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A method is presented which results in low-dimensional dynamical systems for situations in which low-dimensional 

attractors are known to exist. The method is based on the use of the Karhunen-Loeve procedure for the determination of an 

optimal basis and the subsequent use of the Galerkin procedure to generate the dynamical system. The method is applied to 

two problems for the Ginzburg-Landau equation for which large databases have, been obtained. In each instance a dynamical 

system is generated which has roughly twice the number of degrees of freedom as the Hausdorff dimension of the exact case. It 

is also demonstrated that the approximations are robust in that they are accurate over a wide range of parameter space. 

1. Introduction 

In a number of applications it has been well 
established that dissipation acts to diminish the 
dimension of the set to which a given system is 
attracted [l-3]. Typically one is confronted with a 
system described by partial differential equations 
and thus requiring an infinite number of dimen- 
sions for its description, but for which from other 
considerations one knows that the (chaotic) attrac- 
tor is not only finite but also of relatively small 
dimension. An example is furnished by the 
Ginzburg-Landau (CL) equation, 

G(A) =A,-q*(i+c,,)A,,-pA 

-(i-p)A(AJ2 

= 0. 0.1) 

This equation for the complex-valued amplitude A 
incorporates the mechanisms of linear growth, 
non-linearity and dispersion. See the preceding 
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paper [4] (hereafter referred to as I) for further 
details and references. In I we consider the Neu- 
mann and Dir&let problems for (1.1). The attrac- 
tor in each instance as measured by its Lyapunov 
dimension (51, d,, was small, d,(max) = 3.06 for 
the first case and a reference value was d, = 9.1, 
in the second case. 

The usual theory and calculations accompany- 
ing estimates of attractor dimension, d,, do not 
furnish any practical means for reducing the dy- 
namical description of such systems. A method, 
not immediately related to the dimension esti- 
mates, which does substantially reduce the order 
of the dynamical study has recently been pre- 
sented [6]. In that report it was shown that the GL 
equation for the Neumann attractor, which has a 
maximal dimension d L = 3.06, can be reduced to a 
system of three complex differential equations. In 
addition the same system of six equations accu- 
rately describes the GL equation over a wide 
parameter range even though the dynamical sys- 
tem was derived for a single parameter value, 
q = 0.95. In the present paper we furnish some 
additional details for that case and in addition 
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present an analogous treatment of the Dirichlet 
case. This second case is one in which spatial as 
well as temporal chaos plays a role. 

The angular brackets in (2.3) and in what follows 
denote an ensemble average. 

The method of approach is based on the 
Karhunen-Loeve (KL) [7, 81 procedure, which 
also plays a role in fluid turbulence [9, lo], and 
other chaotic problems [ll]. Briefly stated, the KL 
procedure generates an optimal system of basis 
functions, based on second-order statistics. These 
best fitting functions are then used in a Gale&in 
approximation to the GL equation. Since the KL 
basis functions are derived for a specific set of 
parameter values, an important question is the 
range of accuracy of the derived dynamical sys- 
tem. This, as we show, is substantial in both 
instances. 

A geometry is introduced into the space through 
the complex inner product 

(u,v) =/ii(x) u(x)dx, (2.4 

where the integration is over the interval which in 
our case is (0, T). We seek the maximum of the 
most likely state on the chaotic attractor, C#I, de- 
fined by 

~=max<l(+,A)l*), 

subject to the normalizing condition 

(2.5) 

We begin with a brief review and summary of 
the KL procedure with particular attention to the 
role it plays in the types of problems under inves- 
tigation. 

(+,+) =E= @,A)). (2.6) 

E is the average energy of the system and condi- 
tion (2.6) requires that C#J lies on the sphere nearest 
which the system point moves, on the average. 

