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The nonlinear evolution of periodic disturbances on vortex trails is considered. In addition to
following small initial perturbations, large amplitude initial disturbances of the vortex trails are
also studied. It is shown that the equations support a rich variety of essentially nonlinear
solutions including unbounded and quasisteady ones. These solutions are found to correspond
to various modes of vortex clustering in the physical plane. At the close of the paper,
comparisons of these results with recent numerical and experimental findings on the wakes
behind stationary cylinders, and also transversely oscillating bluff objects, are made.

I. INTRODUCTION

The von Karman model'” differs in essential ways from
the true physical situation (cf. Fig. 1). It is infinite in extent
whereas a true wake is bounded by the body that generates
the vortices. Also, viscosity does not figure in von Karman’s
model. As a remedy to this, recent inviscid models replace
the vortex by a core of constant vorticity. However, as
Meiron et al.® and Kida* have shown, this does not change
the basic stability properties in any significant way. More-
over, the von Karman model shares many qualitative and
quantitative features with the actual physical situation and
its further study is therefore warranted (cf. Refs. 5-8).

We will show that the von Karman model givesrise toa
rich and highly nonlinear variety of related solutions. Some
of these solutions can be shown to evolve from the von Kar-
man trail. Others are quasisteady spatially periodic arrays
that result from the interaction of infinite rows of vortices.
The latter class of solutions differ in an essential way from
the von Karman trail but are nonetheless physically interest-
ing and relate to certain experimental situations.>'® We also
consider the effects of changing the aspect ratio on the evolu-
tion of the von Karman trails. Unlike the von Karman trail,
the solutions we obtain are dynamic, i.e., they exhibit tempo-
ral behavior such as quasiperiodicity on one hand and un-
bounded motion on the other. .

- In this paper we describe a framework for solving peri-
odic problems of the von Karman model. In particular it is
shown that period-2 (four-group) disturbances are the most
unstable (see Fig. 2) and hence of greatest interest. For this
reason attention is focused on the four-group periodicity. No
claim is made that, after instability is well advanced, the
four-group is actually maintained in the physical situation,
though Koochesfahani® has experimentally observed four-
group periodicity for sustained periods of time. The results
of extensive computer experiments on the equations of mo-
tion (13) form the main part of this paper. We believe that
these results add more support to the physical relevance of
the von Karman model, and at the close of this paper we
attempt to relate our results to recent experimental and com-
putational work.
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Il. KOCHIN'S EQUATIONS

The stability and evolution of periodic disturbances of
two parallel rows of vortices can be formatted in terms of
equations describing the interaction of many parallel rows,
each containing an infinitude of vortices.'' For example, a
disturbance that is N periodic requires 2N equations. A
sketch of this idea is shown in Fig. 1. The governing equa-
tions for N-periodic or 2N-group problem are given by’

dz, K T
= (=X ot Tz, — Z)),
T T A Dt =2
k=1,.,2N, ' )

where a prime denotes exclusion of the term j= k in the
sum. Here, Z, denotes the location of a typical vortex in the
k throw. Odd numbered rows arise from the upper row in the
original array and even numbered rows from the lower row.

We recall that only the von Karman case, for which the
spacing ratio k = h /I takes the value

ko= (1/m)sinh~'(1) =0.281, (2)

is not linearly unstable. In what follows, we do not restrict
our study to this case. Since Kochin’s derivation of (1) does
not require the periodic disturbances to be small, these equa-
tions are well suited to the study of vortex configurations
that are essentially large perturbations of the original array.
We are interested not only in the evolution of the von Kar-
man street but also in the existence of quasisteady spatially
periodic configurations that do not evolve from the von Kar-
man trails.

The four-group (N = 2) case is both the simplest and
the most basic in the sense that a period-2 disturbance also
has periods 2M for positive integer M. However, a more
important reason for studying the four-group case is that
linear stability theory implies it is the most unstable distur-
bance when the spacing ratio & is close to the special value &,
This is shown in the Appendix.

