The Karman vortex trail and flow behind a circular cylinder
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Recent measurements by Sreenivasen [Frontiers in Fluid Mechanics (Springer, New York, 1985),
pp- 41-67] have shown the presence of temporal frequencies (other than the shedding frequency)
in the vortex wake generated by a circular cylinder. It is shown here that these modes of oscillation
can be described in terms of the classical analysis of the von Karman vortex trail. A comparison of
theory with experiment identifies the individually excited modes.

I. INTRODUCTION

Recently Sreenivasen' has shown through careful mea-
surements of flow past a circular cylinder in the regime of
vortex shedding (35 < Re < 10%) that a number of interesting
effects are at work. Particularly, he shows that while this
regime is not usually regarded as turbulent, the Ruelle-Ta-
kens? “route to chaos” does occur if relatively low values of
the velocity power spectrum are scrutinized. The first step of
this route is limit cycle behavior which in the present case is
vortex shedding, and is generally accepted as first occurring
for 30 < Re <40.> The next step is a two-torus motion in
which two distinct frequencies are present. Such is the case,
as shown in Fig. 1 (furnished to the author by Sreenivasen),
at a Reynolds number of 58. Here f; represents the vortex
shedding frequency, while £, is a clearly discernible second
frequency. (The “combination tones” f; + £, 2f,, 2f; + fo-..
are of course produced by nonlinearities.)

The purpose of this article is to show that such effects
may be given a satisfactory explanation that lies within the
classical analysis of the Karman vortex trail.®

Il. STABILITY OF THE KARMAN VORTEX TRAIL

Consider the Karman vortex trail as depicted in Fig. 2.
As is well-known the configuration is linearly unstable un-

less the vortices are staggered as in the figure, and the “as-

pect ratio” satisfies
k=nh/l=(1/m)sinh~! 1=0.281. 1)

In this case the trail is neutrally stable to all perturbations. A
nominal frequency of oscillation in this case is given by

02, = (k/81%) Hz, 2)

where « is the vortex strength, as indicated in Fig. 2. To
arrive at this value of frequency, a group of four neighboring
vortices are perturbed and this pattern is periodically repeat-
ed (see Fig. 2). Equation (2) then follows from essentially a
normal mode analysis. As is discussed later, other natural
frequencies are possible. Equation (8) is the most often men-
tioned value and we use it for illustration and normalization.

It was erroneously concluded by von Karman that if (1)
holds the vortex trail is stable. Kochin’® has shown, through
the construction of a Lyapunov function, that the exact (non-
linear) dynamical equations for the four-group perturbation
give rise to unstable solutions. Mention should be made of
the treatment of Domm,’ who in a related context carries the

2723 Phys. Fluids 28 (9), September 1985

0031-9171/85/092723-04$01.90

analysis through quadratic terms and demonstrates (an am-
plitude-dependent) exponential growth.

A numerical integration of the four-group equations
proves to be revealing. Figure 3 shows the relative motion of
two typical vortices, according to the exact nonlinear equa-
tions, after a relatively large perturbation of 20%. The trace
begins to diverge after roughly ten oscillations, but as we see
later this corresponds to the shedding of roughly 250 vortex
pairs—well above the number found in experiment.

lil. FLOW BEHIND A CIRCULAR CYLINDER

Next we review, in brief, the relationship of the vortex
trail to flow behind a cylinder. To be specific, we imagine
uniform flow Uj in the positive x direction past a circular
cylinder. The shed vortices have the sense shown in Fig. 2.
For this case the vortex trail moves to the left, relative to a
fluid at rest at infinity, with speed®

U, =«/(242]). (3)

Thus the velocity of the vortex trail relative to the upstream
is

U — U, = Uy — &/(21\2) 4)
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FIG. 1. Normalized frequency spectrum for the streamwise velocity at
Re = 58. Shedding frequency, f; =~ 181 Hz. Second frequency, /;=7.8. Ro-
tation number f,/f, =~0.043. (This figures replaces Fig. 3 of Ref. 1, which
was incorrectly included in that paper.)
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FIG. 2. Schematic of a vortex trail aspect ratio 4 /I and circulation x. Ar-
rows indicate a four-group perturbation (see text).

