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In view of the “observations” of the Cornell group, reassessment of their and our models for 
wall-bounded turbulence has been made. Wide ranging evidence is presented for the existence 
and key role of propagating modes (streamwise dependent modes), absent in the original 
Cornell model but present in some of their later models. Evidence that the heteroclinic orbit (the 
bursting mechanisms) found in the original Cornell model is most likely an artifact of their 
Gale&in projection is presented. A thorough discussion detailing the physical and mathematical 
soundness, as well as the universality, of our models is presented. 

I. INTRODUCTION 

The paper by Zhou and Sirovich’ (henceforth ZS), 
which is the basis of the “observations” by Berkooz et al2 
(henceforth, Betal), is based on our view of how the tur- 
bulent boundary layer (TBL) should be modeled. This 
view differs substantially in regard to mathematical struc- 
ture, physical content and background from that of Betal. 
We reply to Beta1 by considering each of these issues 

II. BACKGROUND 

In a paper that appeared in 1987,3 it was shown that 
the use of the empirical eigenfunctions coupled with a 
Gale&in projection produced a remarkably faithful small 
dynamical representation of the Ginzburg-Landau partial 
differential equation. Later in the same year a thorough 
program for the similar treatment of the Navier-Stokes 
(NS) equations in various geometries, including channel 
flow, was presented4 Independently in the following year 
the Cornell group’s model’ appeared as did the Chambers 
et al. treatment of the Burgers equation.6 A number of 
treatments using a similar formalism then followed.‘-” ZS, 
which appeared last year attempted to remedy shortcom- 
ings of the Cornell model, as well as subsequent 
extensions, ’ l-l3 and in particular to introduce more physics 
into the modeling. 

Ill. ASPECTS OF THE CORNELL MODEL 

The Cornell mode? results from the projection of the 
NS equations onto a space of five complex (or ten real) 
modes in which streamwise dependence is eliminated and 
which is restricted to 40 wall units (Ogy+ ~40). The latter 
restriction is a consequence of the limited data available 
from Herzog’s experiments14 for the determination of the 
empirical eigenfunctions. In subsequent models”-‘3 
streamwise variation was included. 

In ignoring streamwise dependence, a,=O, in the orig- 
inal model the Cornell group confer on their channel an 
iniinite correlation in the streamwise direction. Since the 
resulting flow is two dimensional, it, therefore, also lacks 
the vortex stretching mechanism of true turbulence. These 

two related shortcomings and the mathematical ill pose- 
ness of their formulation cast some doubt on their treat- 
ment. 
A. Moffatt’s critique 

The full impact of the unphysical properties implicit in 
the Cornell model was explicated by Moffatt? who dem- 
onstrated that a,=0 forces the decoupling of cross- 
sectional velocities from the streamwise velocities in the 
exact NS equations. Moffatt then rigorously demonstrates 
that this leads to temporally decaying fluctuations and 
hence to the approach to Poiseuille flow. 

The Cornell model does not inherit this property of 
decay (and the tendency to Poiseuille flow) from the NS 
equations. The source of this discrepancy is general and 
lies in the observation that a Gale&in procedure does not 
necessarily confer on its subspace of projection, properties 
of the full system. For example, dynamical systems gener- 
ated by a Gale&in procedure do not in general respect 
properties such as conservation of energy, momentum, vor- 
ticity and so forth. In this vein as Moffatt forcefully points 
out the Cornell model5 does not inherit the decay proper- 
ties of the exact equations for the case of streamwise inde- 
pendence, a,= 0. 

A rebuttal of Moffatt’s criticism appeared in 1991.i6 
The authors imply that the vector nature of the empirical 
eigenfunctions is the cause of the problem. However, the 
empirical eigenfunctions can be obtained by a unitary 
transformation of an orthonormal complete basis and this 
certainly cannot alter a basic property of the NS equations 
and certainly not the rigorous result of Moffatt. Their ar- 
guments appear unconvincing to us, and the authors them- 
selves are forced to the conclusion that in their model, 
energy is removed from the mean flow, in contrast to the 
exact result of Moffatt. 

In a similar vein consider the mean flow U(y) as given 
by 

y2 U(y) =; J; (uu)dyc$ fg-), (1) 

where (uv) denotes integration over horizontal planes. In 
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both the Cornell model and in ZS it is found that U(y) 
actually shows sharp temporal variations. Only in the limit 
of an infinite number of modes, i.e., for the full NS equa- 
tions does the ergodic assumption implicit in writing ( 1) 
become valid. [Even in a numerical integration where 
0( 105) modes enter one still finds a slow time variation.“] 
We mention in passing that for the earlier model of chan- 
nel flow suggested in Ref. 4, the mean velocity is forced to 
be time independent through temporal averaging. 

