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Spatially periodic solutions to the Ginzburg-Landau equation are considered. In particular we obtain: criteria for primary 
and secondary bifurcation; limit cycle solutions; nonlinear dispersion relations relating spatial and temporal frequencies. Only 
relatively simple tools appear in the treatment and as a result a wide range of parameter cases are considered. Finally we 
briefly treat the case of spatial bifurcations 

1. Introduction flows (Rep > 0). Stuart [13] and Watson [14] later 
in the context of parallel flows supplied formal 
derivations leading to the cubic term. The actual 
derivation of the Ginzburg-Landau equation was 
given by Benny and Roshkes [6] for Stokes waves 
and by Newell and Whitehead [2] in context of the 
BCnard problem. Davey [15] and Newell [16] later 
gave a formal derivation of this amplitude equa- 
tion in a more general context (see also [4,17-191). 
An important feature of the Ginzburg-Landau 
equation is that it includes the resonance effects of 
Eckhaus [20] and Benjamin and Feir [21-221 while 
also including a continuous band of modes. Stuart 
and DiPrima [23] give an account of this as well as 
the early history. 

The Ginzburg-Landau equation [l] 

i 
&v-&A-$ A=((R-R,)-plA12)A 

i 
is of wide current interest. This equation, which 
results from non-linear stability theory, governs 
the evolution of the (slowly varying) complex am- 
plitude coefficient, A, of a neutral plane wave, 
exp [ -i(w,t + k,x)]. The subscript c signifies a 
critical value in a typical stability analysis, a brief 
description of which is given below. For the mo- 
ment we mention that t3 and X are complex, Y, a 
group speed, is real as is the control parameter, R. 

For diverse fluid flows this equation describes the 
passage (R < R, + R > R,) of a base flow to a 
new state. In particular it occurs in the study of 
the BCnard problem [2], the Taylor problem [3], 
Tollmien-Schlichting waves [4, 51 and gravity 
waves [6, 71. In other connections it arises in the 
study of chemical reactions [9, lo] and semi-con- 
ductors [ll]. 

Typically the dispersion relation which results 
from the linear part of this equation gives a para- 
bolic fit to the exact neutral stability curve in the 
neighborhood of the critical point (w,, k,, R,). 

The spatially independent form was suggested by 
Landau [12] on heuristic grounds to account for 
transition to a bifurcated state for supercritical 
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As we have outlined the Ginzburg-Landau 
equation describes the non-linear transition from 
a base state to a new state as the relevant control 
parameter passes its critical value. At the lowest 
order it produces the new state and predicts 
whether the new state is stable or not. Thus for 
example it describes transformation from quies- 
cent to convective heat transfer in the BCnard 
problem as the Rayleigh number is varied [24-271, 
and transition from circumferential to toroidal 
flow in Taylor-Couette flow as the Taylor number 
is varied [3]. Generally one has some latent de- 
stabilizing motion, held in check by a restoring or 
resistive force, which is released as the control 
parameter passes its critical value. For supercriti- 
cal flows such as the BCnard and Taylor problems 
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a new regular state can be expected, while for 
subcritical cases, such as parallel flows, bursting 
solutions are expected. 

The above discussion underlines the idea that 
the neighborhood of a critical point is rich in 
phenomena. Therefore the Ginzburg-Landau 
equation should give rise to an equally rich struc- 
ture of solutions independently of its detailed 
derivation. This lies at the heart of a wide variety 
of numerical experiments undertaken on the 
Ginzburg-Landau equation in recent times [8, 
28-33]. These studies all indicate the presence of 
chaotic behavior. Indeed this was the main focus 
of the work of Kuramoto [8] and Nozaki and 
Bekki [33], who followed the evolution of smooth 
regular initial data and of Spiegel and Bretherton 
[31] and Deissler [32] who tracked the progress of 
initial noise. Our interest in this paper lies closer 
to the approach of Moon et al. [28-29] and Keefe 
[30] who follow the detailed route to chaos which 
is of current interest. 

