Wave propagation on the von Karman trail
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The presence of wave propagation on vortex trails has been pointed out by Tritton [J. Fluid
Mech. 6, 547 (1959) ] who measured their speeds in the wake of a cylinder at moderate
Reynolds numbers. It is shown here that the von Karman model of the vortex trail leads to
such disturbance waves and, moreover, that they can be of growing amplitude. The theoretical
values of the wave speeds are found to lie within the experimental error bounds.

Tritton' has reported the appearance of irregularities in
the vortex trail behind a circular cylinder at moderate
Reynolds number. This was confirmed in later experi-
ments>? and more recently Sreenivasan* has shown the irre-
gularities to contain a rich substructure. From simultaneous
recordings taken at two downstream locations, Tritton in
particular demonstrated the presence of a signal traveling
along the vortex trail in the upstream direction with a speed

U,=03U, (1)

P
relative to the vortex trail. In this discussion U, represents the
upstream velocity, taken to be positive. It should be noted
that the street moves upstream relative to the fluid and Trit-
ton’ gives
U, =080, (2)

as a nominal value for the street velocity. Tritton reports
considerable variation in both (1) and (2).

The purpose of this Letter is to demonstrate that the
phenomenon of wave propagation can be accounted for
within the framework of the von Karman model of the vor-
tex trail.>® Moreover, as will be seen, the values of propaga-
tion speed as found from the theory show a reasonable agree-
ment with those of Tritton given above.

We recall that the equilibrium von Karman vortex trail
is a double row of vortices of opposite circulation located at

ZE=mFEDI+ Ut +ih/2, (3)
where
U, = (x/2]) tanh wh /1 (4)

is the street velocity and « the circulation. If we denote per-
turbations from equilibrium by

2 =xf+ipf, (5)

then these are governed by

d_ _ Ik zE —zF

_znjliz —_— e

dt T 21r§k: (m —k)*?
zF —zF

(6)

+ _f_'.c_ Z

T [(m—kFPIxin]?’
where the overbar denotes complex conjugation. To solve
(6), it is convenient to introduce the generating functions

(X*HY*) = (x) .y, )exp(ime),
” (7)
XY ) =3 Groexp|i{m+ )9
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and the transformation

+ - + -
a=X + X , ﬁ:Y -Y ,
2 2 (8)
Xt —-X- Y*+Y~
#:——-——, V= —,
2 2
It then follows that
d |a ‘17]_[ib a—c][a 7] (9)
dr Ll gl lat+c bl gl
where time has been normalized by
T=xt /23, (10)

and a, b, ¢ are functions of ¢ and can be found in Lamb.®
In this notation one may show that the solution to (9) is
given by

5 2]

B i
_ . cosKr (a—c)sinKr ”ao Vo
—exP(le)[[(a+c)/K]sinKT cos KrllB, 7wt

(11)

where zero subscripts indicate initial data and X = cZ — a7,
Thus the solution can be expressed in terms of the four fre-
quencies

to* ($)=+(bLK) (12)

Plots of @* are given in Ref. 6 and we remark that group
speeds are given by the slopes of these curves. To complete
the solution we need only invert transforms (7), e.g.,

27
X+ (7) =%f X+ (rd)exp( —imd)dp.  (13)
(1]

For periodic initial data, the generating functions are pro-
portional to delta functions. On the other hand, for signals of
finite extent, the generating functions are smooth in the
wavenumber &.

It follows from the functional forms of a, b, and ¢ that
K=Jr=—d= O(¢) anda — ¢ = O(1) as ¢ —0. From this
and the form of (11), it is seen that the most significant term
of the solution (13) has the form

I=f I,(¢)
o

where I,(¢) is representative of the initial data. [ Symmetry
conditions allow us to take the interval (O, 7) instead of
(0, 27).] One can argue that (¢ = 0) 50 for the irregular-

a—c¢

exp(ibr — im¢)sin(Kr)dp, (14)

© 1986 American institute of Physics 3910

Downloaded 05 Jun 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



ities reported by Tritton. Therefore, the largest contribution
to (14) can be expected to come from the neighborhood of
the origin. Thus in order to capture the main contribution it
is sufficient to consider the integral

J=2i f Si“f* exp(ibr — imd)d
0

= J" [exp(in™T) ;exp(i“’_f)] exp( — im¢)ds.
o (15)

To evaluate (15) we consider the limit 7— oo, in order to use
Kelvin’s stationary phase formula.'® If the stationary point
@, is not the origin, the standard procedure considers each
integral in the second form of (15) and yields a wave travel-
ing with the group speed (do * /dd)(¢,) and decaying as
O(77"?) for each. However, if the stationary point coin-
cides with a singularity, a larger signal can be expected. With
this in mind, we consider (15) for the case when the group
speed derives from a stationary point at the origin. In this
case each of the exponential integrals of (15) is divergent
and the standard method does not apply. To treat this case
we consider

J - J.ﬂd¢ exp(iw;‘l*r_: img) detﬁ exp‘(ia)_lf_: im¢)’
(V] 0

(16)

under the limit ¢ -0. By expanding @* in powers of ¢ we
can write each of the above integrals in the following way:

Jo = [ dbexp(~imp)

o ¢l—-s
Xexpli(b,¢ + b¢*)T + i(K,b + K,06%) 71,
(17
where the coefficients are
T hi? h
="+, b=,
maTa e T
2 172
K, = ﬁ(i.;.f!’...i)] , (18)
4]2 12 2

K,=

m

Th2/20% + wh /12— K,
(nlh /41 1 wh /12 — ;)_*
The stationary point at the origin corresponds to two values
of the group velocity namely,
b+ K,=m/7. (19)
Since the analysis for both cases are similar, we will only

discuss one of them, viz., b, + K, = m/7. In this case appli-
cation of a standard procedure!® yields

Jr= dé

o ¢1—e

explir(b, + K,)47]

<SR/ (14, 4 Ky, (208)
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J: :f ‘f"’ exp( — 27K 4) = SRUTE/D) Hp 1y-e
o ~€ €
(20b)
Under the limit being considered we obtain
J=]irl(}(Je+ —-J)
~lim L fexpl = (e/2)(n 7+ 10 Cp]
€~0 €
—expl —e(In7+1nC,)1}, 2n

where the constants C,, C, are derived from the coefficients
in (20a) and (20b). Expansion of the exponentials yields
I=0(In7). (22)
The theoretical wave speeds therefore correspond to the
slopes of the dispersion curve at ¢ = 0 and are given by
do* (0)
d¢
The units are vortex spaces /, per unit time, 7 as given by
(10). Therefore, in dimensional units, the speeds are
3.3k 1.9«
P2l 2l
To evaluate /! we appeal to the relation that gives the street
velocity relative to the cylinder
U, = U, —«/(2%?1) =0.8U,, (25)
where we have substituted Tritton’s value (2). The two wave
speeds therefore become
U, =0.47U,, 0.17 U, (26)

which is to be compared with Tritton’s value (1). In view of
the loose connection between theory and experiment, as well
as the wide error bounds of the experiment, this comparison
must be regarded as encouraging. Further, the result that
there is a growing front may very well be significant in the
downstream development of the wake. -

=b'(0) £ K'(0) =5.3,1.9. (23)
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