IV. HETEROCLINIC CYCLES: REALITY AND 
RELEVANCY 

The obverse of the above observations is also of impor- 
tance, namely, the Galerkin projection of the NS equations 
onto a subspace may introduce features and properties 
unique to the subspace and not possessed by the NS equa- 
tions. Of importance in this regard is a stable heteroclinic 
cycle found to exist in a four-dimensional invariant sub- 
space of the Cornell model. They also con’ecture that this 
structure persists in going to the full ten,’ ! -I3 dimensional 
space of their model and also in their subsequent exten- 
sions. Perhaps the best evidence for the role of this struc- 
ture in the ten-dimensional space is shown in Fig. 7 of ZS.’ 
In fact, the structure is shown there in physical space, as is 
its structural change with Re. However, it is also demon- 
strated in ZS’ (see Fig. 10 and discussion on p. 2869) that 
adding streamwise varying modes, thus creating a more 
realistic model, eventually removes all vestiges of the het- 
eroclinic cycle. From the point of view of the NS equations 
the heteroclinic orbit appears to be an artifact of the for- 
mulation, i.e., the chosen Gale&in subspace. This is fur- 
ther supported by the calculation discussed next. 
A. Simulation 

To investigate the possible role of the heteroclinic cycle 
we performed a large-scale simulation of channel flow at a 
Reynolds number of 125 based on half-channel width. (See 
Ref. 17 for computational details. ) As initial conditions we 
removed all streamwise dependence from a fully turbulent 
simulation. The flow was then followed in time in a fully 
three-dimensional framework, i.e., streamwise variation 
was permitted to develop. Figure 1 shows a select set of 
modes over the course of 6000 viscous times. Only a gentle 
exchange of energy occurs. No bursting associated with a 
heteroclinic orbit is in evidence. We regard this as convinc- 
ing evidence that the heteroclinic orbit is an artifact of the 
particular Gale&in projection. Only after numerical noise 
(single precision was used) stimulated propagating modes 
did transition to turbulence occur. 

1. Numerical trouble 

The case of the subspace of two complex ordinary dif- 
ferential equations was considered by Armbruster, Guck- 
enheimer, and Holmes” who proved the existence of a 
stable heteroclinic cycle. This case was further considered 
by Krupa and Melbourne” who have also presented a rig- 
orous proof using other methods. 

As observed in ZS convergence to equilibrium can be 
lost due to numerical roundoff. This has also been observed 
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FIG. 1. A full simulation with turbulent initial conditions without 
streamwise dependence projected on Kahunen-Loeve eigenfunctions. 
Streamwise wave number k,=O and vertical quantum number q= 1. (a) 
k,= 1; (b) k,=2; (c) k,=3; (d) k,=4; and (e) k,=S. (&is thespanwise 
wave number.) 

by Silber,20 as well as by Betal. About this point there is 
no dispute. Krupa and Melboume*l have also generalized 
their proof to systems of more than two complex equations 
but this is not directly applicable to the case of the five 
complex equations; i.e., there is no rigorous proof that the 
larger system possesses a stable heteroclinic cycle. While 
this point needs further study, to quote from ZS: “If it were 
always noise that triggered a spike when a solution is near 
to an equilibrium point, it would push the solution ran- 
domly to either one of the two opposite directions of the 
unstable manifold, and only irregular spike solutions on 
the time traces would be seen. Obviously, this is not the 
case.” Thus it seems likely that the case of five-complex 
ordinary differential equations is not the same as two com- 
plex ordinary differential equations as the Cornell group 
suggested. 

It is our view that more evidence is necessary in order 
to substantiate the role of heteroclinic cycles in turbulent 
bursting. Our study of the system of five complex roll 
modes was undertaken solely for comparison with the Cor- 
nell model. The entire issue of numerical effects becomes 
moot with the addition of streamwise dependent modes, 
since the latter dominate the results of integration of the 
resulting system. 

Recently we have presented an entirely different model 
based on three complex dynamical equations,” which ap- 
pears to bear no relation to the Cornell model5 and its 
extensions.11-13 This model follows the Ruelle-Takensz3 
route to chaos and the heteroclinic cycle is absent. This 
model appears to capture the essential dynamics of wall- 
bounded turbulence.*4 
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V. A MATHEMATICALLY ILL-POSED FORMULATION 

A flaw of the Cornell model pointed out in ZS and 
acknowledged in Beta1 is that their derivation starts with a 
mathematically ill-posed formulation. In brief, since the 
domain of the experimental data terminates at yc =40, the 
Cornell group argue that the pressure must also be sup- 
plied at y+=40. Thus they seek to solve the NS equations 
with one boundary condition at y+ =40, instead of three 
conditions at y+ =40, as is mandated from general math- 
ematical arguments. It was demonstrated in ZS that their 
formulation is mathematically ill-posed. This we deem to 
be a noncontroversial point. The Cornell group’s assertion 
that the resulting ODE problem is perfectly well posed 
only shows how the Gale&in procedure can be misused 

As a result of this incorrect information an improper 
inhomogeneous pressure term is carried along. The state- 
ment that this term is necessary to drive the system is 
discussed and rejected in ZS. 

