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Abstract 

While many models of the dynamics and interactions of single neurons are extant, analogous constructs which attempt to 
describe large-scale (_>O(108)) neuronal activity are few and far between. Optical imaging of the visual cortex makes such 
macroscopic neuronal activity accessible. Symmetries latent in the cortical architecture are used here to develop a scheme for 
analyzing such images. In this way, intrinsic modes of cortical response can be uncovered, using minimal assumptions. Some 
of these modes correspond to already-familiar features of the functional architecture, and it is highly likely that others hold 
physiological relevance as well. Finally, the number of such modes that would be required in a more fully developed model 
(incorporating cortical dynamics) is approximated. 
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1. Introduct ion 

The dynamics of  a single neuron may be regarded 

as a well understood problem. Hodgkin-Huxley the- 

ory (see e.g. [1]) provides both a solution to the prob- 

lem and a framework for further refinement of  single 

neuron dynamics. However well understood this may 

be, when confronted by the interaction of  the O(101° ) 

neurons that compose the mammalian brain, one is 

reminded of  the insignificant role of  the dynamics of  

single molecules in the macroscopic description of  the 

flow of  a gas. Several computational models of  the 

cortex have been based on the interaction of  popu- 

lations of  individual neurons [2,3], but thus far only 
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a few dynamical macroscopic (mathematical) models 

of  the brain or parts of  it have been advanced. In this 

investigation we consider the mammalian visual cor- 

tex, with the eventual goal of  constructing a model of  

large-scale interacting populations of  neurons, partic- 

ipating in macroscopic modalities such as eye prefer- 

ence (ocularity), orientation preference, color, texture 
and so forth. 

Evidence for the existence of  coherent macro- 

scopic organization is available from experiment, 

especially for the visual cortex. For example Hubel 

and Wiesel [4,5] showed that primary visual cor- 

tex is parceled into vertical columns of  neurons 

coded for like orientations, with nearby columns 

coded for nearby orientations. Individual cells appear 

to be binocular, but generally, stimulation of  one 
eye dominates over the other. Staining procedures 

have demonstrated that patterns of  ocular domi- 

nance appear in segregated stripes that meander and 
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bifurcate in a rich and somewhat chaotic pattern [6]. 

Visual modalities must find in the cortex locations 

where they are represented. It is thus reasonable to 

find that in the visual cortex of cat or monkey, ori- 
entation columns reside within the ocular dominance 
columns: each region of eye preference contains 
a population of neurons which respond to the full 

range of orientations. The same theme, namely that 

macroscopic assemblies of neurons of the cortex are 

engaged in like activity, also emerges from imaging 

of cortical activity [7-11]. This approach provides the 

central impetus for the deliberations of the present 

paper. 
At the level of the primary visual cortex the trans- 

mitted visual information has already undergone a 
number of transformations or mappings. The cor- 

tical map is a topographic (continuous) map of 
retinal areas of responsiveness, known as recep- 

tive fields. The modalities of orientation and ocular 
dominance play a central role in the cortical map. 

Starting with the ice cube model [12] and the pin- 

wheel model [13,14] a range of models has been 

proposed for orientation and ocular dominance, and 

a critical comparative study of the many ensuing 

models has recently appeared [15]. The investiga- 
tion which follows is different in spirit from these 

studies, in that no model is proposed. Rather, we 
explore the consequences (applicable to any such 
model) of latent symmetries present in the cortical 

architecture and hence in the response images that 

are generated from it. The symmetries provide or- 
ganizing principles for analyzing and viewing the 

data. 

visual stimuli, S(t), are introduced in order to elicit 

the various modalities that vision appears to encom- 

pass. 
In the following we will denote cortical response 

by 

= 4~(t, x), (1) 

where 4~, the recorded "gray level", measures neural 

activity at pixel location x at time t. (It will not be 

necessary to distinguish between continuous and dis- 

crete variables.) We shall also use 4~ to denote the 
time history of cortical images collected in an exper- 

iment; a component of this signal is a result of neural 
activity. The so-called "intrinsic signal" measures the 

reflectance of light from the tissue induced by local 
changes due to neural activity [10], while fluorescence 

signals from appropriate dyes directly measure volt- 
age changes [16,17]. 

In order to make explicit the dependence of ~b on 
the stimulus, we can also write (1) as 

~b = ~b(t, x; S[t']). (2) 

The form S[t'] is intended to convey the concept that 

the response ~b at (t, x) is a functional that depends on 
the entire past history t ~ < t of the stimulus, S. 