Henceforth, we focus on the four-group case. For
N =2, the row equation (1) becomes
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FIG. 1. The von Karman trail. Here # denotes the separation between rows,
1 denotes the distance between vortices in each row, and « denotes the circu-
lation of the vortices. Here and in Fig. 3, we adopt the convention that open
circles represent negative circulation and filled circles positive circulation.
Periodic disturbances of an equilibrium trail can be viewed in terms of the
motion of parallel rows of vortices, capital Z’s. The two-periodic or four-
group case is shown.

dz,
= —i — 1Y cot(z, — z;) 3)
dT j;l ( , J
in terms of the dimensionless variables
z, =7Z,/2l, T=wx/81% (4)

Symmetries allow these equations to be considerably re-
duced. Itis clear that they can be rewritten as three complex
equations in terms of differences only and, from (3), it fol-
lows that

C=Zl—22+23—24 (5) ‘

is an invariant. Hence (3) reduces to two complex ordinary
differential equations.

We pause to consider the physical significance of the
invariant C. In general, C = 2(z, — 2,) for an equilibrium
vortex trail. Thus in complex notation, the invariant C takes
the form

C =f+ ink, (6)

where the stagger f is the dimensionless horizontal separa-
tion

f=Re[n(Z, - Z,)/1] N

between the two rows in a vortex trail while the aspect ratio k
is the dimensionless vertical separation

k=Im{(Z, - Z,)/1]. (8)

For the perfectly staggered von Karman trail at special spac-
ing ratio, k = k, (which we term the von Karman case), C
has the value

Co = m(} + iky). 9

Given any assembly of four vortex rows, {z,,2,,2;,z,} with a
fixed value of C, it is easy to show that there is a correspond-
ing equilibrium with the same value of C.

As discussed, periodic disturbances of the von Karman
trail can be treated as the motion of parallel vortex rows. To
relate the assembly of four rows {z;} to the evolution of an
equilibrium vortex trail, we consider perturbations from the
equilibrium configuration {z¢}, which has the same value of
C. For example, if the assembly of four rows being consid-
ered has a C that differs from C; [Eq. (9) ], the above proce-
dure redefines the equilibrium state so that
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FIG. 2. Growth rates. The quantity 42 = a®> — ¢’ is plotted against the
wavenumber ¢ from O to 7. When A 2> 0, there is growth. The three curves
represent values of the aspect ratio, k = &,,0.3,0.4.

i=13

S (z—2)=0

i=24
With this equilibrium as a starting point, we define normal-
ized perturbations as follows:

pe =2z — (2 + V1), (11)

where ¥ is the velocity of the equilibrium trail. The govern-
ing equations for these perturbations (which can be arbitrar-
ily large), in terms of the differences

a=2(p,—p1), B=2(p;—p3), (12)
then take the form!!
d—q— —4i smﬂ( 1 - 1 ),
dr cosa+cosf cosfB +cos C
d 1 1 (13)
—-é_ —4i sma( - ),
dr cosa+cosfB cosa—cos C

where C is the above invariant [Eq. (5)]. In terms of the
distribution of vortices in the physical plane, the variable a
denotes the change in the separation between the Z, and Z,
rows, while 8 denotes the same for the Z; and Z, rows. Other
changes in separations, e.g., (p; — p,), can be obtained from
a and S and the equation

—p2+p3—ps=0,

which is a consequence of (10). Kochin'! derived (13) for
the perfectly staggered case, f = 7/2. We have extended this
derivation to the general case of arbitrary four rows. Hence-
forth, we refer to (13) as Kochin’s equations.