The form of the Ginzburg-Landau equation 
given above can be considerably reduced. Trans- 
formation to a frame moving with the group speed 
v eliminates that term and a relatively straightfor- 
ward change of variables reduces the equation to 
the form [34] 

iff, + (1 - ic0)ffx x = ipqJ - (1 + ip)ltkl2q,; 
0 __< C 2 __< Cl ,  ~1 = COIC 1, ( 1 )  

In the process of obtaining (1) we have excluded 
the subcritical case. (As is easily seen the spatially 
independent form of (1) for p > 0, has a bifurcated 
solution.) In the limit c o ~ 0 the cubic SchriSdinger 
equation is obtained while for Co 1' o¢ (with a time 
renormalization) the Newell-Whitehead equation 
[2] is obtained. The conditions on c o and c 1 are 
equivalent to Newelrs criterion that the spatially 
periodic case be unstable, which is the case of 
interest to us. 

A simple solution to (1) is the Stokes solution 

~b = e it. (2) 

In the numerical experiments a spatially perturbed 
form of (2) is followed in time. The Stokes equa- 
tion is relevant to a gravity wave analysis where it 
relates frequency to amplitude changes. On the 
other hand (2) is not a solution of the 
Newell-Whitehead equation and is not, therefore, 
of general physical significance. On the other hand 
the dynamics which follows is of intrinsic interest 
and the hope is that it is representative. 

In the numerical experiments one typically con- 
siders a 'box'  in the sense that 2~r/q spatially 
periodic initial disturbances are considered. Thus 
even after the application of the normalization 
contained in (1), the problem still depends on 
three parameters (Co, cl, q). The numerical calcu- 
lations in [2, 28, 29, 30] use a spectral method in 
which the complex amplitude ~k is expanded in as 
much as 32 harmonics of q. This leads to rela- 
tively long machine calculations especially when 
fine detail is sought (e.g. distinguishing between 
one and two torus motions). 

Sampling of the parameter space, (q, c 0, Cl) usu- 
ally proceeds in two ways. Thus Kuramoto [8] 
fixes q and samples the coupling parameters 
(c 0, ca) while Moon et al. [28, 29] and Keefe [30] 
fix these coupling parameters and vary the box 
size, q. Broadly speaking these numerical experi- 
ments have demonstrated that (1) leads to motions 
on low dimensional tori (limit cycles, two-toil, 
three-tori) as well as chaos. However, only a rela- 
tively small set of parameter space has been sam- 
pied. As we show the sparseness of sampled cases 
has produced several erroneous conclusions. Keefe 
[30] who recognized this problem carefully ex- 
amined a relatively small set, c 1 = 1, Co= 0.25, 
1.3 > q > 0.6 and as q decreased found the follow- 
ing sequence of states: limit cycle; two torus; 
chaos; two-torus; chaos; two-toms; limit cycle, 
which certainly attests to the rich variety of phe- 
nomena produced by (1). 

In the following we employ a variety of analyti- 
cal tools to simplify the calculations and as a 
result are able to cover wide ranges of parameter 
space. For example, the construction of limit cycle 
solutions is reduced to a few seconds of comput- 
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ing time. This results in non-linear dispersion rela- 
tions over virtually continuous ranges of parame- 
ter space. Methods based on Floquet theory [35] 
are then used to determine curves of secondary 
bifurcation. (Prior to the present study only one 
point of secondary bifurcation had been obtained 
[30].) This analysis also demonstrates that the 
cubic SchrSdinger limit is qualitatively different 
than previously supposed. 

Finally we show a close connection between 
these stability questions and the idea of spatial 
bifurcations. In fact we show that for a given set 
of coupling parameters (c 0, Cl) there is an infinite 
sequence of intervals in q-space corresponding to 
boxes of increasing size for which limit cycle solu- 
tions exist. This in turn suggests the possibility 
that the sequence of events found by Keefe is 
infinitely repeated in ever decreasing intervals 
of q-space. 

