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Probability density functions (PDFs) of the fluctuating velocity components, as well as their first and 
second derivatives, are calculated using data from the direct numerical simulations (DNS) of fully 
developed turbulent channel flow. It is observed that, beyond the buffer region, the PDF of each of 
these quantities (except for u,~), is independent of the distance from the channel wall. It is further 
observed that, beyond the buffer region, the PDFs are also independent of Reynolds number. Similar 
behavior is observed for the PDFs of the second derivatives. The pseudodissipation rate of kinetic 
energy exhibits lognormal behavior. 0 1995 American institute of Physics. 

I. INTRODUCTION 

It has long been known that the probability density func- 
tions (PDFs) of the velocity fluctuations in isotropic turbu- 
lence are nearly Gaussian, whereas those of the velocity de- 
rivatives deviate significantly from Gaussian. This behavior 
was observed in grid generated turbulence experimentsrY2 
and also in the DNS of isotropic turbulence.3 The first de- 
rivatives of the velocities are observed to have exponential 
tails, Narasimha.4 However, the “pseudodissipation” rate of 
kinetic energy, which is the sum of squares of the velocity 
derivatives, is known to exhibit lognormal behavior (e.g., 
Ref. 2). 

The fact that, even though the PDFs of the velocities are 
close to Gaussian, the derivative PDFs have exponential 
tails, implies that the behavior of the small-scale structures is 
not influenced significantly by the presence of the larger- 
scale structures. The presence of exponential tails in the 
PDFs of the derivatives implies greater intermittency in the 
small-scale structures. Studying the PDFs of velocity and its 
derivatives should help in understanding the physics under- 
lying the various processes in turbulence, and also in devel- 
oping turbulence models. 

The independence of PDFs in the wall normal direction 
(at one Reynolds number), in the Rayleigh-Benard convec- 
tion problem, was shown by Balachandar and Sirovich.’ Pre- 
liminary study of the channel flow by Dinavahi’ shows that 
the PDFs of velocities and their derivatives are independent 
of the wall normal distance. The aim of the present work is 
to observe the nature of the PDFs of the velocity, their de- 
rivatives, and the energy dissipation rate in wall-bounded 
turbulence. In particular, we would like to examine whether 
the PDFs outside the buffer layer are independent of the 
distance from the wall and also of the flow Reynolds number. 

“Presently with SAIC, 134 Holiday Court, Suite 318, Annapolis, Maryland 
21108. 

In Sec. II, a brief description of the DNS data, the coor- 
dinate system, and the PDFs is given. In Sec. III, the velocity 
PDFs are examined. The PDFs of the first derivatives, the 
second derivatives, and the pseudodissipation rate are inves- 
tigated in Sets. IV, V, and VI, respectively. We conclude with 
a brief summary in Sec. VII. 

II. PRELIMINARY CONSIDERATIONS 

In our discussions we follow the conventional coordinate 
system in which x is the streamwise direction, y is the wall 
normal direction, and z is the spanwise direction. We will 
also use indices 1, 2, and 3 to denote x, y, and z directions, 
respectively, and a comma (,) followed by a subscript de- 
notes a derivative with respect to the subscript. 

The data used in this study are from temporal DNS of 
turbulent incompressible channel flow. The flow is taken to 
be periodic in the streamwise and spanwise directions, both 
of which are homogeneous directions. The DNS data from 
four different simulations are used in this study. The sources 
are Handler,7 Breuer,* the data of Zang used in Dinavahi and 
Zang,” and Kim.‘” The Reynolds numbers based on the chan- 
nel half-height and the wall friction velocity for these data 
are 125, 180, 395, and 318, respectively. The rms values of 
the three velocity components, u,u,w, and that of the veloc- 
ity derivative &L/&C are plotted against y ’ in Fig. 1. The 
quantities in Fig. 1 are normalized by wall quantities. The 
peak in u,, increases in magnitude with increasing Rey- 
nolds number and occurs at the same y ’ (- 15) for all four 
Reynolds numbers. Similar observations hold for (&L/%X) rms 
as well. For u,, and w,,,, all four curves are clearly sepa- 
rated and the peak value increases with the Reynolds number 
and shifts to the right. 