These equations may be put in Hamiltonian form,

da 2 9H 0H df _ 2 oH

, (14)

dr aﬂ dr da
where
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H= —4In{[(cos @ — cos C)

X (cos B + cos C)]/(cos @ + cos B) }. (15)

The constant C [ Eq. (5) ] represents two integrals of (3). As
one can easily show R, H is an invariant of (14) and hence
also of (3). Since (14) has two degrees of freedom and no
apparent additional invariant, we conjecture that, except in
special cases, the system is nonintegrable. This naturally
brings up the question of whether (14) supports chaotic be-
havior. In spite of extensive computer experiments we could
not uncover a single obviously chaotic case. In this paper, we
discuss only regular behavior.

ill. PROPERTIES OF KOCHIN’S EQUATIONS

In the von Karman case, where the aspect ratio k = k,,
the expression cos Cin (13) becomes

cosC= —i
and the original form of Kochin’s equations is obtained!!:

da . . 1 1

— = —4isinf — R

dr cosa+4cosff cosf—1i

dB 1 1 (16)
B isnd 1)

dr cosa+cosf  cosa+i

We discuss symmetry and singularity properties of Kochin’s
equations in terms of (16) but most properties are similar in
the general case (13).

Inspection shows that (16) is invariant under the trans-
formation

B-a+m a-f—m. n

Thus if [a(7),B(7)] is a solution, then [B(7) — 7,
a(r) + 7] is also a solution. Further, the trigonometric
form of Kochin’s equations implies that the dependent vari-
ables have a basic periodicity of 27. Thus we may restrict
attention to the four space cylinders, — m<Re a,Re <7
(which itself is a consequence of the spatial periodicity of the
rows of vortices). Another noteworthy property is time sym-
metry. Since

=mxt/81*

integrating the equations backwards in time can be accom-
plished by reversing the circulation « and integrating for-
ward in time.

Turning next to the critical points, we observe that Eqs.
(16) have only one equilibrium point (modulo 27), namely,

(aB) = (0,0). (18)

This corresponds to the unperturbed trail in this case. Of
importance is the observation that Egs. (16) are singular if
any of the following conditions are met:

cosa+i=0=>a= + (7/2 +irky) = + a, (19)
cosfB—i=0= B= + (7/2 —imky) = + By, (20)
cosa+cosf = a,= 4+ 5,4+ (2n+ 1)#, naninteger.

2n

[From (17) we see that (19) and (20) are essentially the
same.] The last condition, (21), defines a two-dimensional
manifold in the four-dimensional phase space of solutions.
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The singularities (19)—(21) (and their variations) play
a basic role in our work and we contend that they are signifi-
cant in the experiment. We therefore detail their appearance
in the physical plane in a case by case manner:

Case I: (a = + a, B # +B,). Two rows of opposite
circulation merge into vortex couples; the other pair of rows
remain apart. For a sketch of this situation, see Fig. 3(a).
[ This case includes the cases where = + B,and a#a, by
virtue of (17).]

Case 2: (a = +ay B= + f,).- Three rows merge
into vortex triplets while the fourth vortex row stands alone.
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FIG. 3. Couples. (a) Two rows of opposite circulation merge into vortex
couples while the remaining two rows remain apart. The resulting vortex
couples have a relatively large velocity (denoted by the arrow) causing
them to leave the trail. (b) Vortex triplets and doubling of linear dimen-
sions. Three rows merge to form vortex triplets. Together with the isolated
row, this forms a new perfectly staggered vortex trail with twice the length
scales. (c) Vortex merging—pairs. Only vortices in one of the rows merge
to form vortex pairs, e.g., (Z,,Z,). Vortices from the other row are suffi-
ciently near these pairs to form loosely bound vortex triplets, e.g., Z, and
(Z,,2,). (d) Vortex pairs and staggered arrays with smaller aspect ratio.
Vortices in both rows of the original trail merge to form vortex pairs. The
resulting trail is staggered and has aspect ratio, k' = 0.5k,.
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This results in ‘a new array with a doubling of the linear
dimensions, see Fig. 3(b).

Case 3: (a = a,, §=P5,). At least one imaginary part
of a, or B, is nonzero. Two rows with the same circulation
merge into vortex pairs while the other two rows are separat-
ed. For a sketch of this situation, see Fig. 3(c).

Case 4: The imaginary parts of &, and S, are zero, ie.,
a, = mm, B, = nw, where m,n are integers. Two vortex pairs
result from the merging of similar vortex rows. This situa-
tion is shown in Fig. 3(d).

