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The Ginzburg-l.andau equation is examined in the chaotic regime. A complete set ofuncorrelated coherent structures is extracted 
from this motion and used as a basis for the dynamical description of coherent structures in the attractor set. The reduced system 
is shown to describe motions over a wide parameter set. 

q The aim of  this investigation is (1) to isolate the t3 - 
coherent structures o f  a chaotic mot ion and (2) to 
use the coherent structures as a basis set in a dynam- 
ical description o f  the corresponding attractor set. For 
this purpose we consider the Ginzburg-Landau 

1 . 0 9 9 -  
equation [1] under  periodic boundary conditions. ,o75 - 
This equation, which is o f  wide current interest ~o39-  
[2-5 ], is known to give rise to chaotic motions [ 6-9 ]. 
In particular we focus on the numerical experiments 

0.908 - 

of  Keefe [ 8 ]. 0.895 - 
Consider spatially periodic motions in a box of  o.863- 

length 2x, governed by 0.827 

G(A) =iOA/Ot+q2(1 -ico)02A/Ox 2 - i p A  

+ (1 + i p ) I A I  2 A = 0 .  (1) 

The coefficient q2 of  the diffusion tern is easily 
absorbed in the space variable in which case the box 
has length 21t/q. In the form written, (1), q2 plays the 
role o f  a reciprocal Reynolds number  and for this 
reason is expressed in this way. In the numerical 
experiments o f  Moon  et al. [ 7 ] and Keefe [ 8 ] the 
constants p and Co are taken to be 1/4 (unless other- 
wise stated our  calculations also adopt these values), 
and (1) is solved subject to the initial data 

A =  1 +0 .02  cosx.  (2) 

Eq. (1) has exp(i t)  as a base solution. This solu- 
tion, known as the Stokes solution, is known to be 
unstable [2 -4]  as q2 is decreased beyond the critical 
value. The equation then supports a spatially peri- 
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Fig. 1. (a) Summary of qualitative behavior versus q for 
Ginzburg- Landau equation. Redrawn from ref. [ 8 ]. (b) Same 
as (a) using the 3-mode approximation. 

odic limit cycle, which also becomes unstable as q2 is 
further decreased. Next two-toms motion takes place 
and as q2 continues to decrease chaos sets in. Fig. la  
is the plot given by Keefe which summarizes the 
events which take place as q is varied. 

The most  chaotic case found by Keefe [ 8 ] occurs 
for q = 0.95. (The Lyapunov dimension of  the attrac- 
tor attains a maximum of  ~ 3.05 for this value ofq . )  
In this instance three Lyapunov exponents are posi- 
tive and the fractal dimension of  the attractor is 3.05 
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Fig. 2. (a) Power spectrum at x=0 for the Ginzburg-Landau 
solution at q=0.95. From ref. [8]. (b) Same as (a) using the 3- 
mode approximation. 

(based on the Lyapunov dimension).  In fig. 2a we 
see the power spectrum, at x = 0 ,  and in fig. 3a a 
Poincar6 section, as found by Keefe [ 8 ] for this case. 

To consider the problem posed by ( 1 ) and (2) one 
may represent A as a Fourier series 

A= ~ A~(t) exp(inx)  (3) 

and this in fact lies at the heart o f  the spectral method 
used in refs. [7,8] to solve (1). The set {exp(inx) } is 
not the only set o f  orthogonal periodic functions on 
the interval. More generally we can consider the set 
{ V,} defined by 

V~(x) = ~ an,~ exp( imx) .  (4) 

These are or thonormal  under  the requirement that 

a~kajj, =,~j. (5) 
k 

Symmetry considerations imply that the ensemble 
average o f  A vanishes 

( A )  =0.  ( 7 )  

However there is no a priori reason for the coeffi- 
cients {An} in (3) to be uncorrelated. To fix the coef- 
ficients {a,j} we require that the coefficients {Bn} be 
uncorrelated: 

(BnBm) =•nm2n. (8) 

From this it follows that 

K(x, y) = (A(x, t)A(y, t) ) 

= ~.2n Vn(x) ~'n(y). (9) 

Note that K(x, y) is the two-point correlation 
function. Viewed in its own right K(x, y) is a her- 
mitian non-negative kernel. The set { Vn} are clearly 
the or thonormal  eigenfunctions of  K, while the 
expansion in (9) is a statement o f  Mercer's theorem 
[ 10]. In the statistical literature this is referred to as 
the Karhunen-Loeve  expansion [1 1]. Lumley 
[ 12,13 ] introduced this expansion in turbulence 
theory, by suggesting that it be used to determine 
coherent structures in a turbulent flow. 

To implement this procedure we introduce (3) into 
(9) to get 

K= ~ (A,,.4~) exp[i(mx-ny)] 
m , , ' z ,  

In terms of  the set { V,} we can formally represent A 
by 

A= ~ B.(t)V.(x). (6) 
n = l  
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Fig. 3. (a) Poincar6 section of the Ginzburg-Landau solution of 
q= 0.95: Re Ao versus Re A ~; taken when Im A0 = 0, and OA/Ox> O. 
(b) Same as (a) using the 3-mode approximation. 