A preliminary account of these results has al- 
ready been reported [36]. 

2. Limit cycle solutions 

As was shown in [34], eq. (1) possesses limit 
cycle solutions in the form of steady state oscilla- 
tions 

q~o = ~ ( x )  exp (i~2t). (3) 

The complex amplitude q~ therefore satisfies 

(1 - ic0)q,xx = ($2 + ip)+ - (1 + ip)lqq2+ (4) 

and the condition of periodicity, 

q~(x + 27r/q) = +(x) .  (5) 

It is clear from inspection that: eq. (4) supports 
both odd and even solutions. In order to compare 
our results with Moon et al. [28, 29] and Keefe 
[30] we adopt their restriction to even solutions, 

q , ( - x )  = q~(x). (6) 

We observe that in general: 
form 

equations of the 

~ =f(+,ep*), (7) 

of which (4) is a special case, under transformation 
to first order form 

U + iV = +, (8) 
P +iQ=cbx, 

defines a volume-preserving flow. (The extension of 
this statement to higher order differential equa- 
tions is immediate.) To show volume preservation 
[37] we must show 

OG oG aP# 
a u  + + + = o (9) 

which is immediately seen to be true. Thus if zero 
subscripts denote initial conditions then 

O(U,V, P , Q )  = 1, (10) 
O(Uo, Vo, Po, Qo) 

i.e. the functional determinant is unity. It is in this 
form that the volume preserving property will be 
applied. 

Solutions of (4) are invariant under multiplica- 
tion by a constant of unit magnitude, i.e. for 00 a 
real constant, ~exp(i00) is also a solution of (4) if 
q~ is a solution. This suggests that the fourth order 
equation (4) can be reduced by one order and for 
this purpose it is convenient to represent q~ in the 
form 

~=rX/2exp( i fo%(X)dx) ,  (11) 

where r and v are real functions. Direct substitu- 
tion then shows that these satisfy 

r x = 2ur, 

(CofZ + p) 
vx= (1 + Co 2) 

( rz - CoO) 
ux= (1 + Co 2) 

(Co+P) -6 ; - 2uv, 

(1  - C o p )  u 2 
(-1 +-~02) r -  +v2, 

(12) 
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where the first equation of (12) defines u. It is of 
interest to note that: the flow defined by (12) is 
volume preserving in (r 2, u, v)-space. This follows 
directly from the observation that 

O(r2)x Ov x a u  x 

Or 2 + -'O'0-- + --O-ft" = O. (13)  

Corresponding to the even, (6), periodic, (5), 
solution to (4) we have that u and v are odd while 
r is even. It therefore follows that we can take, 

u ( 0 ) = 0 = v ( 0 ) ,  r ( 0 ) = R  0. (14) 

In the procedure we follow to determine if, the 
frequency ~2 is prescribed and the corresponding 
wavenumber q (see (5)) determined. The trajec- 
tory generated by (12) is then viewed as it crosses 
the Poincar6 section, u = 0. For a proper choice of 
the initial value the trajectory will cross the u = 0 
Poincar6 plane with a value v = 0 after a half 
cycle (at a different value of r). This is used as the 
basis of a Newton iteration scheme for the de- 
termination of the correct initial value (14). If we 
denote the actual value of o at the Poincar6 sec- 
tion by ~ (R)  (R the guessed value of R 0) then 

R o = R - ~ ( R ) / f ) R ( R ) ,  (15) 

defines the iteration procedure, where 0R = O~/OR. 
It follows from (11) that this derivative satisfies 
the variational equation 

(15) and as a result of the quadratic convergence 
of Newton's method only a few iterations are 
required. 

A typical limit cycle obtained in this way is 
displayed in fig. 1. In fig. 2 we exhibit a variety of 
dispersion relations 

I2 = ~2(q; Co; Cl) (17) 

obtained by this method. The procedure is ex- 
tremely fast and a wide range of parameter space 
can be covered in relatively short times. 