These four cases [modulo 27 and (17) ] cover all possi-
ble singularities of (13) and therefore describe all possible
ways that four vortex rows merge. We note, however, that
these singular phase points cannot lie on trajectories of (13)
because the Hamiltonian (15) tends to infinite values at
these points. In particular, there are no orbits connecting the
equilibrium point (18) where the Hamiltonian is finite and
any of the above four types of singular points. Nonetheless,
the behavior of Kochin’s equation near these singularities is
fundamental.

IV. NUMERICAL RESULTS

It is of interest to study the evolution of the slightly
perturbed von Karman trail since such trails are always un-
stable.'! A second goal is to find and classify bounded quasi-
periodic solutions of (16) that do not evolve from the von
Karman trails. Solutions in the (a,8) plane are discussed
first and their corresponding arrangements in the physical
plane are then given. In order to highlight the relative mo-
tion of the vortices, a set of time frames or snapshots of the
solution is depicted in each case. In all the cases discussed,
the time step in the Runge—Kutta scheme used for integrat-
ing (16) is selected to be small enough so that the relative
change in the Hamiltonian, (15), remains less than 0.5%.

A. Collision of two vortex trails

First we consider small departures from the von Kar-
man trail at the special spacing ratio k,. A typical plot of
(a,B) versus time 7 is given in Fig. 4. Qur numerical experi-
ments show that only one of the variables @ and S ultimately
rises linearly in time. Prior to this we typically see the vibra-
tions depicted in Fig. 4.

The corresponding situation in the physical plane is pre-
sented in a sequence of snapshots in time. In Fig. 5 and all
subsequent time frames, the squares and diamonds represent
vortices of the same negative circulation while octagons and
stars depict vortices of positive circulation. The use of the
four shapes is for identification purposes. The second frame
in Fig. 5 represents the initial perturbation from the von
Karman trail. In the third frame, the perturbation has grown
and in the fourth frame, the vortex trail has separated into
different (essentially noninteracting) trails moving laterally
away from each other.

This sequence of events suggests that we describe the
asymptotic behavior in terms of the collision of two vortex
trails. Since Egs. (16) are reversible, unbounded solutions
can be retraced t0 T = — oo. This is shown in the first frame
of Fig. 5. Only at such times when a and S are O(1) does full
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FIG. 4. Unbounded solution. A period of slowly growing oscillations
around the equilibrium point leads to unbounded motion where the real and
imaginary parts of a grow linearly while B tends to a constant. The sub-
scripts 1 and 2 denote real and imaginary parts, respectively.

interaction between the four rows take place. Figure 5 de-
picts a scattering in which the two colliding trails exchange
rows. The squares and stars are paired before the interaction
but, after scattering, the squares are paired with octagons.
Scattering in which the two trails pass through one another
without row exchanges can also take place.

B. Quasisteady vortex clusters

A larger class of phenomena is observed if we consider
initial data for (16) that are not constrained to be small per-
turbations. In addition to unbounded solutions, we also find
quasiperiodic motion. One such set of unbounded solutions
involves the formation of vortex couples from triplets. The
triplet configuration that corresponds to a neighborhood of
the case 2 singularity is unstable. Here, we give a numerical
example of such an instability, in which two vortex rows of
opposite circulations form a couple within the original clus-
ter of three rows and diverge from the trail. Three time
frames of the evolution of triplets into vortex couples are
shown in Fig. 6. We note that such vortex couples are asso-
ciated with the case 1 singularities of Eqs. (16).

The quasiperiodic motions of (16) appear to be of three
basic types. One class has solutions exemplified by the plots
in Fig. 7(a) of (a,B) versus time. Inspection of this figure
indicates that there are two relatively close frequenciesin the
solutions. It shows a solution that remains near a case 2
singularity

(ap.BBy) = (1172 + imky,m/2 — iTky).