Although a dynamical theory of the cortex is an 
eventual goal, in the work we present here transient 

effects will be regarded as having been averaged out 
(functional architecture rather than dynamics is being 

considered at this stage). Thus, instead of (2) we will 

consider 

d~ = 4a(S(t), x) (3) 

2. Background 

Visual space is divided by the mammalian visual 
system into right and left hemifields. Each hemifield 
is projected to the contra-lateral visual cortex. Thus 
the normal right and left visual cortices each receive 
inputs from both the contra- and ipsi-lateral eyes, in 
essentially equal proportion. Stimulation of the visual 
system may be performed either monocularly or binoc- 
ularly. In exploring cortical response a rich variety of 

so that t plays the role of an index for the presented 

stimulus and ~b is the appropriately averaged image 
elicited in response to the stimulus. In effect the func- 
tion S(t)  provides a lookup table from which we find 
the stimulus presented at time t. Although we will 
continue to use (1) it should be regarded as shorthand 
for (3). Also on the notational side, when appropriate 
we will replace S(t) in (3) by a vector which more 
explicitly indicates the nature of the stimulus. For ex- 
ample, a spatial pattern that is frequently used as a 
visual stimulus is a repeated array of drifting parallel 
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bars oriented at some reference angle 0. In this case 

we will write, 

4) = (b(e(t), O(t), x) (4) 

for the image captured in response to the stimulation 
of the left or right eye, e(t),with a pattern which has 
orientation 0 (t). 

3. Data analysis 

In order to characterize cortical images we introduce 
sufficiently complete sets of orthonormal functions, to 
be defined below, in time {an (t) } and in space { ~n (x) }, 

i.e., 

(an, am)t --- Z an(t)am(t) : 8mn (5) 
t 

and 

(l~fn, 1//m)x = Z ~fn(X)l/fm(X) 8mn (6) 
x 

and constants {#n } so that we may write 

~b (t, x) = Z an (t)/zn ~fn (x). (7) 
n 

(In (5) and (6) and in the following '~  is shorthand for 
either discrete summation or continuous integration.) 
From (6) it follows that 

(~n, q~)x = Iz,,an (t) (8) 

and 

which specifies ~t n and lP,n in (6), while (9) into (8) 

gives 

Z C(t, s)a(s) =/z2a( t ) ,  (13) 
s 

which specifies an and am in (5). 
On general grounds, since the kernels K and C 

are symmetric, the existence of the decomposition, 
(7), has been demonstrated. The representation (7) 
can be referred to as the singular value decomposition 
(SVD) [18], (12) as the Karhunen-Lbeve (KL) proce- 
dure or principal components analysis [18] and (13) 
as the snapshot method [19]. From (8) and (9) it fol- 
lows that only one of the two eigenfunction problems, 
(12) or (13), need be solved. The basic method (but 
not in its statistical framework) is due to Schmidt [20] 
(see [21] for further background). 

The two-point correlation function, K(x, y), mea- 
sures the range of correlations present in the image 
data. The eigenfunctions of K (x, y) can therefore be 
expected to isolate and rank coherent activity, i.e., to 
identify coherent structures. Patterns with chaotic ap- 
pearance are seen in cortical images and are reminis- 
cent of those seen in chaotic or turbulent fluid flows. 
The KL procedure has proven to be a highly success- 
ful means for treating the very complicated phenom- 
ena in such flows [22]. 

It is worth noting that the coordinates {an } and {~n } 
are intrinsic to the data. As is well known, this co- 
ordinate system is optimal in the sense that the error 
incurred in any finite truncation of (7) is minimal over 
the class of orthogonal decompositions. 

(an, (b)t = #n ~t, (x). (9) 

If we form the spatial and temporal correlation func- 
tions 

K(x, y) : (q~(t, x), q~(t, Y))t, (10) 

C(t, s) = (4~(t, x), 4~(s, X))x, (11) 

then the back substitution of (8) into (9) yields 

K(x, y)~(y)  =/z21p(x),  (12) 
Y 

4. Filters 

The response evoked by visual stimuli can be as 
small as O(10 -4) compared to the signal from the nor- 
mal background activity at the cortical surface, and 
is overwhelmed by other time-dependent activity en- 
gendered by respiration and pulse. A suite of pro- 
cedures for eliminating unwanted signals have been 
developed in our laboratory [23]. These procedures, 
broadly referred to as indicator function methods, have 
the following features in common: 
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(1) from records of unstimulated activity an image 
space, say B, is generated, which spans back- 
ground and noise; 

(2) the projection operator, PB, onto B is constructed 
from this; 

(3) noise and background are removed by forming the 
indicator function q] for a given stimulus 

= 49 - PB49 (14) 

so that (q~, B) = 0. 