As a simple linear stability analysis on (1) shows, 
the Stokes solution (2) becomes unstable when 

q2 < q2 = 2(1 - c2/cx) 
(1 +%2) (18) 

(see refs. 16, 23, 34). It might then be supposed 
that (3) would follow from a perturbation analy- 
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OR . 

UR 

(16) 

The system, (16) (with initial data (rs, vR, uR)=  
(1,0,0)) is solved simultaneously with (11) until 
the Poincar6 section is reached. (We use Hrnon's 
trick [38] for exactly landing on the Poincar6 
section.) A new value of R is then determined by 

i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  ~ . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  ~ . . . . . . . . .  L . . . . . . . . .  i . . . . .  
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Fig.  1. P e r i o d i c  s o l u t i o n  for  p a r a m e t e r  va lues  c 0 = 0.25, c 1 = 1, 
= 0 .9 ,  ( = 0 .52,  q = 1.22. A)  real  spa t i a l  p a r t ;  B) i m a g i n a r y  

spa t i a l  pa r t .  
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sis. Such an approach, using the parameter q02 - q 2, 
is considered in [34], and extremely good agree- 
ment with the numerical solutions is obtained. 

3. Stability 

As is known from the many numerical experi- 
ments the next step in the route to chaos is 
instability of the limit cycle solution, and the 
subsequent establishment of two torus motion. We 
now develop a method for the determination of 
the onset of secondary instability by methods 

i 
drawn in part from Floquet theory [35]. 

In keeping with earlier notation we express the 
perturbed form of the limit cycle solution by 

In the infinitesimal limit it follows from (1) that 
the perturbation, xo satisfies the variational equa- 
tion 

(gt~ f f  = L~IJ .~. ZlXI t + Z2~Itx x q_ z3(21q,12,/, + ~2,/,.), 
(20) 

where 

z I ~--- 19 - -  i~2, Z 2 = c o + i, z 3 = i - p. 

It is therefore of interest to consider the eigen- 
value problem, 

Lff' = X'/'. (21) 

Since our primary interest is in the question of 
stability we will be interested in the passage of 
across the imaginary axis. We will verify a posteri- 
ori that it does this along the real axis, i.e. by 
exchange of stability. Therefore for present pur- 
poses it will suffice if h is taken real. 

Since the steady state oscillation solution, ~k0, 
satisfies the Ginzburg-Landau equation (1) it is a 
straightforward exercise to see that the space and 
time derivatives of ~0 individually satisfy the ei- 
genfunction equation (21) with the eigenvalue, h, 
set to zero. In particular we will write these two 
known eigenfunctions as 

h = 0,  ff'  = ig,, (22)  

X -- 0 ,  -- *x.  (23)  

It should be observed that the second solution '/'2 
is an odd function while the first, if'l, is even. 

Several aspects of the problem become dearer if 
the problem is put in first order form. To do this 
we again use (8), which in the present instance is 
written as 

u + iv = ~/', (24) 

/~ + iv = g'x- (25) 

If we use the notation 

+(x,t)=(ep(x)+ ~I,(x,t))exp(iflt). (19) u=(u,v,#,v) ,  (26) 
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the eigenvalue problem then may be written as 

where the matrices appear in 2 × 2 blocks, 

t, oo't ° :1 - -  - C o  - 1 . 
F = , M - -  1 + c02 1 - c  o 

(28) 

The details of the 2 × 2 2or/q-periodic matrix f are 
given in appendix A. In order for instability to 
occur, the eigenvalue ~ of (21) must pass through 
zero. Thus in view of (22)-(23) the algebraic multi- 
plicity of ~ = 0 must then be at least three. (As will 
be seen, the geometric multiplicity is two.) To prove 
this we introduce the Jaeobi matrix 

u : (uo,  (29) 

with column vectors Ou/Oa, au/ab,  Ou/Oc, 
Ou/Sd. The constants a, b, c, d refer to initial 
values, 

u ( x = O ) = ( a , b , c , d ) .  (30) 

It then follows that if k = 0 in (27) then 

d d--~-O = FU. (31) 

As we mentioned in the previous section a direct 
consequence of the volume preserving property (9) 
is that the functional determinant is unity (10), 
and hence 

d e t O = l .  (32) 

In particular, the Floquet matrix [35] 

F =  O(x  = 2~r/q), (33) 

has this property, i.e. 

det F =  1. (34) 

Further  detail and properties of F are given in 
appendix B. 

