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Two boundary value problems for the Ginzburg-Landau equation are considered. Extensive numerical calculations have 
been performed in each case, including bifurcation histories, spectral analysis, PoincarC sections and Hausdorff dimension 
estimates. The approach to the inviscid limit is given detailed treatment. In this case universal behavior has been found to 
exist. Arguments are presented to account for this behavior. 

1. Introduction 

The Ginzburg-Landau (GL) equation [l] ap- 
pears as a limit or amplitude equation, in a wide 
variety of physical applications [2-111. Instead of 
considering any specific application, we regard 
this equation as interesting in its own right, as a 
general model for the investigation of chaos and 
low-dimensional attractors. In this paper, the GL 
equation will be written as 

G(A) = A, - q2(i + c,,)A,, - pA 

-(i-p)AJA12 

= 0. (1 .l) 

Each of the constants q, c,,, p are real and posi- 
tive, and Newell’s [12] criterion 

0 < cop < 1 (l-2) 

for instability is assumed. Eq. (1.1) represents a 
normalized form of the usual representation of the 
GL equation [13-151. 

Eq. (1.1) includes the effects of diffusion, disper- 
sion, linear growth and amplitude-dependent fre- 
quency changes. Non-linearity inhibits unbounded 
growth and solutions remain pointwise bounded 
(Lagrange stability) [13, 141. The GL equation 
describes phenomena in the neighborhood of a 
critical point of stability, and thus leads to a rich 
structure of solutions. As a result a variety of 
numerical experiments have been performed on 
the GL equation [8, 15-211. 

In this paper we consider the Neumann and 
Dirichlet boundary value problems for eq. (1.1). 
The former case was treated, in detail, by Keefe 
[18]. In this instance, only temporal chaos occurs, 
over the range of parameter space considered. For 
the DirichIet problem treated here, the solutions 
are spatially chaotic as weII as temporally. 
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A main goal of this investigation is the study of 
complicated dynamics for which the attractor di- 
mension is relatively low. Ghidaglia and Heron 
[22] have shown that the attractor dimension is 
finite for the GL equation (see also Doering et al. 
[23]) and have obtained rigorous estimates for the 
attractor dimensions. Modulo some fine print, our 
own informal arguments and numerical estimates 
for the attractor size show good agreement with 
their results. Another goal of this study is the 
approach to inviscid flow, i.e. the behavior for 
small values of q. This we show, analytically and 
numerically, leads to a universal form for the 
energy spectrum. 

In the following paper [24] (henceforth known 
as II), we use the calculations described in this 
paper as baseline data, to obtain equivalent low- 
dimensional dynamical systems. 

2. Problem definition 

The GL equation (1.1) is normalized so that the 
domain of interest is 

OlX<ll. (2.1) 

In our investigation q is the bifurcation parame- 
ter, and can be related to a wavenumber. De- 
creases in q correspond to increases in the domain 
size. 

As stated in section 1, two boundary value 
problems will be considered. The first of these is 
specified by homogeneous Neumann conditions, 

&A(O) = &A(n) = 0. (2.2) 

The second problem is specified by homogeneous 
Dir-i&let conditions, 

A(0) = A(7r) = 0. (2.3) 

Since the GL operator respects odd and even 
symmetry, we may solve (l.l), under the boundary 
conditions (2.2), by expanding the amplitude A in 

the complete set {cos nx }, 

A= c A,(t)cosnx. (2.4) 
n=O 

Similarly under (2.3), (1.1) can be solved in the 
form 

A = c A,(t)sinnx. (2.5) 
n=l 

(In the actual numerical calculations a pseudo 
spectral method is employed [25].) We mention in 
passing that (1.1) is invariant under multiplication 
by a constant lying on the unit circle, i.e. 

G(A) = 0 3 G(e”A) = 0 

for any real constant c. 

(2.6) 

3. Chaotic attractors 

One facet of our study is the investigation of the 
chaotic attractor. The term attractor has the usual 
meaning of being a set to which almost all nearby 
trajectories tend, and a trajectory once on the 
attractor remains there for all time. The term 
chaotic also has the usual sense, namely that 
nearby trajectories on the attractor diverge expo- 
nentially. (But only for finite time since the attrac- 
tors in question are compact.) For qV2 large 
enough the solutions are chaotic. The GL equa- 
tion is dissipative and as a result the actual di- 
mension of the attractor can be expected to be 
significantly smaller than the space in which the 
dynamics takes place. 