and the frequency of shedding is

0 =(Uy— U/ =(Uy/I1 — U,/ Up). (5)
Thus from (2) the frequency ratio, or rotation number, is
-()0 Us/ UO

N 2P1-U/U,) ©

Equation (6) cannot be applied without a knowledge of

U., and this quantity which varies with downstream position

is difficult to measure. In order to eliminate U, we follow

von Karman,® who through the use of a momentum balance

argument relates the drag experienced by the cylinder to the
vortex trail,

K 2xh
= (U, —2U,)
ImdU5  dlUG
U, U \?
~ —l—[l.588 < 0.628(—5) ] (7)
d U, U,

Here C,, is the usual dimensionless drag coefficient and d is
the cylinder diameter. Although it has been stated that (7)
“checks fairly well with measurement,”"® the evidence can-
not be regarded as overwhelming.

IV. ROTATION NUMBER

In order to compare the rotation number with the mea-
sured value, we introduce the Strouhal number

S=4.0d4/U, (8)
Then (5) and (7) can be combined to give
SCp, =(1—-U,/U,)
X [1.588(U,/U,) — 0.628(U,/ Up)]. {9)
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FIG. 3. Exact numerical integration of the nonlinear equations (see Ko-
chin’) for the four-group perturbation. The ordinate measures the normal-
ized relative perturbation of two vortices.
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We adopt the view that the left-hand side of (9} is a function
of the Reynolds number Re which is determined by experi-
ment. Once this is done, the cubic is solved for U, /U, and the
result substituted into (6).

For the case depicted in Fig. 1,d = 0.079 cm, U, = 110
cm/sec, £2 = 181 Hz so that

S =0.130. (10)

At the same Reynolds number, Re = 58, the drag coefficient

is*

Cp,=143 (11)
and substitution into (9) yields
U,/U,=0.153. (12)

If this value is substituted into (6) we obtain the rotation
number

02,/ = 0.064. (13)

This is to be compared with the value of 0.043, which is
measured by Sreenivasen.' In view of the seemingly loose
connection between theory and experiment, the 50% dis-
crepancy of (13) over the measured value might be regarded
as tolerable. However, in the following section we show that
much closer agreement can be obtained. For the moment we
extend the above treatment somewhat.

The above discussion relies on the idea that the drag
coefficient Cj, is a function of the Reynolds number. This
quantity can be obtained from experiment, and in what fol-
lows we use the measured values given by Tritton* in graphi-
cal and tabular form. In the same way the Strouhal number
is also furnished by measurement. In fact, for the range of
Reynolds numbers considered here, Roshko!! gives the rela-
tionship

S=40d/Uy;=0212 —4.5/Re, 50<Re<150, (14

which he states gives a fit to the measurements. [For the case
depicted in Fig. 1, Eq. (14) gives 0.134 in contrast with 0.130
in Eq. (10).] If (14) and C,, (R ), taken from Tritton,* are sub-
stituted into (9), it implicitly determines U, /U, as a function
of Re. This solution is then introduced into (6), and the result
for the rotation number as a function of Reynolds number is

" plotted in Fig. 4. The heavy black dots refer to data obtained

by Sreenivasen.' The dashed curves will be explained in the
next section.
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FIG. 4. Plots of rotation number ¢ /42 versus Reynolds number Re. Contin-
uous curve represents theoretical prediction based on four-group perturba-
tion. Dashed curves are theoretical predictions based on indicated perturba-
tions. Heavy dots represent measurements obtained by Sreenivasen.’
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V. MODAL OSCILLATIONS

As has been emphasized, the discussion thus far is based
on the special case of the four-group perturbation of the Kar-
man trail. Within the framework of linear theory, one can
also explicitly treat periodic perturbations of arbitrary
length as well as the aperiodic case. The essential steps are to
be found in Lamb.® We briefly outline this treatment in a
somewhat different way.