Our results imply that there is a fairly large set of such quasi-
periodic orbits near a case 2 singularity. In addition, these
solutions are also found at distances bounded away from the
singularity, i.e., this is a global phenomena. In the physical
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FIG. 5. Scattering of vortex trails. The relative motion of four vortex rows
in the physical plane for the unbounded solution in Fig. 4 is shown. The
initial perturbation of the vortex trail is given in frame 2, Frame 1 shows the
configuration at 7= — 100 while frames 3 and 4 are for 7 = 25 and 50,
respectively. Here, and in the following snapshots, the squares and dia-
monds represent vortices of negative circulation and the octagons and stars
positive circulation, all of equal magnitude. The four shapes are necessary
for identification purposes.

plane, such bounded solutions correspond-to high-frequency
oscillations within a cluster of three vortex rows and an iso-
lated fourth row. This is our first example of quasisteady
vortex clusters. An important feature of these solutions is
that the cluster of three vortices and the fourth vortex row
constitute a new array for which the length scales are two
times those of the original von Karman trail. This is deplcted
in Fig. 3(b).

The second class of quasiperiodic solutions remains
close to the manifold of singularities given by (21). As can
be seen in Fig. 7(a), where a time history of (a,.,5;) is plot-
ted, these solutions have two frequencies of which the ratio
(or rotation number) is large. This intermediate situation
related to case 3 singularities arises when a pair of similar
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FIG. 6. Triplets to vortex couples. This illustrates the instability of the vor-
tex triplet. It divides into a vortex couple and another row which then sepa-
rate. Three frames of the process at r = 0.0,0.2,0.4 are shown.

vortex rows are relatively close together within a loose clus-
ter of three rows. As the third vortex row in the cluster ro-
tates around the vortex pair, it is brought alternately toward
and then away from the fourth row in the configuration.
This results in a vortex trail with changing stagger and as-
pect ratio. Since the velocity of a vortex trail depends on
these quantities, the resulting vortex trail oscillates vertical-
ly. This is illustrated in Fig. 8. This is an example of loosely
bound vortex clusters of three vortices. '

By changing the separation between the third: vortex
and the vortex pair in the cluster, we obtain solutions that
exhibit intermittency. Figure 9 illustrates the situation that
arises when the third vortex (of opposite circulation) in the
cluster is moved progressively away from the vortex pair. In
each row of the original vortex trail, vortices repeatedly
merge and separate, giving rise to intermittent vortex pairs.
The vortices from one row migrate over to the other row and
merge with vortex pairs of opposite circulation, forming in-
termittent vortex triplets. As these vortex pairs and triplets
form and disperse, the effective stagger and aspect ratio of
the resulting vortex trail changes in a repetitive way. Hence
like the case before, these trails oscillate vertically. These
solutions remain near the singular manifold (21) but wan-
der (intermittently) close to the case 4 singularities, which
are isolated points on this manifold (21).

The third class of quasiperiodic solutions is found in the
neighborhood of case 4 singularities, e.g., (a,8,) = (7,0).
Like the previous cases, they have two basic frequencies. In
the physical plane, vortices in each row merge to form stable
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FIG. 7. (a) Quasiperiodic solutions I. Only the 8 variable is shown in the
interest of simplicity. The oscillations are centered at a case 2 singularity,
e.g., (@,5,). In this case, there appear to be two basic frequencies. (b)
Quasiperiodic solutions IL. The real part of a and imaginary part of 5 are
shown. The oscillations are close to case 3 singularities, and there appear to
be two frequencies. The ratio of these frequencies is large.

rotating pairs. The resulting trail has an aspect ratio equal to
about half the original value k,. This is illustrated in Fig. 10.

From the above discussion, it is clear that vortex couples
play a major role in the unbounded states encountered in the
breakdown of the von Karman trails. Meanwhile vortex
pairs and triplets are clusters that play important roles in the
bounded recurrent states, which do not evolve from the von
Karman trail. In performing the above numerical experi-
ments, we have obtained detailed information on the phase
flow of (16) in the neighborhood of singular points. This has
confirmed the existence of several families of quasisteady
spatially periodic vortex clusters in the dynamics of vortex
rows.