To estimate the attractor dimension we use the 
Kaplan-Yorke formula [26] 

(3.1) 

This requires the determination of the Lyapunov 
exponents, A k. N in (3.1) refers to the largest 
integer for which the sum is non-negative. Meth- 
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ods for the determination of the Lyapunov expo- 
nents are well known [27-291. The essential step 
in these approaches lies in carrying the linearized 
or variational equations along in the integration of 
the non-linear equations. For the GL equation the 
linearized equation is 

6G = a, i&4 - q*(i + c,)(U),, - p &4 

- (i - p)(2A,&4 +&6X) 

= 0, (3.2) 

where A, denotes the reference solution to the GL 
equation (1.1) and &4, the variation. To find M 
Lyapunov exponents, we must simultaneously in- 
tegrate M replicas of (3.2) (with appropriate ini- 
tial data) in addition to (1.1). 

Keefe [18] instead integrates M + 1 replicas of 
the GL equation, each with slightly differing ini- 
tial data. Keefe also adopted this approach in his 
investigation of turbulent plane Poiseuille flow 
[30]. Deissler [31], MacGiolla-Mhuris [32] and 
Grappin and Leorat [33] have used the approach 
presented in the previous paragraph in considering 
the Navier-Stokes equations. 

It is implicit to this method that the reference 
trajectory visits almost all of the chaotic attractor. 
A customary additional condition is that the at- 
tractor must be non-decomposable. While this 
makes obvious good sense it should be noted that 
there are at least three disjoint attractors in the 
present situation. The two problems posed in sec- 
tion 2 may be regarded as 2a-periodic solutions 
which are evolving on the entire real line. Since 
the GL equation respects odd and even symmetry, 
even or odd initial data evolve in time in what 
might be termed even and odd subspaces. Thus 
the Neumann problem will have a chaotic attrac- 
tor in the even subspace and the Dirichlet prob- 
lem a chaotic attractor in the odd subspace. Al- 
though we do not consider such a case, there will 
also be a chaotic attractor for cases without such 
symmetries. These three attractors have no cross- 
talk, i.e. they are disjoint. The set of circumstances 
just described poses no problem for us. For exam- 

ple in computing the attractor of the Dirichlet 
case we are assuming that the reference trajectory 
visits all of just this attractor and this is the 
essential requirement. 

As a last remark along these lines, it is impor- 
tant to note that each of the problems give rise to 
two zero Lyapunov exponents. One zero exponent 
corresponds to the fact that A(# - tb) satisfies the 
GL equation for all t, (or &4 = i&4, satisfies 
(3.2)). The other zero exponent follows from the 
invariance (2.6) (or &4 = iA, satisfies (3.2)). It 
therefore follows from (3.1) that any chaotic solu- 
tion must have dimension greater than three. 

4. Neumann problem 

For the Neumann problem in the range 

0.6 I q 5 1.33 (4.1) 

a sequence of behavior is uncovered. (Here and in 
the following we take p = cc, = l/4 in the numeri- 
cal solution of (l.l).) This is summarized in fig. 1 
[18]. At q = 1.33 the spatially independent Stokes 
solution, e”, bifurcates to a limit cycle with spatial 
structure. The early stage can be described analyt- 
ically through linear theory [13] and the subse- 
quent transition to two-torus motion follows from 
Floquet theory [34]. 

If (3.1) is used to calculate the attractor dimen- 
sion, we obtain the plot shown in fig. 2 for the first 
window of chaos shown in fig. 1. A maximum 
Lyapunov dimension, d,, is achieved at q * 0.95 
with [18] 

d r = 3.047. (4.2) 

The temporal energy spectrum at’ this value is 
broad band [15, 181. In tlg. 3 ‘we show the ‘time 
evolution of A for 0 <x-s 71 at q= 0.95. Thus 
while the motion associated with A is temporally 
chaotic, its spatial dependence is regular. The spa- 
tial energy spectrum shows few active Fourier 
components [18]. 
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LIMIT CYCLE ____3 

.33 
TWO FREOUENCIES .-> -27 

LIMIT CYCLE _____i) 

t 

.23 
TWO FREQUENCIES - .21 

CHAOS -08 
Fig. 1. Bifurcation sequence, Neumann problem. 

P 

Fig. 2. Lyapunov dimension, Neumann problem. 