The equilibrium positions of vortices in the Karman
vortex trail, in the neutrally stable case, are given by

Zy=ml+Ut+ih/2,
Z, =m+Y+Ut—ih/2, (15)

where U; is given by (3) and the aspect ratio is given by (1).
The + superscripts refer to upper and lower rows. In the
same notation we denote perturbations from (15) by

zy =x5 + 5. (16)

The linearized perturbation equations are then given by

e o i 20 T
de " rg (m—k)I*?
. zj:_z+
+— m_ (17)
2r<fm—k FY +in]

where the bar denotes complex conjugation.
To solve (17) introduce the generating functions:

2] gl i

=gl loolneg)el

For a periodic disturbance the summations are finite. If (18)
is introduced into (17), it then follows that

d [ ib a—clla
Ti:[ﬁ] - [a +c¢ b Hﬁ’]’ (19)
where
a=X*4+X7)2, B=(Y*—=Y")/2, t=n«t/(27l?,
(20)

and
a=[¢2r—¢)—71/2,
¢ = [#? cosh(kx) — 7¢ 2 cosh k (r — $)] /2, (21)
b= [\2n¢ sinh k (m — ¢ ) + #* sinh k¢ ] /2.
The remaining quantities
p=X*t—X")2, v=(Y*+Y")2 (22)

are such that (v, i) also satisfy (19).
Postulating that (a, B) « expliw7), we find

w=bt(*—-a)?=0*(g) (23)
When ¢ = 7,
ot =" =1/2 =0, (24)

For the moment we depart from the convention of express-
ing all frequencies in Hz. For example (24), if expressed in
Hz, gives /4, which is equal to (2) under the temporal nor-
malization given in (20). This should not lead to confusion
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since we will be interested in the frequency ratio @ * /w,,
given in Fig. 5. [The other two roots, which follow from (22),
yield the negatives of o * .]

The plot of rotation number given in Fig. 4 represents (6)
and is based on the value of frequency given by (2) [or (24)].
Rotation number curves, corresponding to other allowed
values of the perturbation frequency, Eq. (23), are obtained
from (6) by multiplying it with the frequency ratio,

vEB) =0/, (25)

as given in Fig. 5. Thus in Fig. 4 we indicate by the dashed
curves those obtained from multiplying by: v=(27/3), a six-
group mode; v~ (m/4), an eight mode; and v—(27/5), a ten-
group mode. Similar curves obtained from the ®* mode do
not fit the data as well and a moderately convincing argu-
ment may be given that implies that the @ ~ mode is mainly
generated in the experimental situation.

In view of the agreement of the modal curves of Fig. 4
with experiment, it may be worthwhile examining future
measurements to see if the observed oscillations conform to
the corresponding modal disturbances.

V1. DISCUSSION

We comment on the presence of additional frequencies
and “windows of chaos” which Sreenivasen’ finds. As the
above discussion indicates, a continuum of possible frequen-
cies are present in an arbitrary disturbance. Vortex shedding
is the driving mechanism of the phenomenon. It both creates
the vortex street and the perturbations. The excitation of
additional modes and hence the appearance of additional
frequencies is, in general, likely. When resonances are struck
chaotic behavior can be expected. Fluctuation energies are
small compared to the energy of the street itself and little
interaction should occur. In fact, Sreenivasen' finds only
small changes in the shedding frequency as the principal
mode of oscillation makes the sharp jumps shown in Fig, 4.
(These jumps are separated by “windows of chaos.”)

In attempting to connect the theoretical discussion
based on the Karman trail with laboratory measurements of
flow behind a cylinder, many distinctions appear. With von
Karman we can regard the vortex trail as depicting the
asymptotic flow downstream of the body. However, viscous
effects are sure to play an increasingly important role in this

L w*/wg w™/wg

FIG. 5. Dispersion relation showing possible oscillation frequencies for the
vortex trail. Frequencies have been normalized with respect to the four-
group frequency w,. Abscissa ¢ is the angular wavenumber.
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limit. Another serious distinction rests on the fact that the
classical stability analysis refers to an initial value problem,
viz., the evolution of a perturbation to an unbounded vortex
trail. But in experiment the perturbation is introduced by the
boundary and the trail is at best half-infinite (the fact that
long range “forces’ are at work further underlines this dis-
tinction). Perhaps connected to this same point about bound-
ary versus initial value problems is the lack of any truly satis-
factory explanation as to why the vortex trail should seek out
its least unstable configuration. All these criticisms with-
standing, the closeness of the results that follow from the
Karman trail to measured values make the agreement too
coincidental to overlook.
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