C. The case k#k,

In the above discussion only the von Karman case, i.e.,
k = kg, is examined. Here we briefly consider the effects of
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FIG. 8. Vortex pair within a triplet. Four frames of the periodic motions at
7=0,0.5,1.2,2.5 are shown.

changing the aspect ratio of the vortex trail. As in the cases
above, only perfectly staggered vortex trails are treated. In-
stead of Egs. (16) we use the general equations (13) with
several different values for the parameter C.

von Karman'? showed that such trails are linearly un-
stable. Since we are interested in the asymptotic states of
these trails, only small perturbations of size less than ten
percent of the scale length / are considered. Unlike the von
Karman case (k = k, where small perturbations always
lead to unbounded solutions), for k> k,, small perturba-
tions evolve into a wider class of solutions that includes
bounded recurrent motions. For intermediate values of
k > kg, the numerical results indicate that small perturba-
tions evolve into a dynamic state where vortex pairs and
triplets form and disperse before becoming unbounded later.
When k is much larger than k,, the motions that result from
small perturbations appear to remain in the finite part of the
plane. These motions resemble some of the cases that result
from large perturbations of the von Karman case, e.g., Figs.
8 and.9. Like their counterparts for k = k,, the main features
in these solutions are the repetitive formation and destruc-
tion of vortex pairs and triplets. Furthermore, there appears
to be continuous sliding motion between the rows of vorti-
ces.

When k < k,, the vortex trail is more unstable in the
sense that small perturbations become unbounded after a
short period of vibration of the original trail. In the von Kar-
man case, this period of vibration typically lasts for about ten
units of the normalized time 7. For & < k,, there appears to
be only one type of asymptotic state, namely, unbounded
solutions (cf. Figs. 4 and 5).

C. C. Lim and L. Sirovich 996

Downloaded 05 Jun 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



2.5
] A ] A 8
0.0} O.. O.. Oy O.. ]
t=0.0 {a)
2.5 I 1 1
’ ] 10 20
2.5
¢ o 9 o g o 9 o =)
0.0+ # # ; : b
r=ll.5 | (b)
-2.5 1
[0} 10 20
2.5
& & & o a9
0.0+ -:‘:O :.:O ;:O ;':O —
t=3.0 (c)
2.5 ' . L
[¢) 10 20
2.5
oot ® g. 8 @ @
° © 'r=l4.éj ° (@)
-2.5 L
2 0 10 20
2.5
B, B, B, @, o
00 4
=75 (e)
_25 1 1 1
o] 10 20

FIG. 9. Intermittent vortex pairs and triplets. Five frames of the process at
7=0,1.5,3.0,4.5,7.5 are shown. The configuration of the vortex trail alter-
nates between triplets and pairs.

V. COMPARISONS WITH EXPERIMENTS
A. Wakes of bluff objects17-18

There are two experimental situations that can be com-
pared with our numerical results. They are (i) the evolution
and breakdown of the von Karman street generated by a
stationary cylinder'?~'S and (ii) the quasisteady periodic ar-
rays produced by strongly oscillating cylindrical objects.'°

Taneda'? reported that a secondary array of large eddies
has been found in the far wake after the primary vortex trail
has decayed. He advanced the hypothesis that these large
eddies are caused by hydrodynamic instability of the wake
profile. More recently Matsui and Okude'® found similar
arrays of large eddies with roughly twice the length scales of
the primary vortex trail. They, however, believe that the
large eddies result from the amalgamation of vortices in the
primary trail. The phenomenon of vortex merging in the
near wake (into clusters consisting of three vortices) has
been reported by Basdevant, Couder, and Sadourny'* at in-
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FIG. 10. Stable vortex pairs. Four frames of the process at 7=0,
0.25,0.5,1.5 are shown.

termediate values of the Reynolds number. To this group of
experimental results on the evolution of the von Karman
street, we compare our numerical results on the evolution of
the von Karman trails for k> k, (discussed in Sec. IV C).
We recall that small perturbations generally suffice to pro-
duce vortex structures such as vortex pairs and triplets on
von Karman trails if k£ > k,. These solutions are inherently
dynamic in that the vortex trails alternate between pairs and
triplets (see Fig. 9). A shortcoming of this comparison is the
inability to ascertain the average spacing ratio k in the ex-
periments. It is generally known that the experimental value
of k varies over a considerable range of about k.