= ~ M .... exp[i(mx-ny)].  (10) 
m , n  

I f a  typical eigenfunction is represented by 

V= ~ an exp(inx) ,  (1 ! ) 

then the eigenfunction problem is reduced to the 
matrix problem, 

Mar=2o~, (12) 

where 2 is the corresponding typical eigenvalue. In 
the actual calculation we use a 16-point collocation 
method, and hence integrated 32 ordinary differen- 
tial equations. (Although this is well below the 64- 
point collocation method used in refs. [7,8] we are 
still able to capture the essential features.) We assume 
ergodicity and replace ensemble averages by time 
averages. Eq. (1) was then integrated for q =  0.95 and 
the correlation matrix M determined. The first six 
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Table 1 

J aj 

1 0.5328 
2 0.8548x 10 -t 
3 0 . 1 3 0 6 X  10 -2  

4 0 . 1 2 2 5 X  10 -4  

5 0.1835)<10 -6 
6 0.2358 X 10 -8 

eigenvalues are shown in table 1. All  the rest are 
O ( 10 - ~ o) or  smaller. Due to space considerat ions  we 
only show the eigenvector corresponding to 21. This 
is given in table 2. O d d  components  vanish, a fact 
which follows f rom symmet ry  considerat ions.  Fig. 4 
contains  plots o f  the real and  imaginary  parts  o f  the 
first three eigenfunctions or  coherent structures. Since 
the turbulence or  chaos level is relat ively low the 
coherent  structures are nearly sinusoidal.  

The eigenvalues 2,  can be in terpreted as being the 
average energy in the mode  F ,  or  al ternately as a 
measure  o f  the t ime spent  by A in the V, direction.  
In ei ther  event we see that  only the first few eigen- 
functions are significant. Wi th  this in mind,  we use 
the set { V,} in a Galerk in  procedure.  Specially we 
t runcate  at some N and then project  onto the corre- 
sponding subspace, 

(Vm, G(~=IB.(t'V.))=O, 
m = l  ..... N. (13) 

The resulting set o f  N complex ord inary  differential  
equat ions can then be integrated in t ime. In view of  
the values shown in table I we have taken N =  3. Space 
restr ict ions forbid  us f rom specifically writ ing these 
three equations.  Fig. 3b, however,  shows the Poin-  

Table 2 

k Re Cqk Im a,k 

0 0.999 0 
_+2 0.215X 10 - l  0.200X 10 -l  
_+4 0.458 X 10 -3 0.707 X 10 -3 
• +6 0.117X l0 -4 0.260X 10 -4 

8 0.654X 10 -6 0.198 X 10 -5 
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Fig. 4. The complex eigenfunction V. for n = 1 (continuous), n = 2 
(long dash), n=3 (short dash). (a) contains the real parts and 
(b) the imaginary parts. 

car6 section which results from this integrat ion while 
fig. 2b shows the corresponding power  spectrum. 
F r o m  compar ison  with the exact integrat ion we must  
regard the approx imat ion  as quite good. In each 
instance the plots fall neatly over  one another.  (That  
3b appears  fat ter  than 3a must  be regarded as an 
opt ical  illusion. ) 

We next address  the issue o f  how good is the 
approx imat ion  at values o f  q other  than the special 
value of  q = 0.95 under  which the approx imat ion  was 
derived.  Fig. lb  contains  a summary  o f  the result o f  
using the three complex equations derived for q = 0.95 
to describe the evolut ion o f  the ini t ial  da ta  at  o ther  
values o f  q. As a compar ison  o f  fig. l a  and  fig. lb  
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shows the approximation does a remarkably good job. 
To use the Reynolds number  analogy once again, 
coherent structures determined at one Reynolds 
number  give a good description over a wide range of 
other Reynolds numbers.  As a cautionary remark we 
observe that a coherent structure calculated at one 
value of q is not  necessarily a coherent structure at 
other values of q. For, at other values of q the coeffi- 
cients, in general, become correlated. This is a minor  
problem since uncorrelated structures can then be 
obtained from the approximate theory directly. 

A seemingly impor tant  aspect of the algorithm 
presented is the fact that relatively few harmonics are 
excited in the motion.  To be specific the equivalent  

of eight harmonics were considered and hence the 
calculation was reduced to calculating eigenvectors 
and eigenvalues of a 16 × 16 hermit ian matrix. If the 
number  of harmonics considered is increased by two 
orders of magnitude this procedure would exceed 
present machine  limitations.  We remark in brief  that 
if this is the case an alternative approach is available. 
Of  basic importance is the d imens ion  of the attrac- 
tor, say N. Then under  various smoothness require- 
ments  Whitney 's  theorem [ 14] states that the 
attractor can be embedded into R 2N+1 . Of  course, 
2N+  1 dimensions are sufficient but not necessary for 
the embedding space. In the present instance, a 
d imension of six rather than seven seems to be suf- 
ficient. Whitney 's  theorem lies at the basis of Takens 

[ 15 ] embedding method and can be employed in the 
above as an alternate procedure to determine the 
coherent structures. This will be pursued further at 
another time. 
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