Here 49 contains large spatial and temporal scales due 
to respiration and pulse, and also small spatial and 
temporal scales resulting from pixel noise, while in q~, 
which may be regarded as a filtered version of 49, both 
large (respiration and pulse) and small scales (pixel 
noise) are removed. For the sake of simplicity we drop 
the tilde, and unless otherwise stated, in the following, 
49 refers to the filtered image or response. 

5. Symmetries  

For purposes of this exposition we restrict attention 
to the two visual modalities of ocularity and orienta- 
tion. (As will be seen, directionality of motion is cou- 
pled to orientation and therefore will enter into the 
discussion.) The ocularity, e(t), of a stimulus can take 
on the values r and l for right and left eyes, respec- 
tively. In experiments, oriented stimuli are frequently 
drifting gratings composed of bars which are periodi- 
cally repeated. Since these are of a stereotypical form 
it suffices to specify only their orientation, 0 (t). Eq. (4) 
represents cortical images obtained in response to a 
stimulus (e(t), O(t)). (Recall that the focus is on av- 
erage responses with transients averaged out in the 
analysis.) 

The particular way in which ocularity and orienta- 
tion are laid out on the visual cortex is not a priori 
known, nor is it important for our deliberations. The 
assumption which we make is that, irrespective of the 
ocular mapping, the layout is even-handed; that is, an 
extensive enough piece of tissue contains equal num- 
bers of neurons devoted to the left and right eyes. For 
orientation, we assume that an oriented stimulus elic- 
its a response from an equal number of neurons re- 

gardless of orientation. It is expected that, if a large 
enough piece of tissue is examined, the principle of 
"even-handedness" will be respected in the statistics. 
As mentioned, the images have a chaotic-appearing 
character and we will see that the eigenfunctions in- 
herit this appearance. This does not conflict in any 
way with the notion of symmetry as used here. The 
symmetry lies in the mapping and not in the result- 
ing pattern. The cortex creates a pattern according to 
a blueprint of its own. The principle of symmetry only 
requires that this plan treats rights and left eyes equally 
and that all orientations be equally represented. 

Symmetry, which can be marred by tissue size, may 
also be affected by noise. Another possible symmetry 
breaking is the "oblique effect", which suggests that 
orientation discrimination is stronger at vertical and 
horizontal orientations [24]. This small effect may be 
conditioned by environment, and would appear to dif- 
fer from the slight ellipticity in orientation preference 
recently reported [25]. Effects of this sort, especially 
since they are small, can be treated by perturbation 
theory, from which it follows that subspaces are split 
and unperturbed eigenfunctions are distributed over 
several perturbed eigenfunctions. These small caveats 
withstanding, symmetry considerations have proven 
themselves to be a powerful tool for organizing and 
analyzing the data. 

5.1. Ocularity 

Here, as for orientation discussed below, the impli- 
cations of even-handedness are probably more easily 
viewed in terms of the temporal correlation function. 
Since we have restricted attention to ocularity and ori- 
entation (1 l) takes the form 

C = C ( e ( t ) ,  e( t ' ) ,  O(t), O(t')) 

= C(e ,  e', O, Or), (15) 

where the prime indicates another instant of time. 
C is a spatial average over the entire piece of tis- 
sue under investigation, which is assumed to be 
sufficiently large. Disregarding for the moment the 
role of orientation, the principle of even-handedness 
therefore implies that C(r,  r) = C(l ,  l). In addition 
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C(r, l) = C(1, r) which follows directly from con- 
struction (11). The correlation function is thus invari- 
ant under C2, the cyclic group of two elements. This 
suggests that we can reduce the operators of (12) 
and (13) under the group representation of C2. To 
accomplish this we write 

across all pixels of the cross correlation remains un- 
changed. Aside from minor caveats stated above, this 
is a natural and reasonable assumption. It follows from 
this that the average over all pixels of the response 
product (11) to two orientations only depends on the 
difference of these orientations, viz., 

