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Motion of interacting defects in the Ginzburg-Landau model
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Velocities and trajectories of interacting defects in the real Ginzburg-Landau equation are obtained
by applying equations of motion of defects under the influence of the local phase field in conjunction
with the Green’s-function solution of the heat equation governing the phase field generated by moving

defects.
PACS number(s): 05.70.Ln, 47.20.Ky, 03.40.Kf

The rational approach to the description of realistic
nonequilibrium patterns in extended systems, which al-
lows one to avoid short-scale computations using fine
grids, is based on the “particle-field” approximation. The
role of particles is played by topological defects whose in-
teraction is mediated by gauge fields corresponding to the
symmetry group of the order-parameter space. In order
to realize this approach, one needs to first obtain equa-
tions of motion of defects under the influence of the local
field. Then the field equations have to be solved simul-
taneously with these equations of motion to obtain the
evolution of both the field and the positions of defects.

The first task has been completed in the simplest case
of the dissipative Ginzburg-Landau (GL) equation:

up = Viu+ (1= |u)?)u (1)

This equation provides an adequate model for convec-
tive patterns when a definite orientation of convection
rolls is induced by the boundary conditions, as occurs,
for example, in the case of electroconvection in liquid
crystals [1,2]. The lowest energy state is achieved when
the real amplitude p = |u| equals unity. The system is
symmetric with respect to the translations of the phase
0 = arg u. When the phase varies on an extended spatial
and temporal scale, the amplitude follows the phase adi-
abatically. As a consequence, the nonlinear GL equation
can be replaced, in the long-scale approximation, by the
heat equation describing the slow phase evolution:

0, = V2. (2)

The phase description breaks down in the vicinity of
defects that are characterized by the circulation condition

%YVG = 27mn, (3)

where the integration is carried out over an arbitrary
contour 7y enclosing the defect. Stable defects carry the
topological charge n = %1.

The mobility of point defects in the plane under the
action of a small phase gradient was computed by Bo-
denschatz, Pesch, and Kramer [1]. Their approach uses
a representation of the defect velocity as the ratio of the
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Peach-Kohler force to the dissipation integral. The inte-
gral is then evaluated by using asymptotic forms of the
defect solution in the near- and far-field limits. In the
immediate vicinity of the defect, the authors use the sta-
tionary symmetric solution of the full GL equation; and
in the far field, a stationary solution of the phase equation
in the coordinate frame comoving with the defect. This
result was confirmed by Pismen and Rodriguez [3] using
the method of matched asymptotic expansions. The re-
lation between the defect velocity v, directed normally
to the acting phase gradient, and the latter’s magnitude
A = |V0| reads

v v
A=zn 7" vo = 3.29. (4)

Equation (4) can be seen as the first ingredient of the
“particle-field” description. Being local, i.e., dependent
on the value of the external gradient at the core of the
defect, it should remain valid also when the gradient is
slowly changing in time and space. It is not, however,
sufficient by itself to solve the problem of defect interac-
tion. We recall that the phase field of a moving defect is
velocity dependent [1, 3]:

0, = A+ %exp (—% sin¢) [ Ky (-1-)2—7.)
—sin¢ K, (U—;)jl,

0, = %exp (-—-1)2—T sin ¢) cos ¢ K, (321) ,
where r, ¢ are polar coordinates centered on the mov-
ing defect and K, are modified Bessel functions. When
defects are in motion, the phase field induced by each
defect at the core of another depends, strictly speaking,
on its entire past history of accelerations. Thus, solving
the nonstationary phase equation is necessary.

In Ref. [3], the “self-consistent” approximation was
used instead, and the velocity was found by assuming
that the quasistationary phase field corresponding to the
instantaneous velocity is observed at each location. Un-

(5)
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der this assumption, the migration velocity (as a function
of the instantaneous separation between the vortex cores)
is obtained by first computing the value of the phase gra-
dient due to one of the vortices at the core of another,
using Eqgs. (5). The velocity is then given by the mobility
relationship (4). For oppositely charged defects moving
towards each other, the phase gradient generated by one
of the defects at the core of the other is (7, %7!’), while
for like-charged defects, moving apart, it is ﬂz(r,—%w).
Quasistationary velocities are computed then as solutions
of the equation

In % = e*vr/2 [KO (%) + K, (_1)21)] , (6)

where the positive sign should be taken for the repelling
and the negative sign for the attracting pair of vortices.
At separations larger than a certain minimum r, = O(1),
two branches of solutions exist, of which the lower one,
corresponding to velocities decreasing with separation, is
physical.