The 2~r/q-periodic solutions of (27) with k = 0, 
must satisfy initial data u 0 such that 

u(2~r/q ) = O(2~r/q )u o = Fu o = u o. (35) 

Hence, u o must be an eigenvector of F corre- 
sponding to a unit eigenvalue, A = 1. (Eigenvalues 
of the Floquet matrix will be denoted by A.) Two 
such eigenvectors are known to us from (22) and 
(23). In particular, corresponding to ~/'1 we have 

HI=(0, R1/2,0,0), (36) 

where we recall that dp(0)= R 0, and correspond- 

ing to '/'2: 

"2=(O,O,~)rx(O),~ix(O)), (37) 

where Cr and t~i refer to the real and imaginary 
parts of ¢h. Both u 1 and u 2 satisfy the eigenvector 
condition (35). 

If the geometric multiplicity of A = 0 is to be 
more than two, then the Floquet matrix must have 
at least one more unit eigenvalue. To pursue this 
possibility let us first note that as a result of (34) 
the two remaining eigenvalues of F are reciprocals 
of one another. In fig. 3 we show the result of such 
a search. We plot there the typical evolution of 
these two remaining eigenvalues as we decrease 
the frequency/2.  The eigenvalues move monotoni- 
cally and as mirror images around the unit circle 
until a critical value is reached at which A = 
- 1 ,  - 1  (we remark without further comment for 
the moment  that this implies the presence of spa- 
tial period doubling). For frequencies below this 
value the eigenvalues are real reciprocals and as a 
result, the Newton iteration of the last section 
starts to lose its effectiveness. In any event, in no 
instance does another eigenvalue to (33) become 
unity. Therefore instability does not appear 
according to this scenario. 

If instability is to occur there is only one other 
scenario open to us. Namely that the unstable 
eigenfunction, as A ~ 0, becomes proportional to 
~b 1, the known even eigenfunction. In a manner of 
speaking it makes the passage across the imagi- 
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Fig. 3. Complex k plane. Evolution of eigenvalues vs. ~2. 

nary axis invisibly, disguised a s  ~ J l  o In this event 
the geometric multiplicity of ~ = 0 is two. 

To pursue this possibility denote by 12o the 
value of 12 at which this occurs. Then in the 
neighborhood of this point we write 

12 = 120 + c (38) 

and 

~/ ~" X/el(X: ~ )  + Ep(x ) ,  (39) 

and even. It is important to note that L is not a 
self-adjoint operator and thus p is the generalized 
eigenfunction such that 

L 2 p = O .  (42) 

The condition for the determination of 

12o = 120(Co, cl),  (43) 

the frequency at which secondary instability sets 
in arises from the Fredholm condition that i¢ be 
orthogonal to the null space of the adjoint of L. 

In the actual calculation of (43) an equivalent 
though different algorithm was used. We consid- 
ered the first order system corresponding to (41) 
which can be written in the form 

dw 
d--~ = Fw + h ,  (44)  

where 

h = ( O , O , ( ~ r - C o ~ i ) , ( ~ i + C o t ~ r ) / ( 1  +C2)).  (45) 

A particular solution of (44), H, is constructed 
with the initial data 

where c is a measure of closeness to the transition 
point, and p ( x )  is the perturbation to the eigen- 
function. We also write the corresponding eigen- 
value as 

H ( x  = 0) = (0,0,0,0) .  (46) 

The general solution to (44) can therefore be rep- 
resented in terms of the solution U to (31) by 