~b±(0, x) : q0(r, 0, x) -4- ~b(l, 0, x) (16) C(e, e', O, 0') = C(e, e', 0 - 0'). (21) 

and define 

K±(x, y) = Z c p ± ( t ,  x)~b±(t, y). (17) 
t 

A direct calculation then verifies that 

K(x,y) = ½ {K+(x,y) + K - ( x , y ) ] .  (18) 

The eigenfunctions of K + and K -  are orthogonal. 
To verify this we observe that the snapshot method 
[ 19] states that the eigenfunctions of K ±, say ap ±, are 
given by an admixture of the corresponding snapshots, 
v i z . ,  

~±(x) = Z o t ± ( t ) ~ + ( t ,  X), (19) 
t 

where the functions a+(t)  are to be determined. 
(These are in fact eigenfunctions of the corresponding 
C+ (t, s) kernels.) 

Substitution of (19) in 0p +, ~ - )x  shows that this 
vanishes as a result of the already stated symmetry 
properties of C(e, el). 

5.2. Orientation 

As part of the principle of even-handedness we as- 
sume that all orientations are equally represented. The 
second working assumption that we adopt is that the 
cross correlation (11) satisfies 

C(e,e ' ,O,O')  = Z q~ (e, 0, x)q~ (e,' 0', x) 
x 

= Z q~(e, 0 + 00, x)~b(e', 0' + 00, x) 
x 

= C(e, e', 0 + 00, 0') (20) 

for arbitrary 00. This simply says that if the two stim- 
uli are rotated by the same amount, then the average 

If we assign the values + 1 and - 1 to the right and left 
eyes, then both symmetries can be incorporated into 
the statement that C(e, e', O, 0') = C(ee', 0 - 0'). 

An immediate consequences of the form (21) is that 
the eigenfunctions of C are sinusoids in 0. It therefore 
follows from (19) that the spatial eigenfunctions are 
given by 

~0n± (0, x) = y ~  ein°fb±(O, x). (22) 
0 

6. Eigenfunctions 

We next discuss the form of the eigenfunctions ob- 
tained above and make comparisons with experimental 
results. In discussing the eigenfunctions (22), it is use- 
ful to bear in mind that our images are represented by 
real numbers; this property is inherited by the correla- 
tion operator (15), which in turn must have real eigen- 
functions as well. Thus, with the exception of n = 0, 
where only one eigenfunction emerges, the eigenfunc- 
tions come in pairs, the real and imaginary parts of 
(22), which pairwise decompose the space of images 
into invariant two-dimensional subspaces spanned by 
these image pairs. Here "invariance" has the follow- 
ing meaning. Let the cortical image, in response to 
a specific stimulus, be resolved as a superposition of 
these eigenfunctions. Then a geometrical rotation of 
the stimulus produces new superposition coefficients, 
which are obtained from the old by the simple action 
of two-dimensional orthogonal transformations within 
(and not between) those two-dimensional subspaces. 

We first consider ~Po, which from (22) is given by 

~o  = Z {4)(r, 0, x) - 4)(l, 0, x)}. (23) 
0 
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Fig. 1. Ocular dominance columns, found by subtraction, from a 4 mm x 3 mm patch of macaque striate cortex. 

This form which is the difference of right and left 

eye images corresponds to a traditional construction 

used in cortical imaging. As discussed in Section 4, 

background activity has been removed from 4~. In an 

actual experiment, the image which is collected has 

the form q~B + ~b(e, 0, x), where ~bB is the portion of 
the image due to background. Thus the process of 
subtracting like images (23) removes the background, 

and summation over all stimuli is equivalent to an en- 
semble average. The background is removed from the 

resulting construction and the two ocularities appear 
with different signatures. Fig. 1 shows ocular domi- 

nance columns obtained by the subtraction procedure 
performed on cortical images from a macaque cortex. 