It is more interesting to look at the ratios of the rms 
values of the velocity derivatives, which give a measure of 
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FIG. 1. The rms values of the velocities and the derivative of u. 

the local isotropy, rather than the rms values themselves. The 
ratios (ui~)ti/(ui,2)~, (Ui,3)rJ(Ui,J~s for i = 1,2,3 are 
shown in Fig. 2. There are two observations to be made from 
this set of graphs. First, the curves for each of these ratios 
collapse to a single curve, irrespective of the Reynolds num- 
ber. Second, each of the six ratios asymptotes to a different 
number as the channel centerline is approached. We have to 
keep in mind that the farfield here is the centerline of a 
channel, unlike the boundary layer of external flow. At the 

centerline of a channel, the turbulence experiences a set of 
constraints that are different from those in external flow. The 
approximate asymptotic values of these ratios are tabulated 
in Table I. 

From each of the datasets, three y + locations are selected 
for PDF calculations. The selected yf locations for the Re 
=318 dataset are shown as symbols on a plot of U+ vs y ’ in 
Fig. 3, where u+= uIu7, y+=yu,lv and u,,, and v are the 
wall friction velocity and kinematic viscosity, respectively. 
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FIG. 2. Ratios of the rms velocity derivatives. 

In each case two locations are selected in the log layer and 
one at the centerline. By symmetry each selected y corre- 
sponds to two horizontal planes: one on each side of the 
channel centerline, thus doubling the number of points. 

TABLE I. Asymptotic values of the ratios of the rms velocity derivatives. 

0.6 1.0 1.2 1.4 0.8 IO.65 

In. the current simulations, x and z being the homog- 
enous directions, the PDF of a random variable C#I is only a 
function of the wall normal direction and the Reynolds num- 
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Other than this symmetry, we did not make full use of the 
symmetry group of the channel, Sirovich.” The y ’ locations 
for the other datasets are selected in a similar fashion. The 
different datasets and the selected y locations are summa- 
rized in Table II. The large number of samples used for the 
first three datasets essentially ensured accurate PDFs. For the 
fourth Reynolds number, we had access to only one realiza- 
tion, giving us around 9.5 million samples. 
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FIG. 3. U+ vs y+ for Re=318. 

ber ~ of the flow; hence, it is reasonable to consider 
fJ&r,Rej, where 

e-t+> 
~=N449vP 

is a locally normalized fluctuation from the mean. 

111. VELOCITIES 

In this section, the PDFs of the fluctuating velocities are 
examined as a function of the wall normal distance and Rey- 
nolds number. In all the PDF plots the Gaussian curve is also 
shown for comparison. In Fig. 4, the PDFs of the u velocity, 
fU(ri;y,Re=318), at the th ree selected y locations are plot- 
ted. The various PDFs to a good approximation collapse onto 
a single curve, indicating that the statistics of u are indepen- 
dent of the y location. Similar PDFs for u and w (not shown) 
are also observed to be independent of the y location. 

After establishing the independence of y at each of the 
four Reynolds numbers for each of the velocity components, 
we go on to examine the issue of independence with respect 
to Reynolds number. For this purpose, we use the PDF, 
fJr?;Re), which is obtained by averaging f,(r?;y,Rej from 
the three y locations. The PDFs independent of y are con- 
structed similarly for u and w. The PDFs, f,(l;;Re), 
f,(s;Rej, and f,(C;Re), at the four Reynolds numbers are 
plotted in Figs. 5, 6, and 7, respectively. From these figures it 
is seen that velocity PDFs are relatively independent of the 
Reynolds number as well. The PDFs of u are negatively 
skewed and those of u are positively skewed in the tails, 

f(Uyky2 u ; , e 
1O-3 

FIG. 4. PDFs of u for Re=318. 

whereas the PDFs of w are very close to the Gaussian. This 
trend is also confirmed by observing the skewness factors 
presented in the next section in Table III. 

TABLE II. Selected y ’ locations for different Reynolds numbers. 

IV. FIRST DERIVATIVES OF THE VELOCITIES 

In this section, we examine the dependence of the PDFs 
of the velocity derivatives on the y location and Reynolds 
number. We will also consider the hypothesis by Narasimha4 
that the PDFs of the first derivatives can be represented by a 
Gaussian core with exponential tails. 

