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The gasdynamic equations are transformed to new coordinates based on particle paths and an appropriate set
of characteristics. The numerical integration of the transformed equations is accomplished by a scheme which
is accurate, rapidly convergent, and free from shock oscillations. Complete flow solutions are presented in

graphical form for several cases.

. INTRODUCTION

In this paper we furnish exact numerical solutions of
the gasdynamic equations following the techniques de-
veloped by Sirovich and Chong1 [hereafter referred to
as (D).

The class of problems considered is one-dimensional
unsteady flows. In addition to being interesting in their
own right, such problems have a long history as a prov-
ing ground of methods for the numerical integration of
the gasdynamic equations.” For the most part the
“brute force” approach has been used in these methods.
By this, one means that the partial differential equations
of gasdynamics are treated directly. A discussion of
the various methods then reduces to a discussion of dif-
ferencing schemes, e.g., Lax,® Rusanov,%® Lax-Wen-
droff,® MacCormack,” and Godunov.? A review of these
techniques applied to the problems under consideration
has been given by Moretti® '’ and Taylor et ql.!! In this
connection mention should also be made of the random
sampling approach taken by Chorin'? which in turn is
based on work by Glimm,*

The brute force method suffers from a number of
chronic ailments. Chief among these are slow conver-
gence, oscillations or wiggles (especially near discon-
tinuities), and shocks which are poorly defined as a
result of numerical viscosity. The method of charac-
teristics,!* which is better grounded both mathemati-
cally and physically, has been proven to be too cumber-
some and formidable for practical use. Hoskin and
Lambourne,!® however, have, at least in one instance,
demonstrated the superiority of the method of charac-
teristics to the brute force method.

II. RESUME OF THE EQUATIONS

We briefly summarize the gasdynamics equations as
derived in (I). The variables (x,t) are transformed to
a new system a(x,t), B(x,t), such that @ is a constant on
particle paths and B is a constant on C* characteristics

o

da
—+u—=0, C":

8 B _
o1 ox ot Tt g m=0. &

o
Because entropy is constant on particle paths, S=S(a).
The two momentum equations become
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Yoa=(c/Y)Sq) (2)
73 =tplta/ta) 5 (3)
where r* =u+ 2¢/(y — 1) are the positive and negative Rie-
mann invariants.
The transformation back to the physical plane is given
by

o A ! d !
Koo =108+ [ e e @
e=P@)+ [ e+ cla Bl Bda’.
0

We fix one of the arbitrary functions by
t0,8)=8. (6)

It then follows that P(B) is the piston path x=P(t) eval~
uated at £ =8.

In addition to Eqgs. (1)-(6) we have the usual shock
relations. If we write the shock trajectory as

dx _
dat

where M is the Mach number of the shock, then at the
lead shock,

s=y1_ - 1n[(1 +y2+71 (M* - 1))
(o=l D - 1 )] , (8)
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In the (@,B) plane, instead of (9) we have
' u=-M _
tat8 (a)<————u_M+c)t5-o,

where () is the shock trajectory in the (a,B) plane and
all quantities in (13) are evaluated at f=pS(a). Equation
(11) with (4) yields

M, (7)

(10)

(11
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_ A(a)(u=M+c)
0=1+ D/ (7-1)31((1)(” -M)

[
+f A(a'):—B[da’,ﬁ)"”””"“]da’. (12)
0
Equation (12) is evaluated at the shock 8 =g(a), which
then determines A(a).

Itl. METHOD OF SOLUTION

The governing equations are solved by an iteration
procedure starting with a relatively accurate approxi-
mate solution as given in (I).

A. Grid system

For the exact numerical integration we fix the shock
in the (@,B) plane to be that given by the approximate
solution. This has the decided advantage that the shock
does not change with iteration.

For the numerical calculation, we construct a grid
system in the (a,B) plane as follows: A constant grid
size in « is chosen. The shock trajectory 8=p8(a) then
determines the grid sizes (nonuniform) for 0 <8 <1 (see
Fig. 1). ForB >1,we returnto auniform gridin g which
is the same size as the last 8-grid size justbeforef=1.
Since the shock trajectory g8 =B(a) is slowly varying (see
Fig. 1), the grid sizes for 0 <8 <1 will also be slowly
varying and will not adversely affect the error estimate
of the finite difference scheme.!® The tail shock, indi-
cated by a dashed line in Fig. 1, does not enter directly
into the calculation and is included for reference only.