2. Derivation of the near ideal basis 

The Jlow A(x, t) is assumed to be chaotic and 
the system sufficiently aged so that the system 
point moves on the chaotic attractor. We denote 

by 

V.(x)) = {4x&J) (2.1) 

an ensemble of snapshots of the flow at uncorre- 
lated times { tn}. The ensemble of states (2.1) is 
supposed to be large enough so that the attractor 
is sufficiently sampled so that we can perform the 
necessary statistics. Since solutions to (1.1) are 
invariant under multiplication by complex num- 
bers lying on the unit circle, 

The solution to this problem is given by the 
principle eigenfunction of the kernel 

K(x, Y) = (Ah t) ~(YY, t)), (2.7) 

which is just the two-point correlation function. 
K(x, y) regarded as a kernel is easily seen to be 
Hermitian, non-negative, and square integrable. It 
then follows from Mercer’s theorem [12] that the 
eigenfunctions { (p, } , 

s K(x,y)~“,(y)dy=K~~=A,~,, (2.8) 

form a complete orthonormal set such that 

K= C X”@“(X) QY). (2.9) 
n-1 

G(A) =O*G(e”A) =0 (2.2) 

for c real, it follows from averaging over this 
group of transformations that 

While (pi solves the problem posed by (2.5) and 
(2.6), & solves the same problem subject to the 
additional side condition that (+k, r&,) = 0 for 
m c k. The content of the above discussion, along 
with the statement that 

(A) =O. (2.3) A = &n(t) +,(x>, a,= (+,, A) (2.10) 
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almost everywhere is known as the Karhunen- 
Loeve theorem [13]. 

Some additional properties of this procedure 
bear mention. Since 

an eigenvalue X, can be regarded as measuring the 
mean energy of motion projected along the corre- 
sponding direction, (p,. The mean energy, E, of 
the flow is 

E- /(A(x) x(x))dx 

= T,K = CA,,. 
n 

(2.12) 

Table 1 
Eigenvalues for the Neumann problem at q = 0.95. 

h, 0.8599 1 0.1380 2 0.2108 3 x lo-* 

It is worth noting in passing that the system 
(3.2) appears to differ in general form from what 
would be generated from the Navier-Stokes equa- 
tions. In the latter case only a quadratic non- 
linearity arises (from the streaming operator). 
Although not immediately apparent a Gale&in 
approximation to the Navier-Stokes equations 
also generates cubic non-linearities. The cubic 
terms are unveiled, when convective and advective 
terms are expressed in terms of the mean flow 
quantities. The latter are themselves quadratic 
functionals, and the net contribution is cubic. This 
has been observed by Aubry et al. [15] for the 
channel flow and also for Rayleigh-BCnard con- 
vection [16-181. 

3. Dynamical equations 

4. Neumann problem 
The eigenfunctions discussed in section 2 can 

now be used to generate a dynamical system from 
the GL equation (1.1). To this end we express the 
solution in the form 

(3.1) 

where the +,, are the eigenmodes derived from the 
Karhunen-Loeve decomposition. This is used in a 
Gale&in procedure [14], i.e. we project (3.1) and 
the GL equation onto a subset of the eigenmodes. 
This yields the modal equations, 

II-1 

m= l,..., N. (3.2) 

The eigenfunctions, { +,, }, are assumed to be or- 
dered according to descending values of the eigen- 
values, {A, }. Other criteria are of course possible. 

For the full simulation of the Neumann prob- 
lem given in I at q = 0.95 we obtain the eigenval- 
ues in table 1. Below the third eigenvalue the 
mean energy is insignificant and by choosing a 
three-mode approximation we capture over 99% of 
the average energy of the system. If the first three 
complex eigenfunctions (which correspond to six 
real dimensions) are used in the Gale&in proce- 
dure outlined in section 3 we obtain the system of 
equations displayed in the appendix. 

Poincare plots and power spectra for the exact 
and three-mode solutions at q = 0.95 are shown in 
plate I. Inspection shows these to be virtually 
indistinguishable. The remaining panels in plate I 
show a selection of exact and approximate results. 
Of special note is the period doubling bifurcation 
which is captured to five significant places. For the 
range considered by us 

0.6 < qs 1.3, (4.1) 
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the agreement between exact and approximate 
results is extremely close. The value of the transi- 
tion points near the period-doubling sequence is 
the most significant discrepancy, see I. For the 
exact solution a transition occurs at 0.827, versus 
0.84 for the three-mode approximation, a differ- 
ence of 1.6%. For other values of q the variation is 
well under 1% (I). To compare the attractor for 
the reduced system to that of the full system we 
calculate the Lyapunov dimension for each case. 
For the Neumann problem the Lyapunov dimen- 
sion was found by Keefe [19] to have a value of 
3.047. The corresponding value calculated for the 
three-mode approximating system is 3.049. 