In Fig. 8, PDFs for u,~ at three y locations in the log 
layer are plotted from the data at a Reynolds number of 318. 
These PDFs agree well with each other up to three standard 
deviations. The PDF corresponding to the channel centerline 
is symmetric, and at the other two locations, the PDFs are 
skewed toward the positive side. Further, it is observed that 
with increasing y +, the left leg of the PDF curve gradually 
moves farther away from the Gaussian toward the PDF at the 
centerline of the channel. The PDFs of the other eight first 
derivatives (not shown) are independent of the y location. 
After establishing the independence of the y location for the 
Rrst derivatives (except for that of u,~), the PDFs for these 
eight first derivatives are calculated by using ‘the entire 
dataset from the three y locations. These PDFs can be de- 
noted as fui j(Cii,j ;Re) (j#2), showing the independence ofy, 

and are plotted in Fig. 9. The PDFs of u,, , u,, , u,, , w,~, and 
w,, are symmetric. The PDFs of the three derivatives that go 
into the continuity equation-u,X, u,~, and w,,-are skewed 
toward the negative side in the tails. In order to ascertain that 
this deviation in the tails is not due to statistical scatter, a 
sensitivity study was carried out for the Reynolds number 

Author Re y + locations Grid 
Number of Number of 
realizations samples 

Handler 125.0 50.50, 82.88, 125.00 64 X 49 X 64 80 16 056 320 
Breuer 180.0 59.12, 99.07, 180.00 128 X 129 X 128 100 211353 600 
Zang 318.0 63.32, 100.40, 318.00 216 X 163 X 108 20 76 049 280 
Kim 395.0 40.74, 102.32, 395.00 256 X 193 X 192 1 9 486 336 
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FIG. 9. PDFs of the lirst derivatives for Re=318. 
FIG. 5. PDFs of u for the Reynolds numbers shown. 
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FIG. 6. PDFs of ZJ for the Reynolds numbers shown. 
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FIG. 7. PDFs of w for the Reynolds numbers shown. 

loo 

10-l 

1o-4 

If-l-5 
LV 

-10 -5 0 5 10 
^ 
U,Y 

FIG. 8. PDFs of u,~ for Re=318. 

equal to the 180 case, and it was confirmed that the noted 
asymmetry was indeed present and not an artifact of statisti- 
cal scatter. 

The flatness and skewness factors for the velocities and 
their first derivatives (except for u,yj for different Reynolds 
numbers are provided in Tables III and IV. The data in these 
tables confirm the trends observed visually from the plots. 
Kuo and Cormin’- report that flatness factors of the first and 
second derivatives increase monotonically with increasing 
Reynolds numbers, however, with the exception of the flat- 
ness factors of u,, and u ,n there is no discernible trend for the 
limited range of ReynoIds numbers considered here. 

To observe the behavior of the PDPs at different Rey- 
nolds numbers, the PDFs of u,, at the four different Rey- 
nolds numbers and that from the experiment of Van Atta and 
Cheni2 are plotted in Fig. 10. The data of Van Atta and Chen 
are from an atmospheric boundary-layer experiment con- 
ducted at sea level. Three observations can be made from 
this figure. First, all the PDFs, four from the DNS, and one 
from the experiment agree quite well up to four standard 
deviations. Second, there is a Reynolds number trend in the 
tails. The tails are becoming wider with increasing Reynolds 
number. Finally, there is a slight negative skew in the tails of 
the PDF of u,, . 

Similar plots (not shown) were created for the other first 
derivatives, and it was observed that not only are the PDFs 
of the first derivatives (except u,~) independent of the y lo- 
cation, but also, are independent of Reynolds number. 

h@rasimha4 asserts that the PDFs of first derivatives can 
be approximated by a Gaussian core and exponential tails of 
the type 

f(x)=&? -x2/2+be-alxl~ (2) 

In order to test the above hypothesis, we selected the sym- 
metric PDF u,=, since we cannot use a PDF of u,, that is 
asymmetric. A least squares curve was fit to the above equa- 
tion (2): The calculated curves and the data for the four Rey- 
nolds numbers are plotted in Fig. 11, where the constants 
used in computing the curve are a=O.293, b=0.293, 
a=0.831, and cr=l.Ol. The Gaussian core with exponential 
tails seems to be a good fit for symmetric PDFs of the first 
derivatives of velocity components. 
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TABLE III. Skewness factors. 