~'1 = kc ,  (40) w = O w o + H  , (47) 

where k is a constant. (Generically h 1 = 0(c 1/2) 
but since the eigenvalue must actually cross the 
origin, A1 = t0(c).) If these forms are substituted 
into (21) we find 

Lp : (0 - i12o)P + (i + co) Px x 

+ (i - 0)(2[+]2p + q~2p,) = +1 = i+, (41) 

where the unimportant factor k has been ab- 
sorbed in p. (In obtaining (41) we have used the 
fact that L # l ( x ;  120) = 0.) Eq. (41) is to be solved 
subject to the condition that p is 2~r/q-periodic 

with the constant vector w 0 still to be determined. 
Since the proposed solution is to be periodic, we 
must have 

w ( 2 r r / q )  = w o = U ( E e t / q ) w  o + H ( 2 ~ r / q )  

= Fw o + n o (48)  

and the condition on w 0 is that 

(1 - F ) w o = H  o. (49) 

The null space of ( 1 -  F)  is always two dimen- 
sional since the Floquet matrix, F has two unit 
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eigenvalues. The condition that w 0 can be found is 
therefore that H 0 be orthogonal to the left null 
space (two dimensional) of (1 - F). (Due to parity 

considerations we always can construct one such 
left null vector to be orthogonal to H0. ) For a 
distinguished value of /2, (43), we find this condi- 
tion to be satisfied. In fig. 4 the curve B gives the 
locus of secondary bifurcation for the case c 1 -- 1 

and c o varying. We also indicate with a filled 
triangle the one reliable numerical value of sec- 
ondary  transition as found by Keefe [30]. In-as- 
much-as  Keefe made a relatively fine sampling of 
cases in the vicinity of this one value one can 
wonder  why the agreement is not better. Since 
Keefe solved the initial value problem for (1) it 
was necessary for him to carry such computations 
to extreme lengths to decide if the solution resided 
on a one or two toms. Thus accumulated round 
off and truncation error is a possible cause. 
Another,  less likely, possibility is that the thirty- 
two harmonics carried by Keefe in his spectral 
method is insufficient. 

4. Discussion 

As remarked earlier the cubic SchrSdinger equa- 
tion results f rom (1) under the limit Co J, 0. From 
fig. 4 we observe that the secondary instability 
curve, B, strikes the c o = 0 axis at roughly q 2 =  
1.35. This contradicts the picture presented by 

Moon  et al. [28, 29] who shows this curve meeting 

the point c o = 0, q = q0. Moon as a result of the 
initial value problem he solves found two-toms 
motions on the c o = 0 axis and mistakenly con- 
cluded that one toms motion could not be found. 
The cubic Schrrdinger equation is an integrable 

Hamil tonian system and thus supports limit cycle, 
two torus, as well as motions of higher genus. 
Therefore the surface followed by a solution de- 

pends sensitively on initial data. In fact it would 
be remarkable  if the initial data chosen in [28, 29] 
exactly landed on a two toms. 

As noted earlier, the iteration scheme used to 
obtain the limit cycle solution ceases to be effec- 
tive beyond the point when the additional eigen- 
values reach ~ = - 1 ,  for after this, one solution 
grows exponentially. For present purposes it was 
not felt necessary to modify the analysis to cap- 
ture the limit cycle solutions beyond this range. 
The appearance of an eigenvalue X--- - 1  signals 
the presence of nearby solutions which exhibit 

spatial period doubling. The locus of the period 
doubling curve is shown as, C, in fig. 4 and is seen 
to cut across the secondary bifurcation plot at 

c o --- 0.32. 
It  is of interest to consider the case of spatial 

period doubling. In fig. 5 we show the Poincar6 
section, u -- 0.0 for c o = 0.25, c o = 1 and I2 = 0.66 
with initial conditions slightly away from the cor- 
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Fig. 5. Po incar6  u = 0 sect ion (u~, > 0); c 1 = 1, c o = 0.25, 12 = 
0.7805. The  sec t ion  for u x < 0 gives two closed curves s t rad-  
d l i n g  the v = 0 axis. 
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responding limit cycle value. As is seen a two 
torus motion results. The center of the ellipses in 
fig. 5 correspond to a spatially period-doubled 
limit cycle solution. We do not know the value of 
q corresponding to this limit cycle but we do know 
that it is roughly half the q value which can be 
read off of fig. 2. In fact as this discussion shows 
there is a window of values of ~2 and a corre- 
sponding window of q values which give spatially 
period doubled limit cycles. 