In fig. 1 we show the surface -4(x, t) calculated 
from the three-mode calculation at q = 0.95, which 
should be compared with the exact results given in 
I. Since we are dealing with a chaotic regime, 
sensitivity to small changes should be expected. 
Thus in passing from the GL equation to the 
three-mode equations we affect such a small 
change. The resulting alteration in the solution 
can be seen in the comparison of the curves at the 
end of the simulation. Nevertheless as we have 
seen.in the discussion thus far, the statistics of the 
two simulations are virtually identical. In sum- 
mary we see that, although the equations pre- 
sented in the appendix are derived for q = 0.95 
they are robust in that.they accurately predict the 
behavior encountered over the extended range 
(4.1). 

From the spatial power spectrum shown in ref. 
[19] and the near sinusoidal nature of the eigen- 
functions shown there, one might contemplate 
using purely sinusoidal modes. This is straightfor- 
ward and gives an adequate description over the 
range (4.1). This has also been shown by Doelman 
[20], who made a detailed study of low-order 
sinusoidal truncations of the GL equation. How- 
ever, this is not as accurate as three-mode theory 
in predicting transitions and of more importance 
it fails, for example, as c,, in (1.1) is varied. The 
three-mode theory is more robust and continues to 
be accurate for a range of values of the parameters 
ca and p. 

Fig. 1. Time history (20 time units); (a) three-mode solution 

(real part), (b) three-mode solution) (imaginary part). 

5. Dirichlet problem 

The first twelve eigenvalues for the Dirichlet 
problem are shown in table 2. In contrast to the 
previous case the magnitudes of the eigenvalues 
decrease more slowly. To bring out the relevant 
features we have normalized the eigenvalues so 
that their sum is equal to unity. Thus each eigen- 
value is a probability that represents the percent- 
age of energy of the system. Inspection of table 2 
shows that choosing ten eigenvalues enables us to 
capture over 99% of the energy of the system, 
which was the criterion used for the Neumann 
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Table 2 
The first twelve eigenvalues for the Dirichlet problem. 

i xi i xi 

1 0.2602 7 0.2903 x lo- ’ 

2 0.1997 8 0.1349 x 10-l 

3 0.1870 9 0.7469 x 1O-2 

4 0.1334 10 0.3810 x 1O-2 

5 0.1110 11 0.2212 x 10-a 

6 0.4987 x 10-l 12 0.1194 x 10-a 

problem and we have taken a ten-mode (or 
twenty-dimensional) approximation to treat this 
case. The first four eigenfunctions are displayed in 
fig. 2. The spatial structure of the solution for this 
case is considerably richer than in the Neumann 
case [6]. 

0.875 

0.000 

-0.875 

t i 

Since chaos for the Dirichlet boundary value 
problem occurs in a continuous band (I), with 
monotonically increasing d,, the choice of value 
of q at which to perform the KL decomposition 
becomes arbitrary. Since machine demand be- 
comes a factor we choose q equal to 0.14 as the 
nominal case. At this value of q, the Lyapunov 
dimension was calculated to be 9.088. This value 
is not a global maximum, and the dimension in- 
creases without bound as q continues to decrease. 
From this. calculation we expect to capture the 
behavior of solutions at larger values of q and 
hope to also obtain a good approximation for 
smaller values of q. The Lyapunov dimension was 
computed to be 9.16 for the ten-mode approxima- 
tion solution, an error of only a fraction 1%. 
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Fig. 2. Eigenfunctions, Dirichlet boundary value problem; (solid lines) real part, (dashed lines) imaginary part. Eigenfunctions 1 

through 4 correspond to (a) through (d), respectively. 



x2 J. D. Rodriguez und L Sirooich / Low-dimensionul J~numics for the complex GL equution 

- 0.4 

- 0.4 

0.4 

- 0.4 

0.25 1.05 0.000 0.625 

0.25 1.05 

0.25 1.05 

Plate I. 3-mode versus exact Ginzburg-Landau theory. Poincark sections appear at the left and corresponding Power spectra at the right. 
Yellow marks 3-mode and red exact GL theory - overlap appears white. (a) q= 1.075, (b) q= 1.074, (c) q=O.95, (d) q=O.88. 
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Fig. 3. Comparison of behavior, sticky boundary value prob- 

lem. 

Plots of the power spectra are shown for the 
exact solution and for the ten-mode solution in 
plate II. As in the three-mode approximation the 
agreement between the plots is excellent. Now 
again we wish to determine the accuracy of the 
reduced system over a range of parameter values. 