5. Diricblet problem 

There is a marked difference in the behavior of 
solutions for Dirichlet boundary conditions. By 
fixing the boundary condition to be the homoge- 
neous I&i&let conditions, we consider a more 
constrained class of flows, and thus instability and 
its consequences are deferred. On the other hand, 

Fig. 3. Tie history (20 time units) Neumann problem; (a) 
real part, (b) imaginary part. 

one can expect a more pronounced boundary layer 
in this case. A summary of behavior, over the 
range considered here, is shown in fig. 4. This 
problem has not been previously discussed in the 
literature and certain features of fig. 4 merit dis- 
cussion. 

For relatively large values of q the homoge- 
neous solution 

A=0 (5-I) 

is stable. In particular, if we consider solutions 
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4 produce all odd harmonics, and a stable limit 
cycle results. As may be verified directly, limit 
cycle solutions can be written in factorable form, 

w LIMIT CYCLE 

A = +(x)e”‘, (5.5) 

t TWO FREQUENCIES, Single period-doubling 
where + satisfies [34] 

- CHAOS 

t TWO FREQUENCIES, Single period-doubling 
*----------_ CHAOS 

t Complete period-doubling sequencies 

A TWO FREQUENCIES 

c------- LIMIT CYCLE 

Fig. 4. Bifurcation, Dir&let problem. 

having the form 

A a ear sin nx (5.4 

in the linearized equation form of (1.1) we obtain 

a, = p - n2q2c, (5.3) 

for the real part of the complex growth rate. Thus 
the solution is unstable for 

4: = p/c, > n’4’ (5.4) 

and n = 1 is the most unstable harmonic. Since 
the number of unstable modes is equal to the 
dimension of the unstable manifold, this is given 
by the integer part of l/q (recall that p = cO = 

0.25). This fixes a lower bound on the attractor 
dimension. 

At q = 1 the zero solution undergoes a Hopf 
bifurcation and the solution is linearly unstable to 
the first Fourier harmonic. Non-linear interactions 

is2+ - q2(i + co)&,,, - P+ - (i - ~b#+bl~ = 0. 

(5.6) 

If we write 

qLq;-~2 (5.7) 

with c2 small, a straightforward perturbation anal- 
ysis yields 

+ - %inx=4csinx 
PO 

and 

i2- -q;+ 1+2 $= -1+28, 
( 1 

(5.8) 

(5.9) 

for p = co = 0.25. Thus the frequency is initially 
negative and then increases as q2 decreases. Fig. 5 
displays the exact non-linear dispersion relation, 
gotten by solving (5.6) under periodic boundary 
conditions. A time stationary solution appears at 
q = 0.70148. (Note that this is well approximated 

Fig. 5. Dispersion relation, limit cycle frequency, 0, versus q2. 
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by the linear theory (5.9), indicated by a dashed 
line, which gives q = l/2 = 0.707.) A feature of 
the limit cycles in the range 0.34 -C q < 1, is that 
although the second Fourier harmonic is unstable 
for q < 0.5, the solution possesses no even har- 
monics. If a set of initial data having only even 
harmonics is assumed, parity conditions show that 
a limit cycle solution in only even harmonics 
emerges. However, such a solution is unstable to 
perturbations by odd harmonics, and a limit cycle 
solution results which possesses no even harmon- 
ics. 

This phenomenon is the result of the invariance 
of the subspaces spanned by the even and odd 
modes. This in turn is due to the cubic non-linear- 
ity. The first mode is unstable, and even if an 
initial condition is taken with no first mode pre- 
sent, any odd mode will produce a first mode by 
non-linear interaction. The most unstable even 
mode is the second, nevertheless, its growth is still 
slower than that of the first mode. The first mode 
initially grows rapidly and quickly reaches a 
bound. Inspection of the equations shows that at 
that point, the non-linear interactions in the even 
modal equations produce a negative forcing, this 
damps out the even modes, and leaves a solution 
with purely odd modes. At q = 0.34 the limit cycle 
solution becomes unstable and an odd harmonic 
two-torus motion appears. This persists until q = 

0.27, when a limit cycle solution reappears. The 
reemergence of limit cycle behavior is accompa- 

IO0 

Stokes’ Frequency 
1 

0 625 
a= 14 ENERGY SPECTRUM 

Fig. 7. Energy spectrum, Dirichlet problem, q = 0.14. 

nied by the appearance of both even and odd 
harmonics in the solution. 