The results of this experiment were unusual in that the 
picture, shown in the figure, almost identically coin- 
cides with one of the raw eigenfunctions, ~p, given by 
(12). In most instances noise intrudes and traces of oc- 
ular dominance columns can be seen in more than one 
raw eigenfunction. Filtering procedures, Section 4, in 
particular indicator functions play a key role in ex- 
tracting the latent information that is present in the 
data. This is illustrated in Fig. 2, which contrasts the 
refined eigenfunction ~Po (x), constructed from the in- 

dicator functions, with the subtraction picture. Clearly 

a far better image emerges from the refined eigenfunc- 
tions. It is worth mentioning that Fig. 2 shows data 

taken from cat cortex, where it is well known that oc- 

ular dominance columns only appear faintly. 
The images shown in Figs. 1 and 2 bring out activity 

correlated to ocularity, an architectural property. The 
structures exhibited in such figures are called ocular 
dominance columns, a term which derives from [4]. 
Thus we see that the symmetry implied by the even- 

handedness principle furnishes a proof that the map 
of ocular dominance columns is an eigenfunction of 

the correlation operator K (x, y). The fact that one of 
the eigenfunctions is a well-known biological struc- 

ture supports the suggestion that other eigenfunctions 
might also represent biologically meaningful enti- 
ties. 

Next we consider ~p~-, which from (22) is given 

by 

ap + = E(~b( r ,  0, x) + ~b(l, 0, x)). (24) 
0 

Clearly this furnishes a response map of the cortex due 
to the summed activity due to both eyes. Unlike ~Po 
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Fig. 2. Left: 7to(X) describing ocular dominance columns found using indicator functions. (5 mm x 5 mm patch of area 17 of cat 
striate cortex.) Right: Subtraction picture of the same data. The color scale for the subtraction picture has been adjusted to emphasize 
the similarity between the bottom "toe" regions of the two pictures. 

there is no like image produced in traditional labora- 
tory practice, since background effects are overwhelm- 

ingly large compared to the signal and straightforward 
procedures, like subtraction of. the mean image, are 
not adequate for the removal of the background. Since 

experimental confirmation of ~ s ;  modality is not yet 
available we do not dwell furthe~r¢on this result. 

As a next case we consider .............. 

~P+ = Z ei°q~+(0' x). (25) 
0<0<2zr 

TO gain insight into the meaning of this eigenfunction, 
we rewrite the summation as 

~+ = Z ei°{~b+(0' x) - 4)+(0 + zr, x)}. (26) 
0<0<zr 

A neuron (or a pixel location) which responds purely 
to orientation does so equally for 0 and 0 + rr and 

in such a case the summand in (25) vanishes. Sin- 
gle electrode recordings confirm the existence of such 
neurons [26]. Electrode recording also confirms the 

presence of directional neurons, i.e., neurons which 
respond to gratings drifting in the direction 0, but not 
at all to gratings drifting in the direction 0 +Jr.  Clearly 
such neurons code for motion directionality, and it is 
only such neurons that contribute to the summation 
in (25). Thus ~0 + yields a map of the distribution of 
directionally sensitive neurons. 

The second harmonic, 

-- Z ei2°~+(0 'x) '  (27) 
0<0<2zr 

can be written as 

~ P f =  Z ei2O{~b+(0'x)+4~+(0+~r'x)}" (28) 
0_<0<~r 

For neurons which code for orientation q~+(0, x) = 
~b + (0 + Jr, x), while for neurons which code for direc- 
tionality only one term of the sum can be non-zero. 

Thus the eigenfunction ~p+ carries both orientational 
and directional information, in contrast to ~ +  which 

is purely directional. 7if  provides us with a map of 
neuronal sites which respond to orientation and sub- 
serves purely directional sites. 

In Figs. 3 and 4 we show ~p+ and 7t +, which 

are conveniently represented by amplitude and phase 
maps. An interesting feature of both figures is the pres- 

ence of pinwhee ls  in the phase maps. Each pinwheel 
includes a singular point where zones of differing con- 

stant phase meet, and of necessity must correspond to a 
locus of zero amplitude. Indeed, this is the only means 
by which a complex number may vary smoothly and 
yet undergo a half cycle phase change. Bonhoeffer [27] 
and Blasdel [8], by using subtraction methods to elim- 
inate background, first produced orientation prefer- 
ence maps. These furnish loci of maximal response 
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Fig. 3. The function ~p+(x), describing the directional response from area 17/18 in the cat. The function is shown as a phase and 
an amplitude: the phase gives the direction to which cells at x are tuned and the amplitude gives the magnitude of the response. 
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Fig. 4. The function ~p~(x), describing the orientation response from area 17/18 in the cat. The function is shown as a phase and 
an amplitude: the phase gives the orientation to which cells at x are tuned and the amplitude gives the magnitude of the response. 
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to oriented stimuli. Generally, directional effects are 
small compared to orientation effectscand as a result 
the phase map of ~ +  lies close to the orientation pref- 

erence maps. This, therefore, is a second instance for 
which we can demonstrate that a single eigenfunction 
of K(x, y) can be identified with an already known 

experimental structure. 