A summary comparison of the exact and ap- 
proximate solutions, as q varies, is shown in fig. 3. 
Again the qualitative behavior is virtually identical 
to the exact solution. In addition the values at the 
transition points are, if anything, in even better 
agreement than for the Neumann case. Note that 
for this case the parameter q has an even wider 
range than in the Neumann case. Subtleties of 
solution behavior such as the fact that even solu- 
tion harmonics vanish are also mirrored in the 
ten-mode approximating system. The robustness 
of the approximation can be seen in the fact that 
the level of agreement with the pseudo spectral 
exact solution remains good even when smaller 
values of q are considered than the value of 0.14, 
at which the solution was derived. A comparison 
of power spectrum plots at q = 0.08 on plate II 
shows the approximation to be still in close agree- 

Fig. 4. Time history (20 time units); (a) ten-mode solution 

(real part), (b) ten-mode solution (imaginary part). 

ment with the exact solution. In view of the 
extreme singularity of the q = 0 limit this is partic- 
ularly noteworthy. Power spectra at other repre- 
sentative values of q are shown in plate II. 

In fig. 4 we exhibit the surface A(x, t) as calcu- 
lated by the ten-mode simulation. This should be 
compared to the like figures in I. The suggestion 
of spatial chaos is clear in these figures. The 
remarks about sensitive dependence made at the 
end of section 4 again apply. 
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6. Conclusion 

In summary, the above results indicate that 

significant simplifications of problem complexity 

can be realized by a proper choice of basis. By 

using the Karhunen-Loeve decomposition, to de- 

rive a basis set for a chaotic attractor, we were 

able to reduce the problem to such an extent that 

gains in computational time of two orders of 

magnitude were realized. This feature can be of 

great utility if an extensive parameter exploration 

is contemplated. Our deliberations suggest that 

one muscular calculation need to be carried out in 

order to derive a reduced set via the KL method 

coupled with a Galerkin procedure. The reduced 

system is then used for exploration in parameter 

space. For example on an IBM 3090, the integra- 

tion of the three-mode system required approxi- 

mately 70 s of CPU time, versus 600 s for the 

corresponding pseudo spectral solution. For the 

ten-mode system the run time was 700 s for a time 

history of 1500 time units, the pseudo spectral 

solution required 6000 s of CPU to generate the 

same time history. Thus we obtain a tenfold re- 

duction in CPU time while the behavior of the 

reduced systems approximated the exact behavior 

closely over a wide parameter range. 

Appendix 

The equations for the three-mode approximations are: 

k, = -qz(0.00171 + 0.00684i) A, + 0.250A, - q’(O.0414 + 0.166i) A, 

+ ( -0.251 + l.OOi) A,IA,12 + ( -0.104 + 0.0682i) A21A,12 

+ ( -0.522 + 2.09i) A,IA,12 + (0.0301 + 0.05471) AiAT 

+( -0.500+ 2.00i)A,IA212+ (-1.075 + 0.0565i)AfAd 

+ ( - 1.284 + 0.838i) A21A,12 + ( -0.525 + 0.5591) AfAz 

+ ( - 1.017 - 0.174i) AiA$ + ( -0.0254 + 0.0258i) A21A212, 

k, = -q2(0.251 + 1.006i) A, + 0.250A, + ( -0.522 + 2.09i) A,IA,12 

+ (0.922 + 0.5561) AFAg + (0.400 + 1.48Oi) A,A:A, 

+ (0.740 + 1.344i) A,A,A,* + ( - 1.284 + 0.838i) A,A,*A, 

+(-0.388+1.553i)A,IA,12+ (-0.510+2.042i)A,IA212 

+ ( -0.472 + 0.94Oi) AZAF, 

k, = -q2(0.0414 + 0.166i) A,, + 0.250A2 - q2( 1.003 + 4.011i) A, 

+ (0.031 + 0.0547i)A,JA,12 + (-0.500 + 2.OOi) A,IA,I’ 

+ (0.740 + 1.344i) A,IA,12 + (0.979 + 0.325i) AtA,* 

+ (0.0205 + 0.06941) A,IA,I’+ (-0.525 + 0.559i) AfA$ 

+ ( -0.510 + 2.042i) IA,12A2 + ( -0.0261 + 1.052i) AfAf 

+ ( -0.0254 + 0.0258i) AzA$ + (-0.375 + 1.5OOi) A,IA,I’. 
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