ ,
3

(52)

where
§ = (—D, -L, —F). (53)

A typical term of the far field solution in the wake
is then given by

__H@)D (_UR2>
e Cn) Uyiz, “P \ ™ 4z, (54)
and in the Mach cone,
H(x,) (_ v v,
U1 ~U U? — v D +R(U2 — 'Y)I/ZL
372 5 U
+ R(UZ _“7)1,2 F— sz— " 5c> b(zi, R). (55)

For the purpose of illustration, wetake L =F = 3¢ = 0
for 4, of the Mach cone solution, and the result is
plotted in Fig. 1.

We also note that for our far field solution, we

have, in the wake

_ —5/2
Vi = 0(z%),
and in the Mach cone
- -3
(u.v)u - O(xl )y (57)
Vi = 0@,
Therefore, our assumption that
(1 V)u K Vu (58)

is justified in the far field.

Note added in proof: After submission of this
paper for publication, the work of Salathe* has
appeared: E. P. Salathe, J. Fluid. Mech. 39, 209
(1969). Although this is not a proper place for a
relative discussion, several points merit immediate
comment. Salathe introduces a cautionary remark
concerning the use of the linearized theory at in-
finity. Our contention is that the linearized theory
in three dimensions yields a self-consistently valid
solution of the full Navier-Stokes equations. This
is shown in Eq. (56)-(58). (As mentioned in our
Introduction, this is not true in two dimensions.)
Our subsequent investigation of the nonlinear theory
supports this contention. Detailed comparison with
the paper of Salathe is not possible since it con-
tains an error. If this is accounted for, agreement
between the two calculations results.
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APPENDIX

In each of the integrals (38), it is convenient to
introduce R as the reference axis of integration

R = Rel,

kl. = kJ_ COos 061 + kJ_Sin 0e2.
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1 o
i I— g=2Re f To(oLR)ks
0.3 2r 0(z,~?)
ok
*exp ((ZIZ;—_I_%I—N - 6x1kf> dk, .

F1a. 1. Normalized Mach cone profile: z axis, {[z\/(M? —
1V — R}(2Bz1)7%; y axie, [H(@)U(U® — v)/vD](26z,)*/
- (3272R )1 12y,,

Then, let us consider I in (38) first. We have directly
1 o«
I = Re fo ko Jo(kLR)

" exp ((Mz )7 Bxlkf> dk, .

We first consider B = o(z,); the analysis is straight-
forward, and we find

M -1

Omxt

I~—

which is of a neglected order in (37). We, therefore,
restrict attention to B > O(z,).
Let p > 0, and consider

g=21-ﬂ_Refo

O(z179)

kyJo(k. R)

k
* €xp ((]W: lxll)l/z - Bxlkf> dk, .
Then

09 < f U kT uhuR) db,.

The integral may be directly integrated and we find

J(B/)
Taking p < 1, then in view of B > O(z,), we can
use the asymptotic approximation for J,, and we find

1
0(9) < RV

which is clearly of a neglected order. Next, we
consider

The argument of the Bessel function is clearly large
and we write

1/2
s = (o) " o (1 =)
s

Vo

+0<175L11€_l3’7>'

Consider

A:i}_rRef

O(z1-7)

@

[J ok L)

on) o (=)
- 7rk_LR COS kJ_R — Z

ik
- exp (—ﬂkfx1 + #ﬁ) dk, .

Then, using straightforward estimates we find

1
0(4) < R

It only remains for us to consider

e [ () )
= 2TRej; k, e cos IcLR—4

ik, 2,

*exp <—'6kfx1 + (Mz _ 1)1/2> dkl

for which we easily find

1
O(F) <R“m—xls‘m'

Therefore, for example, taking p = %

demonstrated

1 1/2 © -
I= (R—g) Re f EY? cos <klR - —)
T ) 4

- exp <—ﬁkf_m1 + W%%I)T,g) dk, + 0@2;*?).
(A1)

we have

Next consider I; of (38). A simple invariant
argument states

I, = ;—g A@,R), i=23. (A2)
and we easily show
1 A ok
A(x, R) = o Re z/; exp ((M: _lxll)lﬁ - !3kfx1>
~J(k Rk, dk; . (A3)
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The same arguments and estimates used in obtaining
(A1) may again be applied to (A3). It suffices to say
that we can replace Ji(k,R) by its asymptotic
approximation and write

1/2 @
Az, B) = (—1—3) Re i f kY cos (kLR - -31)
RT o 4

. )
-exp ((M—E%)— - mcfxl) dk, + 0G™).

(Ad)
Finally, consider I;; in (38). Again using an
invariant argument we can write

)

ii T2 By
I"i = 2 I(xlvR) + (R2 2)B(xl’R)7

1, =23,
where I(z,, R) is given by (38) and

(A5)

1 @
B, R) = —2—7;Re‘/; ky

) ( 12,k _
exp (Mz — 1)1/2

and using previous arguments, (A6) becomes

1/2 o
B, R) = —(5‘;1_5—) Rej; k'* cos <kR - E)

kax1>-f o(k.R) dk.  (A6)

kL

- €Xp <EM_2:_1)W - ﬁkfx1> dk, + 0@7>%). (A7),

The integral occurring in (A7) is the same as the one
appearing in (Al). Therefore, this and the integral
in (A4) are the only integrals which need to be
evaluated.

Both integrals may be evaluated using standard
integral tables. Writing in an obvious notation

Bz, R) = b(z:, R) + 0@™)

we find®

5(2:1, R) =

1
(281,)**(327°R)"*

‘Re [exp (Z—r) _R= "’1/(;1;51)— 1)1/2]2>

o /M — 1) = R])
(26x1)1/2

e

1999

+ exp (_1__"") _[R+ xl/(é];[;)_ 1)1/2]2>
(230200

where D,(z) is the parabolic cylinder function. The
second term of the brackets is already of a neglected
order [since R + z,/(M* — 1)** 3> 1]. Therefore,
defining

1
bl B) = Gpey @R
) ir\ R —=x/M* — 1)”2]2>
Re [e"p (4 > (862
iR — /(M — Dlﬂ])]
'D—3/2 ( (2.3171)1/2 ) (AS)
we can write
B(z.,, R) = b(z,, R) + O@:"%).
A similar argument for A (z,, R), (A4), shows
Az, R) = —b(z, B) + O(=™).
Therefore, we have shown
I = b(z;, R) + 0@,
I = - b, B) +0@™); i=23 (A9
I _$.'x,'b< R 0-—8/2_ ;4 =23
i Rz L1, )+ (xl )’ %,] = 4, 0.
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