VI. UNIVERSALITY 

Beta1 suggest that their restriction to 0 <yf < 40 con- 
fers a universality on their results not present in ZS, since 
we use a formulation based on a channel flow. It is our 
contention that the reverse is true, viz., that our approach 
has a generality that is absent in their models. We now 
amplify on this. Based on the belief that only a neighbor- 
hood of the wall is of importance one can postulate a 
weight function w(y) and on that basis construct a suitable 
orthonormal set. Our choice of 

dy) = I 
1, o<y+ <40, 
0, y+ >40, 

was made solely to facilitate comparison with the Cornell 
group’s work. Our eigenfunctions would be identical in the 
selected wall layer, to those of the Cornell group’s if they 
had employed the data of Rim, Moin, and Moserz4 used by 
us. The resulting system I$“}, in our notation, is then 
defined in the full domain. (Because of limited data, the 
Cornell eigenfunctions are only known for yf < 40 and this 
lies at the heart of some of their problems.) To give per- 
spective to this transformation, in ZS we have explained 
the quite simple and straightforward manner in which the 
weighted empirical eigenfunctions are related to their un- 
weighted counterparts by a nonsingular linear transforma- 
tion. 

The TBL contains two important fiducial locations. 
One is the locus of maximal turbulence production, 
y+“- 14. The second is the locus of maximal Reynolds 
stress. This last location is at y+ - ,/m (Ref. 21), a 
fact that is also well documented experimentally.25’26 As 
Jordinson” has shown for transitional flow, peak Reynolds 
stress occurs in the critical layer. There is ample evidence 
from our own work as well as others25P26 that the location 
of maximal stress plays an analogous central role for the 
TBL. As Sreenivasan25 has pointed out y+ < 40 is roughly 
low3 of the total TBL thickness at Rez106. One may 
reasonably feel incredulous that in this case the innermost 
l/10% can drive the entire TBL. 

The available evidence is that the important turning 
points of the eigenfunctions lie in the neighborhood of 
d/dy+(uv) =0 (d2U/dy +* - 0). The restriction to yf < 40 _ 
or any fixed domain excludes this for Re,>l. The Cornell 
model loses universality precisely because yf < 40 does not 
include this turning point as R,T 03. On the other hand, the 
log layer, which contains this locus, is always present in 
channel flow. 

VII. PROPAGATING AND NONPROPAGATING MODES 

In ZS the essential role played by propagating modes 
in wall-bounded turbulence is central to the creation of 
models of wall turbulence. Since doubt has been cast on 
their importance, we briefly summarize the evidence for 
their existence and importance. In particular it should be 
noted that (a) the evidence for these modes and their role 
come from full-scale simulations, not model calculations; 
(b) the propagating modes have a group speed equal to the 
convection speed at the location of maximal Reynolds 
stress. (This is contrary to the statement by Beta1 that they 
move “at local convection speeds.“) In addition, it has 
been proven that “spanwise propagating modes’ do not 
exist.28s29 (c) In the ZS framework the propagating modes 
are plane waves, this is a consequence of the channel ge- 
ometry. Propagation occurs in general as a consequence of 
translation invariance in the streamwise direction, and ap- 
pear when this occurs. (d) The physical time scale of 
bursting comes from the propagating modes and not the 
roll modes. This has been verified in full-scale simulations 
and comparison made with experiment3’ (e) References 
28 and 29 should be consulted for the arguments that show 
propagating modes trigger bursts. (d) In the recent model 
extensions by Sanghi and Aubry’” propagation was found. 
Support for the presence of propagating structures in the 
wall region is wide ranging. Abundant experimental evi- 
dence is available3 r3’ and a recent numerical investigation 
by Rim and Hussein39 also reveals the presence of propa- 
gating structures. 

Recently, Schmid and Henningsonm made a careful 
study of the transition to turbulence. They demonstrate 
that the key element in the transition is the interaction of 
roll and propagating modes. Unless the roll modes give up 
energy to the propagating modes, transition does not take 
place. 

VIII. CONCLUSION 

An ever increasing body of evidence indicates that 
propagating modes are essential for the description of near- 
wall turbulence. In neglecting such modes the original Cor- 
nell model fails to provide a satisfactory framework for the 
description of such turbulence; however, subsequent mod- 
els 8.x this defect. Thus we feel that the heteroclinic orbit in 
their models, which is at the heart of their claim for pro- 
ducing bursting, is probably an artifact of their formula- 
tion. It is also our belief that the Cornell restriction to 
0 <y+ < 40 and the lack of focus on the role of propagating 
modes (except in Ref. 13) make their model less realistic 
than the ZS models. 
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