Re U uJ u.z V v& V SY v,z W W,x W.Y W-2 

125 -0.68 -0.34 0.00 -0.01 0.01 -0.49 -0.01 0.00 -0.02 -0.01 -0.26 
180 -0.36 0.06 -0.05 0.41 -0.16 -0.43 0.02 -0.03 0.00 0.07 -0.32 
320 -0.45 -0.62 -0.09 0.31 -0.06 -0.38 -0.05 -0.04 -0.03 -0.01 -0.36 
400 -0.41 -0.85 0.13 0.19 0.06 -0.33 -0.03 0.06 0.09 -0.01 0.32 

V. SECOND DERIVATIVES OF THE VELOCITIES 

We now turn our attention toward the second derivatives 
of the fluctuating quantities. In Fig. 12 the PDFs, 
fu,,!fi,, 1 *y,Re=318), are plotted. It can be seen that all three 
PDFs fall on the same curve, indicating that the PDFs out- 
side the buffer layer are independent of the y location. Simi- 
lar behavior is observed for the other second derivative PDFs 
as well. Therefore, a single PDF, fU,,(&,- ;Re=318) can be 
calculated by using the data from all of these locations for 
each of the second derivatives. In Fig. 13, the PDFs of all the 
18 s derivatives fui Jii,jk;Re=318) are plotted. These PDFs 
are very close to each other up to about four standard devia- 
tions, and beyond that, there is some spread in the tails. 

These observations are verified again using the data at 
the other three Reynolds numbers. A single curve for the 
PDF of u,, was calculated using the data at the different y 
locations outside the buffer layer at each of the Reynolds 
number. To test the hypothesis of Reynolds number indepen- 
dence, these four curves are plotted in Fig. 14. It can be seen 
that the four curves agree quite well for up to four standard 
deviations, but there is some spread in the tails. There is a 
Reynolds number trend in the tails-the PDFs of higher Rey- 
nolds number data have wider tails. 

VI. DISSIPATION RATE 

In this section, we examine what is sometimes called the 
“pseudodissipation rate,” defined as 

(p= ~(N~,jU’,j) (i,j=1,2,3), (3) 

where repeated indices imply summation and the overbar 
denotes Reynolds averaging. We would like to point out that 
in the turbulence modeling literature, cf. Speziale,13 the 
mean, 4 is referred to as the kinetic energy dissipation rate 
and modeled as such, even though it is not the true dissipa- 
tion rate, and this is one of the reasons for looking at this 
quantity. In Fig. 15 the PDFs of log($) at different Reynolds 
numbers are plotted. On the same plot the Gaussian (normal) 
PDF is plotted for comparison. This clearly demonstrates 
that at the two Reynolds numbers considered, the pseudodis- 

TABLE Iv Flatness factors. 

sipation rate is lognormal outside the buffer region. The log- 
normality of this quantity for isotropic turbulence is verified 
by Yeung and Pope.14 However, in the sublayer and the 
buffer region, the PDF (not shown) of log(@ is skewed to 
the left. 

The PDF for log(@ is substantially different from the 
exponential distributions, which we have obtained for the 
PDFs of the individual derivative, Ui,j . The PDF of log(+) 
falls off far more gently. This might give the appearance of 
an incompatibility. We briefly indicate that no conflict is 
present in these very different PDFs. Toward this end we 
define P = P(G) to be the PDF in the nine derivatives 
contained in Ui,j. Thus, 

I P(iiJdiq=l, (4) 

where dG. = II&-, ~j is the element of volume in the 
nine-dimensional Ui,j space. All reduced PDFs are deter- 
mined by P(G), e.g., P1( cp>, the one-dimensional PDF 
in h,p A is given by 

1% 

Similarly, if ~=lq{ and R denote spherical coordinates 
in G space, then the one-dimensional PDF in E is given by 

PI(e)= P(c)dfl. 
s 

(6) 

The relation between PI(i) and P,(z) is simply 
P1(e)=2eP1(E2>. In order to see the compatibility of the two 
types of PDFs under discussion, it is convenient to think in 
terms of discrete probabilities. Thus, if cj space is dis- 
cretized in each of the nine directions into, say, N slices, 
there are Ng values for P(q). Equation (6) with Pi rep- 
resents N relations in these Ng quantities, as does (5), with 
Pl(cp) given. Thus, there are 1ON relations in the Ng rela- 
tions that shows how underdetermined the conditions are 
with P,(&$ and P1(cp) both prescribed. Clearly, the re- 
sults shown in Figs. 9 and 15 can be regarded as one solution 
to this vastly underdetermined problem. 