Another phenomenon in the breakdown of the von Kar-
man street behind a fixed cylinder is the formation of fast
moving vortex couples'*!* (of opposite circulation). We re-
call our numerical results from Sec. IV A: for von Karman
trails with spacing ratio near &, small perturbations typical-
ly lead to unbounded solutions that consist of rapidly mov-
ing vortex couples (see Fig. 5). Numerical analogs of this
phenomenon have also been obtained by Aref and Siggia."’
More recently, Meiburg'® reported similar results. These
two works'”!8 use general vortex methods and are based on
models that incorporate vortex cores. However, the above
comparisons between our results and experiments and also

with the numerical results'”'® indicate that the point vortex
model has physical relevance.

B. Wakes of oscillating cylinders

We now take up the comparison of our results from Sec.
IV B with the second experimental situation. Koochesfa-
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hani® and Williamson and Roshko'® have reported on ex-
periments where airfoils and cylinders are strongly oscillat-
ed in the transverse direction. They have found new periodic
arrays with clusters of two or three vortices on one side and
typically an isolated vortex on the other (see Fig. 7 in Ref.
9). These arrays are located immediately behind the oscillat-
ing cylinder and appear to persist downstream. It is clear
from our analysis that these do not evolve from the von Kar-
man trails.

We have found numerically three main families of
bounded quasiperiodic solutions near the case 2, 3, and 4
singularities of Kochin’s equations. These solutions consist
of vortex clusters that oscillate about their centers. They
typically persist for a relatively long time and we term this
behavior quasiperiodic on the basis of the numerical evi-
dence. For example, Fig. 8 illustrates periodic vortex clus-
ters of three vortices while Fig. 10 depicts two rows of stable
rotating vortex pairs.

Under different circumstances the von Karman model
supports unbounded and quasiperiodic solutions, solutions
that evolve from the equilibrium trail and solutions that do
not. These solutions correspond to vortex structures in the
physical plane that bear a resemblance to those found in two
types of experiments.
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APPENDIX: THE MOST UNSTABLE PERTURBATION

We demonstrate that the four-group case is the most
unstable case. (This was also mentioned without proof by
Meiron, Saffman, and Schatzman.?)

The linearized theory of the Karman trail is governed by

ilel=leve “all5)
daelgl " la+c b IBY
where @ and B are the generating functions for the perturba-

tion quantities (see Refs. 5 and 6). The elements of the ma-
trix are given by

a=¢Q2mw — ¢)/2 — m*/cosh? km,
b = m¢ sinh k(7 — ¢)/cosh? km + 77 sinh ké/cosh? k,
¢ = 7* cosh k¢/cosh? kr — mé cosh k(7w — ¢)/cosh km,

where k = h /1 is the spacing ratio of the Karman trail. The
eigenvalues of the above matrix are given by
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A=ib++Ja® =
Hence, there is exponential growth if (cf. Fig. 2)

Al=a®—c*>0.
At¢=0,

a= —m/cosh? km, ¢=n*/cosh® k.
Therefore, A, (¢ = 0) =0 for all k. On the other hand, at
¢=m,

c=0, a=m/2—m/cosh? kr#0, if k #k,
Therefore the growth rate for perturbations with wavenum-
ber ¢ = , i.e., the four-group, is given by

A, =a.
fot, we note that there are only three stationary points for
A%

9A7 (k@)

¢

where ¢* is an intermediate value and depends on k. Taking
the second partial derivative, we obtain

% (A?)

od?
Therefore, we conclude that ¢ =0 is a local maximum,
¢ = w is a global maximum for ¢€[0,7], and thus there is a

maximum growth for the four-group perturbation if the
spacing ratio k is near the special value k.

=0 at ¢=0,¢*m,

<0 at ¢ =0,7, for k near k,
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