As q is decreased further a brief window of 
two-torus motion again appears at q = 0.23, and 
at q = 0.21 chaos appears. Unlike the Neumann 
problem the chaos manifests itself in a continuous 
band with no relaminarization. A plot of the at- 
tractor dimension based on the Kaplan-Yorke 
formula is shown in fig. 6, for 0.08 < q < 0.21, and 
as can be seen no local maximum occurs. (For 
small values of q, the Neumann also exhibits 
pronounced chaos [35].) 

At the nominal reference value of q = 0.14 the 
Lyapunov dimension is 9.1. Fig. 7 shows the en- 
ergy spectrum and fig. 8 the averaged wavenumber 
spectrum at this same value of q. This last figure 

q-24 UAW IalfiER SPEcTntm .- 

Fig. 6. Lyapunov dimension, Dirichlet problem. Fig. 8. Wavenumber spectrum, Dirichlet problem, q = 0.14. 
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Fig. 9. Time history (20 time units) Dirichlet problem; (a) real 
part, (b) imaginary part. 

shows that a broad spectrum of wavenumbers 
enters in the flow at this value of q. This is further 
underlined by the time evolution of the solution as 
shown in fig. 9. 

6. Nearly inviscid flows 

As q J 0 the viscous scale decreases in magni- 
tude and numerical calculations of a solution be- 
comes more demanding. In this section we use 
numerical experiments as a basis for predicting 
general features under this limit. While most of 
the arguments are general, the discussion will be 

carried out within the framework of the Dirichlet 
problem. Under the transformation 

Y =x/q, 

(1.1) becomes 

(6.1) 

A,- (i+c&, -PA-(i-p)lAl%!=O (6.2) 

and (2.1), 

A(O)=A(L=a/q)=O. (6.3) 

The limit in this format is one in which the box 
becomes infinite. 

6. I. Lyapunov dimension 

Fig. 6 implies that the Lyapunov dimension 
becomes linear in q-l as q J, 0. This can be arrived 

at by an informal argument. If in (l.l), we apply 
the limit q JO we obtain 

A,-pA-(i-p)AIA12=0, (6.4) 

which is a singular limit. Eq. (6.4) is easily inte- 
grated, and its solutions tend, asymptotically, to 
the Stokes solution. Up to an arbitrary phase this 
is given by 

A = ei’. (6.5) 

This does not satisfy the boundary condition (2.3) 
and therefore implies the existence of a boundary 
layer, of size 

s = q(l + cg2)1’4. (6.6) 

This is not the smallest scale in the problem, but 
rather is an estimate for the correlation length. 
The smallest scale, i.e. the smallest that we must 
resolve, is given by 

8 = q@. (6.7) 

This is the dissipative length scale, or what in 
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turbulence is referred to as the Kohnogorov mi- 
croscale. Thus the number of scales, or degrees of 
freedom, which must be resolved is given by 

d = L/8 = =/qc;i2. (64 

(This also serves as the basis for determining the 
number of degrees of freedom needed in the nu- 
merical integration.) If, as is often supposed, the 
Lyapunov dimension and the number of degrees 
of freedom are proportional, then (6.8) conlirms 
that asymptotically d, is proportional to l/q, as 
is implied by fig. 6. 

6.2. Spatial power spectrum 

Therefore, from the lower bound given by the 
unstable manifold estimate and (6.8) we have 

l/q < d < T/@q_ (6.9) 

From fig. 6 we see that the numerical value of the 
slope is roughly 1.7. 

Ghadaglia and Heron [25) have obtained rigor- 
ous upper and lower bounds for the attractor 
dimension of the GL equation. Since they con- 
sider the more general, and less restrictive, prob- 
lem of periodic boundary conditions their 
estimates, while 0(1/q), are less sharp. (Actually 
the estimates of Ghadaglia and H&on contain 
undetermined constants which one supposes are 

@VI).) 
In view of the complex ditksivity in (6.2), the 

scale 6 (6.6) is the measure of a nominal oscilla- 
tion and therefore estimates the correlation length. 
since co = 0(l) above boundary layer analysis im- 
plies that the dissipative scale, b, and the correla- 
tion length, S, are of the same order. This will 
have an interesting consequence in regard to the 
spatial power spectrum. As we have already noted, 
the attractor dimension is 0(1/q). This suggests 
that in plotting the spectrum we should use nq as 
the abscissa. Alternatively, if we view the problem 
as one in which the box size increases indelinitely, 

then nq represents the wavenumber in this limit. 
Fig. 10 exhibits the spatial power spectrum, plot- 
ted in this style, for a sequence of values of q 
downtoq=2X10-2.Asqdecreasesweseethat 
two ranges emerge; tirst a flat, energy bearing 
range, which we refer to as the integral range, then 
at an index of 0(1/q) this changes fairly abruptly 
to a dissipative range, which appears to have a 
near exponential falIoff. Thus the number of ac- 
tiue modes is well estimated by (6.9). The continu- 
ous curve in fig. 10 is the spectrum for q = 0.06. It 
is seen to be a template for all the spectra, thus 
implying a universal spectrum. In the remainder 
of this section we present arguments which imply 
the presence of universal features as q J 0. 