B. Iteration procedure

The steps of the iteration procedure are indicated in
the flow diagram, Fig. 2. In somewhat more detail
these steps are the following:

Step 1. " at the shock, Eq. (10), is computed using
the current solution (the approximate solution is used
at first iteration). This gives the initial data for the
solution of (3), which is formally

8
. ) t
r(@,8)~rlepa)=| Zu.dp. (13)
B(a)ta
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FIG. 1. Grid structure in the (o, f) plane. The a axis is uni-
formly divided; the g divisions are determined by the intersec-
tions with the shock curve at the left. A nominal number of

grid points are shown, In actual practice the o axis has roughly

100 divisions.
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Shock condition 12)-» r™(a,Bla))
Update r~(a,B) from {15)
or (21)

STEP |

¥
] Update r+ (0,8) from (16) J
[]

Update r+ everywhere
from (17)
¥
Update M(a) from (i1}
Update S{a) from (10)
Compute update of uand ¢
everywhere from (I8) and (I9)
[]
Use updated values of
M,u,and ¢ at B=8(a)
to compute A(a) from{14)
and t {a,B) from (6)

STEP 2

STEP 3

STEP 4

STEP 5

~Changes
in Successive
Interations Small
14

L Compute x{a,B) from (7) J

FIG. 2. The flow diagram for the numerical procedure.

The current values of ¢ and « (approximate solution at
first iteration) are used on the right-hand side of (13).

Step 2. Use step 1 to update »* at the piston

7*(0,8) =2P'() = r7(0,8) . (14)

Step 3. Formally integrate (2) to update »*(c,8)

7(0,8) =7(0,6) exp(% [s<a)-sol)

+J(;"y'(a”ﬁ)zi—,exp(4Lyl' [S(a) —S(a')])da/ ,
(15)

where »*(0,8) is obtained from step 2, r*(a,8) from step
1, and S is the ‘current value (approximate solution at
first iteration).

Step 4. Use current »*[a,B(a)] to update M(a) from
Eq. (9). Then, use (8) to obtain update of S(@). u and ¢
are then computed from current values of »*

(16)
(1

u(a,ﬂ) = %[‘V’(a,ﬁ) +T-(ayﬁ)] »
c(@,B) =[(r-1)/4]lr*(a,8) - r(a,B)] .

Step 5. Use current values of M, u, and ¢ at shock,
B=p8(a), in Eq. (12) to compute A(a). Equation (4)
gives #(a,p).

Subject to a convergence criterion (which is to be dis-

cussed), we either reiterate or exit and compute x{a,8)
from (5).
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C. Finite differences

A second-order finite differencing scheme is used
throughout the numerical calculation; the trapezoidal rule
for integration and three~-point schemes on all deriva~
tives. No interpolation is required since the shock and,
hence, the grid is fixed.

D. Stability of iterations

The iteration scheme as just presented was found to
exhibit oscillations which grew or decayed depending on
conditions of the problem. The oscillations, growing or
decaying, were regular and predictable. We found that
the method of accelerated convergence!’ could be used
to force convergence even in the case of growing oscil-
lations. However, in examining the causes of oscilla-
tion and the lack of convergence, we developed other
more direct methods.

The chief cause for the oscillation arises in the comp-
utation of 77, the negative Riemann invariant. This
quantity was uniformly overestimated or underestimated
at each iteration. We recall that v~ is computed from
(3) by integration along & =const, i.e., particle paths in
the physical plane. A different determination of »~ fol-
lows if we replace (3) by
Sa

Y - (18)
Y

da
which is obtained by rearranging (2) and (3). If (19) is
integrated, we obtain

0
r(@.8)=ra),8]- [ 19)

<2u,,-£‘sa) da,
o 8) Y

where a = a(g) is the shock, Regular oscillations again
occur, However, in this case, the oscillations are out-
of-phase with those in the previous case.

On both physical and mathematical grounds, we know
that the variation of 7" is more appropriately computed
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FIG. 3. Backward Riemann invariant. The solid lines at the
left give »~ versus g on the particle paths, a=const. Dashed
lines indicate average values of »~, At the right, for each
case, the average value of »*, on a=const, is plotted versus a
(dashed line); also included is a plot of Eq. (24) (solid line).

along negative-going characteristics: C™: dx/dt=u-c,
which in the physical plane represents waves reflected
from the shock. The appropriate equation to integrate
is
(L JMa BN .
B ta BB r== Y @

Integration of Eq. (20) is awkward since C~ trajectories
do not necessarily fall on grid points and, in any case,
change with iteration. In view of this difficulty, we mo-

(20)
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FIG. 5. Entropy variation,

del the integration along C~ by taking a mean value of
(13) and (19) (the mean is based on the average direc-
tion of C7). This should cause no concern, for in a
convergent solution both (13) and (19) are valid ques-
tions.