The argument just given applies equally to all ~2 
which lead to k's of the form 

X = e x p ( 2 ~ r i / N ) ,  N = 2 , 3  . . . . .  (50) 

As an illustration we show in fig. 6 a two torus 
motion for 12 = 0.7805 which lies near the value of 
12 at which X = + i. In this instance the center of 
any of these ellipses corresponds to a period 
quadrupled limit cycle. Again the remark about a 
window of such values being present is applicable 
as it is for all cases corresponding to (50). Thus it 
follows that there are an infinite succession of 
zones in which limit cycle behavior exists. It would 
seem likely that these interleave two-torus zones 
followed by chaos as found by Keefe [30]-each 
zone diminishing in width as q ~ 0 is approached. 
However, in the absence of actual calculations this 
is just  speculation. 

.09 

.085 

.08 

.075 

.07 

.085 

.06 

.055 

• , 4 1 1 r ~ l r  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . . . . . . . . . .  I I 1 1 1 1 ~  1 . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  

1 
O 

4 
t 

h t t l t I F t l ~ i l  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . . . . .  . . . . . . . .  . . . . .  . . . .  . . . . . . . . .  . . . . . .  J ~ l  

- .06 - .04 -.0~ 0 .02 .04 .06 

Fig. 6. Poincar6 u = 0 section (u x > 0); c I = 1, c o = 0.25, 12 = 
0.66. The section for u x < 0 gives four closed curves straddling 
the v = 0 axis. 
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Appendix A 

The coefficient matrix F is given by 

i 0 ' 

where 

f= ( a l l  
0/21 

0/11 = 

0/12 = 

0/21 -~- 

0/22 

(A.1) 

0/12 1 ( A . 2 )  
0/22 ] '  

1 / 
(1 + c  2) (C0#-~2)+ 3q~2(1-c0P) 

+ep2(a-coP)-2Coq~rqh(a+l)}, (A.3) 

1 /c0(o (1+c02) c - ] ' 1 ) - c ° ~ 2 ( 1 + 1 )  

(_co(o+ 

1 {(COO- 
(1 + Co 

( 1 ) }  (A.6) - 3 ¢ 2 ( C O P -  1) + 2Co¢#i 1 + ~ . 

Appendix B 

The 4 × 4 matrix F has the following proper- 
ties: 

Property 1. 

F12 = F32 = F42 = 0, F22 = 1. (B.1) 
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This follows from the exact solution ~/tl, (22). 
Specifically, if T denotes the period of a solution 
tl to (31), then 

I J (T)  = F[J(0).  (B.2) 

In vector form, the exact solution (22) is 

/gl = [--*1 *r --*i:, *r~]" (B.3) 

Hence: 

lgl(0) = [0 Rio/2 0 0]. (B.4) 

Using (B.4) and the fact that 

HI(0 ) = •I(T),  (B.5) 

gives the result. 

Property 2. 

F14 F24 
F, 3 F23 = K1, (B.6) 

1 
F33 = 1 + ~-~-1 r34, (B.7) 

1 (F44_ 1), (B.8) F43 = K1 

where 

K1 = -*r~lx=o/*ixlx=0. (8.9) 

This follows from the exact solution ~/'2, (23). In 
vector form, this solution is 

u2=  [0 0 **. *ix]" (B.IO) 

Hence 

u 2 ( 0 ) = [ 0  0 q~rx[o *ix[o]" (B.11) 

Using (B.2) and the fact that 

u2(O ) = u2(T) ,  (B.12) 

gives the result. 
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