6.3. A universal spectrum 

We first consider the integral range. Fig. 11 
displays a typical instantaneous snapshot of the 
solution for q = 0.02, at which spatial chaos is 
present. Consider the Fourier coefficients in (2.5) 

A,= $A(x,r)sinn~~dx. (6.10) 

Fig. 11 implies that for q JO, the interval of inte- 
gration can be decomposed into many sub-inter- 
vals of length large compared with the correlation 
length, (6.6), and small compared to n. Since the 
spatial behavior is chaotic, the sum over the subin- 
tervals, which approximates (6.10), is a random 
walk on the complex plane and from the central 
limit theorem, the time series for each A, is 
Gaussian distributed. This argument only requires 
that 

n e l/q, (6.11) 

since it is being supposed that sin nx is piecewise 
constant in each of the subintervals. It follows 
that the same statistics will be valid for all n 
satisfying condition (6.11). 

The above argument predicts that ( lAnl ‘) is 
roughly constant for index n satisfying (6.11). 
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0 

Fig. 10. Wavenumber spectra plotted in universal form, i.e. 
(A,,I’/q versus nq for 9- 0.02, 0.04, 0.08, 0.10. The cmtinu- 
ous curve is the wavenumber spectrum at 9 = 0.06. 

.Zo- 
9 - .02 

Fig. 11. Instantaneous snapshot of A for 9 = 0.02. Contimous 
and dashed curves represent the real and imaginary parts, 
respectively. 

While the results displayed in fig. 8 cannot be 
regarded as confhming this assertion (in this in- 
stance l/q = 7) the sequence shown in fig. 10 
clearly indicates the trend toward 

writ*> = 44), (6.12) 

where, as indicated, the average depends on q. 

To calculate the constant which appears in (6.12) 
we observe that 

Wl12) = (~~=l4’dx) 

= f~W,I*)~ (6.13) 
” 

From the above arguments and the numerical 
evidence we can write 

W/q) 

(11412) = f c (I-U’>~ (6.14) 
n-l 
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Table 1 

Some values for eq. (6.12) for different values of 4. 

4 0.01 0.02 0.04 0.08 0.10 
(llA112> 0.42 0.412 0.404 0.425 0.41 

In table 1 we list some of the values of (6.12) 
which we have calculated. 

For q -10 almost all the energy resides in the 
modes for which (6.11) holds. For these, the dif- 
fusion term in (1.1) is small and the GL equation 
is approximated by (6.4). If p J 0, this equation is 
Hamiltonian with 

H = IA 14/4 = (x2 + Y*)*/4, 

where we have written 

(6.15) 

A =X+iY. (6.16) 

(Although p = l/4 is not small we adopt this as 
the approximation.) Next we argue that as a result 
of the diffusion nearby positions in x are only 
weakly coupled so that the probability of finding a 
state A is given by 

P(A) = j5$ = eeP(xz y2)2/4, 
(6.17) 

where p is the reciprocal temperature, and the 
partition function is given by 

z = ,3/2//3V2. (6.18) 

If we denote averages with respect to (6.16) by 
square brackets then the condition that H be 
statically stationary is 

[dH/dt] =2p[IA14- IAl =O, (6.19) 

which after a straightforward calculation yields 

/I = 16/1r. (6.20) 

From this we obtain 

I/2 = h4*1 = w11*>9 (6.21) 

which in view of the size of p is in reasonable 
agreement with the values shown in table 1. 

We may also undertake the calculation for the 
dissipative range of the spatial power spectrum. 
This is done in the appendix. 