The self-consistent solution was introduced as an esti-
mate rather than as a rational approximation, though it
was expected to work well when the separation is very
large even on the extended scale. The correct way to
determine the evolution of the system is to integrate the
phase equation (2) subject to the circulation condition
(3) on the defects moving under the influence of the local
phase gradient according to Eq. (4).

Since the phase equation is linear, its solution can be
presented as a superposition § = 3, 0; of phase fields
0; generated by different defects and subject to the re-
spective circulation conditions. For the latter fields, it
appears to be possible to write down solutions corre-
sponding to arbitrary defect trajectories with the help
of an appropriate Green’s function. A difficulty arises,
however, due to the multivalued nature of 8;. It is con-
venient therefore to introduce univalued functions dual
to ; that would obey a usual heat equation with a point
source located at the defect.

We shall restrict our study to the motion of a pair of
defects. In this case, the motion is rectilinear, and may
be assumed without loss of generality to be along the y
axis. Then the dual function ®(x,y,t) is defined by

Yy
O, =@y +v® — / ,dy, -0, =2,. (7)

One can see that the equation
oo + Oyy + vPy — B, = 276(2)6(y) (8)

both serves as the integrability condition for 6 in (7) and
ensures that the circulation condition (3) be satisfied.
The dual function can be expressed using the Green’s
function of Eq. (8) as

t —a(s)2
@:—;—/0 (t—s)"texp (—[y—i—ig)_ s(;( ) )ds. (9)

Here ¢(t) is the instantaneous position of the defect mov-
ing along the axis £ = 0. The phase gradient computed
from (9) and (7) is further used in the mobility relation-
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ship (4) to obtain the velocities and subsequent positions
of the defects.

The illustrations show numerical results of computa-
tions utilizing the above procedure. We start with the
case of a pair of defects of the opposite sign moving to-
wards one another in an unbounded domain from some
initial distance to annihilate at the point y = 0. Due to
the symmetry, it is sufficient to consider a single defect to-
gether with its image in a reflecting wall placed at y = 0.
Ideally, the interacting defects should be nucleated at
an infinite separation distance. For a practical numer-
ical calculation the integration must start from a finite
separation, and hence there is some uncertainty in the
choice of initial conditions. We take as the initial phase
distribution that corresponding to the self-consistent so-
lution. The dependence v(r) of the velocity on instan-
taneous separation is shown by the solid line in Fig. 1.
For comparison, the dashed line in the same figure shows
the quasistationary self-consistent dependence (6) and
the dotted line, a “solid-body” solution computed under
the assumption that one of the defects moves in the un-
changing phase field of the other. The “solid-body” and
self-consistent velocities correspond to the defect motion
in the respective limits of infinite and zero acceleration.
These two limits thus define the bounds of the numeri-
cally computed velocity. The v(r) dependence in Fig. 2
was computed using the initial conditions of a phase field
rapidly decaying outside the defects. As we see in this
case also, velocities of defects starting from different sepa-
rations closely approach the self-consistent values. In all
cases, the defects accelerate steeply at close approach,
and computations have to stop shortly before the mo-
ment of annihilation when the basic assumptions of slow
motion and weak phase gradients are no longer valid.