The actual iteration was not always performed on the
entire grid of Fig. 1, but rather on blocks of grid points.
We divided the grid structure of Fig. 1 into roughly ten
blocks treating each of these blocks as a separate num-
erical calculation and proceeding from the leftmost block
to the right. Data for the current block is provided by
the shock or the block to the left and the piston or the
block below as the case requires. The reason for
treating smaller blocks is twofold. Integration over the
full grid produces an accumulated error which results
in an iterated solution far from the actual solution on
certain parts of the grid. Also, use of blocks can greatly
reduce memory demands, which is of importance in
large calculations.

E. Convergence of the numerical scheme

We performed the numerical calculations with a grid
size Aa =0.02, which puts 50 intervals between the
piston, o =0, and infinite, @ =1, (according to the ap-
proximate solution) and roughly 100 intervals in the 8

10
j a=.8
8 1
7] o "\.01
6 . B ¢
. pe02 ¢ e
47 A 3s Qs
Tr 2 g2 -~
4P [ -
2 p=1.37 2 -~
B ) f=)67 -
-
o B T L T 1 T 1]
0 1 2 3 4 5 6 7 8
t

FIG. 6. C*characteristics and particle paths in the physical
plane: My=1. Particle paths are indicated by their a=const
values and C* characteristics by their f=const values. The
heavy solid curve is the leading shock and the daghed line is the
trailing shock. The piston trajectory is given by a=0,
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FIG. 7. C*characteristics and particle paths in the physical
plane: My=2 (see Fig. 6). :

direction. For a 20X20 block each iteration took ap-
proximately 0.25 CPU sec on a DEC-20 computer. The
number of iterations required for convergence depends
on the Mach number of the piston, M,, the block size,
and, of course, the convergence criteria. For a 20X20
block and the convergence criterion that the maximum
differences in u for three consecutive iterations be less
than some tolerance, we have the following results: For
My=1and atolerance of 10°¢, 12 iterations are required.
If we change the tolerance to 10, which is appropriate
to the a priori error bound of our numerical scheme,
the number of iterations is reduced to eight. For the
case of M;=3, the number of iterations required are

30 and 12 for tolerances of 10~ and 107,

The chief reason for slower convergence at higher
Mach numbers is that the variation of ¢ in the « direc-
tion (viz., ¢,) becomes large at the end of the piston
motion. This arises from the largeness of |u | com-
pared with |c| near the end of the piston motion. Hence,
the a and 8 characteristics which are defined by Eq. (1)
are nearly parallel.

IV. NUMERICAL RESULTS FOR A CLASS OF
PARABOLIC PISTONS

We carried out extensive calculations for the case of
parabolic pistons given by

14

12

% B:ia2

FIG. 8. C*characteristics and particle paths in the physical
plane: M,=3 (see Fig. 6).
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x=Pt)=My(1-t/2), (21)

where M, is the initial Mach number of the piston. For
My=1, 2, and 3, the Mach number of the generated
shocks are 1.766, 2.762, and 3.860, and the correspond-
ing entropy changes are 0.189, 0.911, and 1.856. Com-~
parison between these cases and the approximate solu-
tion is, in part, given in (I). As was shown there, the
shock trajectories as well as the pressure distributions
on the piston are given quite accurately by the approxi-
mate theory. It should be noted that the M;=3 case
represents a considerable departure from equilibrium.
In order to underline this, we note that in this case the
temperature behind the initial shock is almost four times
its upstream value. For further comparison we examine
the “constancy” of 7~ on particle paths. This is done in
Fig. 3 where for each of the cases we plot »” as a func-
tion of 8 on each of five particle paths as indicated. This
is compared with the averaged value, the dashed line, and
at the right the averaged values are plotted and compared
with a straight line. All this suggests that
r=y;italr;-r), (22)
where 7; is the upstream value and 7] is the value be-
hind the initial shock, provides an excellent approxima-
tion.

The relative constancy of ™ along particle paths has
some interesting consequences. From (3) we have that
T,;:tﬂua/ to =0, which implies that « is slowly varying
along C* characteristics, 3 =const. From this it fol-
lows that p is also slowly varyingon C* [see (), Eq. (17)].
This, in fact, is confirmed by our numerical solutions.
In Fig. 4 we have plotted « versus a and p versus a on
the C* characteristics for the three piston Mach num-
bers. The truncation of the line segments comes from
intersection of the C* characteristics with the front or
tail shocks. At higher Mach numbers, although slow
variation is still a good approximation, there is anotice-
able deviation from constancy.

The solutions in the (o,B) plane are completed by
Fig. 5, which specifies S(a) for the three cases. Fin-
ally, the solutions in the physical plane are obtained,
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in graphic form, by exhibiting the a =const and g = const
characteristics in the physical plane. This is given in
Figs. 6-8. On each of these, the numerically computed
front shock as well as the a and g characteristics are
shown. The tail shocks (dashed straight lines) are com-
puted from the exact shock relations at the stopping
point of the piston.
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