Re u uT u,z V VJ U2Y VA W W,x W.Y W,z 

125 3.57 5.12 6.33 3.75 5.57 5.34 6.70 3.61 4.70 6.53 4.89 
180 3.73 6.29 7.59 3.72 7.66 5.40 7.41 3.28 5.89 7.14 5.54 
320 3.17 6.80 7.48 3.49 8.99 5.49 7.08 3.41 7.54 7.00 5.75 
400 3.09 8.56 6.99 3.77 10.54 5.73 8.08 3.24 7.48 6.07 5.41 
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FIG. 10. Comparison of PDFs of u*, calculated from DNS data with those 
from the experiments of Van Atta and Chen. 
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FIG. 11. Least squares fit for the PDFs of u,, . 
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FIG. 12 PDFs of u,,, for Re=318. 
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FIG. 13. PDFs of the second derivatives for Re=318. 

FIG. 14. PDFs of u,, for the Reynolds numbers shown. 

VII. CONCLUDING REMARKS 

By analyzing the data at the four Reynolds numbers 
(125, 180,318, and 395), it is concluded that the PDFs of the 
fluctuating quantities are independent of the y location when 
outside the buffer layer, and that they are also independent of 
the Reynolds number of the flow. The PDFs of u have a 
small negative skew in the tails. The PDFs of u are posi- 
tively skewed in the tails and PDFs of w are symmetric and 
appear to be close to Gaussian. 

The ratios of the rms values of the velocity deriyatives 
are independent of Reynolds number and attain asynfptotic 
values away from the wall. The PDFs of the first deriyatives 
(except for that of u,~) are independent of y for locations 
outside the buffer layer. Not only are the symmetric PDFs 
independent of y, but they also appear to have the same 
universal shape, irrespective of the particular quantity and 
the Reynolds number: the shape of a Gaussian core qnd ex- 
ponential tails. 

The PDFs of all the second derivatives are also indepen- 
dent of the y location. The lognormality of the pseuclpdissi- 
pation rate for y location outside the viscous sublayer is also 
verified. 

The appearance of universal PDFs was reported earlier 
for the case of Rayleigh-Bdnard convection.5 As stated 
there: “The mechanism that is responsible for the tendency 
toward universality is not obvious.“As is seen in Figs, 1 and 
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FIG. 15. PDFs of the pseudodissipation rate, r$. 
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2, there is a strong variation in the various rms values as we 
move across the channel. Nevertheless, a substantial degree 
of universality in the PDFs still results. To some extent the 
choice of the variable, 4, see Eq. (l), forces some unifor- 
mity. This transformation removes local conditions to the 
extent that 3 has a zero mean and unit variance. To further 
investigate the basis of universality, we remark that on di- 
mensional grounds we know that f4=fP$;yf,Re). For the 
data under consideration, it would appear that for Re>125 
we are in the asymptotic range, i.e., the Re number depen- 
dence can be ignored. Furthermore, when in the scaling re- 
gion, l*y’enRe, standard arguments suggest that y + wiIl 
cancel out in 4. However, this does not explain why the PDF 
in the core region, y%Re, are well fit by the same PDF, e.g., 
see Figs. 4 and 12. On the other hand, this is not true, except 
for the first two log units of the PDF for (duldyj, Fig. 8. In 
this case symmetry requires that the PDF be an even function 
in the variable at the centerline of the channel, which the 
figure confirms. But, elsewhere we expect to find skewed 
PDFs and the figure also shows this to be the case. The fact 
that there are such departures from universality implies that 
no simple theory will explain the universality, which has 
been found. 

Finally, we remark that the universality found in the 
PDFs for second (and doubtless higher) derivatives might 
have been anticipated on the grounds that successively 
higher derivatives emphasize successively smaller scales, 
which might be expected to have more universal features. 
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