In computations of the v(r) curves shown Fig. 3, we
imposed, in addition to the defect interaction, an exter-
nal phase gradient driving the vortices towards annihi-
lation. The motion starts with the stationary velocity
corresponding to the driving gradient, and gradually ac-
celerates as the vortices draw closer to each other. Figure
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FIG. 1. The dependence of the velocity on distance for
a pair of interacting defects of the opposite sign, starting,
at a certain distance, from a self-consistent phase field, and
eventually annihilating. The solid line shows the computed
v(r) curve. The dashed line shows the self-consistent approx-
imation, and the dotted line the “solid-body” approximation
(with the initial phase unchanged).
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FIG. 2. Annihilating defects, starting from zero phase at
different distances. The dashed line shows the self-consistent
v(r) curve.

4, based on the same computations, shows the change in
time of the positions of one of the defects relative to their
common center of gravity. All curves have been brought
together by rescaling the data in such a way that initial
velocities coincide.

In order to compare with experimental results, suitable
rescalings must first be introduced. The spatial variables
are rescaled by the coherence lengths &; and &4, for the
directions perpendicular and parallel to the roll axis, re-
spectively. Similarly, time is rescaled by the relaxation
time Ty. The phase gradient A corresponds to the wave-
number mismatch ¢ — ¢, which represents the deviation
from the threshold wave vector ¢., and gives rise to the
Peach-Kohler force.

Given an experimentally determined velocity V', with
components V; and V,, the dimensionless velocity is de-
termined as [1]

v = To(V2EE + V2E? — 206,6:V, V) /2
X(£1€2 AV 1 - azel/z)_l,

where € represents the perturbation of the system above
the threshold and a is a global rotation parameter, such
that a = 0 for normal roll patterns and 0 < a < 1 for
oblique rolls.

A comparison with the experimental results of Braun
and Steinberg [4] is shown in Fig. 5. The experimental
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FIG. 3. Annihilating defects accelerated by an external

phase gradient. The curves are labeled by the values of the
gradient A.
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FIG. 4. The defects separation vs time for annihilating
defects accelerated by an external phase gradient. All curves,
labeled by the value of the external gradient, are brought
together by rescaling the data in such a way that initial ve-
locities coincide.

data represent climbing motion of a pair of defects. Since
the wave-number mismatch has been not measured in the
experiment, we recovered this value by extrapolating the
data to the asymptotic velocity and computing the cor-
responding value of A using Eq. (4). The lower curve
corresponds to a value of € = 0.05; a fit of this data indi-
cates an asymptotic velocity of 0.019 and a wave-number
mismatch A = 0.05. The upper curve represents data
for ¢ = 0.04 with an asymptotic velocity of 0.060 and
A = 0.12. The numerical solution was then generated
by nucleating a pair of defects at a large initial separa-
tion, to allow a suitable time interval for the phase field
to evolve into a close approximation of the quasisteady
field while mutual interaction was still negligible. The
computed acceleration close to the annihilation point is
somewhat more gradual than in the experiment, but the
quantitative comparison is difficult due to both uncer-
tainty of experimental data and possible deviations of
the experimental system from the idealized Ginzburg-
Landau model.

Figure 6 shows the v(r) curves for the case when a pair
of defects of the opposite sign nucleate and move apart
under the action of an external phase gradient. Com-
putations start at a separation in the immediate vicinity
of an unstable bound state where the driving gradient
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FIG. 5. The defects separation vs time for annihilating
defects accelerated by an external phase gradient. The exper-
imental points shows the rescaled data defects from Ref. [4].
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FIG. 6. Nucleation of a pair of defects under external
phase gradient. The computed curves (solid) are labeled by
the values of the gradient A. The dashed lines show self-
consistent velocities.

is nearly compensated by the attraction, and velocities
are very small. Consequently, the diverging defects ac-
celerate, approaching stationary velocities corresponding
to the given gradients when separations are large. Self-
consistent velocities, shown by dashed lines in the same
figure, are reasonably close to computational results.

Since the far-field phase equation is a linear heat equa-
tion, the presence of sidewall boundaries may be dealt
with by the use of image defects. The simplest cases
that can be considered each involve two sidewalls. The
location of sidewalls and images for domains bounded in
the £ and y directions, respectively, are shown in Fig. 7,
indicating also signs of the image charges.