7. Further comments 

Two boundary value problems for the GL equa- 
tion have been considered. On imposing homoge- 
neous boundary conditions we force a boundary 
layer on the solution. While this delays instability, 
and ultimately chaos, it is seen to also produce a 
richer chaotic state. The degree of chaos is well 
illustrated in fig. 11, an instantaneous snapshot of 
the flow for q = 0.02. In the case of the Neumann 
problem the flow goes through windows of relami- 
narization while for the Dirichlet case this does 
not occur. Keefe [35] has considered the Neumann 
case down to relatively small values of q and has 
not found relaminarization. He has also found 
indications that the Lyapunov dimension of the 
attractor does show systemic growth as q J 0. It is 
likely therefore that the arguments given in section 
6 apply to the Neumann problem once q is suffi- 
ciently small, since the effect of the boundaries 
should be of little consequence roughly one 
boundary thickness removed from them. A similar 
remark applies to the periodic GL equation with- 
out spatial odd and even symmetry. 
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Appendix 

Since boundary effects should become insignificant in the interior of the flow we can consider the related 
problem of periodic solutions to (l.l), 

A = za, einx 
n 

(A.0 

with --7~ < x < IT. The Fourier components of (A.l) satisfy 

It is clear from inspection that in the limit q fixed and (n 1 t co the second and fourth term dominate. From 
this it follows that 

a, - 
i-p 

n*q*(i + co) 
d 

n’ (A.3 

where 

&,, = &/” eCinxlA12Adx = c a,apCq. 
--n m.a. 4 

(A-4) 

For In I f co, the dissipative modes and those in the integral ranges become well separated. Then, since the 
dominant terms lie in the integral range Z (the flat portion of the spectra in fig. lo), (A.4) is approximated 

by 

8” - C a,apZm+p-n +z C am~pap+n-m- 
m*pEf m,pcI 

64.5) 

On forming the ensemble average, denoted by angular brackets, of I a, I * we obtain 

(IanI*> = c( C ~~m+p-nam~+p~-n~~amapam’ap’~ 
m,p,m’.p’cl 

+4 C (a n+m-p~n+m~-pJ~~ap~m~pIam~~ 
m,p,m’,p’ 

+2 C ((~m+p-n~n+m~_p~)(anapifp~am~)~+ C.C.) , 
1 m.p,m’.p’ 

64.6) 

where 

E = (1 + p*)/[n%Z4(1 + co’)] - (A-7) 

In writing (A.6) we have assumed that the dissipative modes and those in the integral are sufficiently 
separated (In I t oo) so that they are incoherent, and that the ensemble averages can be put in the factored 
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form that is shown. Since solutions of the GL equation are invariant under multiplication by eifl (j3 real) it 
follows that the last term vanishes under the ensemble average. 

Next it is plausible to assume that the modes in the dissipative range are themselves incoherent. From 
this it follows that 

(1%12> = c 
i 

c (l~“-(m+p~12>(a,a,a,~a,~> + 4 c o~n+rn-p12)(~p~rnap’~~~) 7 
m,p.m’,p’El m,p.ml,p’ 
m+p-nC+p 

I 

64.8) 

where we have used 

(I%-s12> = wL12>* (A.9) 

We set 

f” = mn12> (A.lO) 

and express (A.8) as a convolution 

f,, = cCf,,-A- 
s 

(A.ll) 

After some manipulation of terms, the convolution kernel R, can be shown to take on the form 

R,=O c a a m s-m 12)+4(1 c a a - I”). m m s (A.12) 
me1 mcl 

Generally speaking each term of (A-12) has the form of an autocorrelation. While we have no rigorous 
estimates for these quantities, simplified models give an exponential falloff for R,. 

In order to model the behavior of the dissipative spectrum we replace the integral range by a delta 
function and simply take 

R,=&', (A.13) 

where 0 c (Y -C 1. The equation to be solved is therefore 

j, - E~f”_,cJS’ = s,,. (A.14) 
s 

(The summation can be extended to the full line, since by assumption this only contributes negligibly.) 
Except for the fact that E is a function of n, (A.14) is easily solved. Since L, (A.7), is algebraic it is slowly 

varying on the scale of R,. Therefore in the spirit of WKB theory we solve (A.14) by first assuming L to be 
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constant. This yields for n > 0 

(A.15) 

where 

b = b(n) = a + a-l - c(n)(a-‘- a) (~.16) 

and 

z=z(n) = +[b(n) + \ibzo-4], (A.17) 

where the slow dependence on n has been made explicit. With WKB theory in mind we now revise (A.15) 
to read 

(A.18) 

Some simple numerical experiments verify that (A.18) is extremely accurate for 6 small. 
The shape of the curve f, versus n closely resembles the dissipative range seen in fig. 10. In particular 

the upward concavity seen in this figure arises in (A.18) from the amplitude term 

c(n) a e-ln(nq)‘. 
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