Figure 8 shows the effect of sidewalls in the z direc-
tion (perpendicular to the direction of propagation). Also
shown in this figure are the corresponding v(r) curves for
the infinite domain case. The solid finite domain curve
is quite close to a combination of the broken curves cor-
responding to the nucleation (in the left) and to the an-
nihilation with the image (in the right) in the infinite
domain.

The influence of lateral walls (parallel to the y axis) is
more substantial. We shall consider the case when defects
of the opposite sign nucleate and move apart under the
action of an external phase gradient. The total phase
gradient at a point (0,%) is given by the sum over the
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FIG. 7. Configuration of sidewalls normal (a) and parallel
(b) to the direction of motion. Markers x and QO indicate the
polarity of defects and images.
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FIG. 8. Nucleation of a pair of defects under external
phase gradient (A = 0.1) and annihilation at the wall (solid
line), compared with the nucleation (in the left) and the an-
nihilation (in the right) in the infinite domain (dashed lines).

image defects. These consists of two rows, one each at
y = £5%. The defects at (£nL, %) and (£nL,—3%) act to
accelerate and decelerate the defect, respectively.

If the motion is stationary, the driving phase field cre-
ated at the core of the defect at (0,%) by the image
at (nL,%) can be written using the function 0,(r, ¢) in
Eq. (5) as 0;(nL,0) = 0,(nL,m) = %Ko (2%£). Sum-
ming over all images, we deduce that the phase gra-

dient due to the row of images at y = % is given by

Ay = v302 Ko (¥2E). As the defect separation be-
comes large, one might be tempted to neglect the contri-
bution of the images at (£nL, —%) since the phase gradi-
ent contribution of each image approaches zero as r — oo.
Interestingly enough, however, the contribution of this
row of images does not vanish for large defect separa-
tions. Furthermore, we shall see that this contribution
to the effective phase-gradient dominates the contribu-
tion of the defects at (nL,%).

Using the asymptotics of the Bessel functions for large
argument, we may write the phase-gradient contribution
from the images at (xnL,—%) as

N(r)

1 r
A_ = ey 14+ —————
VY n2=1 (r2+n2L2)1/4 ( r2+n2L2>
¥ /r2yn2L2
xexp( 2( r?2 4+ n?L +r)).

To proceed, we truncate the above sum at some suitably
large n = N. In general, this value will be a function of r.
For the defect at (NL,—%) to have a nonvanishing con-
tribution to the total gradient at (0, §), the angle given
by tan~!(5#f) must be small, since the phase gradient
decays exponentially in the = direction. We therefore as-
sume that NL < r as r — co. Then we obtain in the

leading order

N(r)

A =9 (ﬂ)”z S emvntL e,
”

n=1

In the limit » — oo the sum can be approximated by the
integral
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r

A =2 (1’3)1/2 /ow eV L gy — %_T”

The total phase gradient at the point (0, —%) is therefore

2 o0
0, = A+z (7121{0("77)— w) ,

where 1 = 25[‘- This value agrees well with the numeri-
cally computed gradient (to within six significant figures
for y ~ 10%). Numerically, the negative (decelerating)
term in (10) prevails over the first (accelerating) term in
large parentheses when L is not very small. This is a con-
sequence of a slow decay of the phase gradient behind the
moving defect. As a result, the defects decelerate with
decreasing L, as shown in Fig. 9. The effect of the far row
of images would not be, of course, significant for defects
moving towards annihilation, due to the rapid decay of
the phase field ahead of the moving defect.

The above results demonstrate the feasibility of the
semianalytical “particle-field” description of patterns
with defects, incorporating the influence of sidewalls and
external fields as well as of the defect interactions. The
self-consistent velocities turned out to be quite close to
the results of full nonstationary computations whenever

(10)
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FIG. 9. Nucleation of a pair of defects under external
phase gradient (A = 0.1) in the presence of lateral walls. The
curves are labeled by the distance between the walls. The
dashed line shows the v(r) curve for the infinite domain.

comparisons could be drawn. Rather unexpected results
obtained for the motion in the presence of lateral walls
demonstrate strong effects of the asymmetry of the phase
field of moving defects.
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