Other modalities, such as ap~- and lp 2 ,  still need 
experimental verification and will be discussed else- 

where. 

7. Dimension considerations 

Although the nature and character of dynamical sys- 
tems which might describe cortical dynamics has not 

been discussed, the structures which would emerge 
from such a dynamical formulation are revealed by this 

analysis. Moreover, we are in a position to make some 
educated speculations on what might be the number 

of dynamical variables needed to describe such a dy- 
namical system. 

In our experiments the tissue sizes are typically 
35 mm 2. For these experiments, the analysis indicates 

that 30 eigenfunctions appear to overestimate the num- 
ber of active modes. In as much as dimension is an 
extensive measure, 102 modes/cm 2 appears to be a 

safe estimate and from this 1.5 x 103 modes would 

appear to be a fair estimate of the modes needed to 

account for activity in a cortex covering 15 cm 2. How- 
ever, this estimate does not take into account all the 

modalities of the visual cortex, nor have all the scales 

been fully explored. Additionally parametric changes 
in the structures of the response due to wavenumber 
and frequency variation in the stimulus will require 

further study. 
This problem of dimension may also be addressed 

in a different, but related manner. All visual modal- 
ities must find representation in the cortex, and this 
must be true for every position of visual space. Re- 
suits from single cell recordings and staining methods 
reveal that, although not strictly periodic, the archi- 
tecture of the primary visual cortex is repetitive. This 
is evidenced in at least two ways: (1) by the pres- 
ence of ocular dominance columns, each of which has 
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a width of roughly 500 Ixm and which appear as rel- 
atively irregular stripes; (2) by the presence of "cy- 

tochrome oxidase blobs", patches where a metabolic 

enzyme appears in increased concentration and where 
there is a rich blood supply to the cortex [28]. These 
are also roughly 500 I~m from one another. The pre- 

vailing (although controversial) view is that the blobs 

mediate color vision. Ts 'o and Gilbert [29] have fur- 

ther suggested that two sorts of blobs are required to 

account for the two opponent mechanisms of color vi- 

sion. On this basis a full complement of modalities is 
spread over approximately 1 mm 2. Thus in this picture 

visual space is sampled by approximately 1500 sam- 
piing regions. (This compartmentalized view is easily 
replaced by a continuously varying model.) The ques- 

tion of how many mathematical modes are needed for 
a full complement of visual modalities is difficult to 

answer. If  we take 10 as a nominal estimate then a 

model incorporating 15 000 modes would be neces- 
sary to simulate the primary visual cortex, which is an 

order of magnitude larger than the above rough and 
incomplete estimates in which just 1 mode/ram 2 was 

obtained. 

Both lines of argument given above lack the preci- 
sion we would like to achieve in a discussion of this 
sort. At best the estimates are nominal. However, the 
main thrust of the argument is that O(104 ) appears to 
be a reasonable count on the number of modes at work 

in the primary visual cortex. In comparison with the 
O(108) neurons present, this represents a vast com- 

pression, and implies that, due to correlations in the 

activities of individual neurons, a great redundancy is 
suggested in a naive count which estimates the num- 
ber of separate variables by the numbers of neurons 
in the cortex. 

8. Concluding remarks 

We have made use of the KL procedure as a broad 
framework for developing tools for examining and 
analyzing image data obtained from the mammalian 
visual cortex. This procedure furnishes the tools for 
filtering out background (vegetative) activity, artifacts 
and noise from the signal. We are then left with the 
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response to the visual stimulation, a signal which can 

be as small as O(10 -4 ) of the recorded signal in the 

optical image. 
The data can be further refined by means of two 

symmetry principles, each based on reasonable hy- 

potheses. A result of this was the demonstration that 
ocular dominance maps are eigenfunctions of the cor- 

relation operator. It was also demonstrated that other 
eigenfunctions carry orientational and directional 

information. In the absence of their experimental 

confirmation, we have not discussed the biological 

relevance of the other eigenfunctions that emerge as 

a consequence of the analysis. It is worth mentioning 

that other modalities also can be treated within the 

theoretical framework presented here. For example, 

color opponency should be amenable to the same 
simple group theory analysis as was used in the case 
of ocularity. 

We end on a note of caution. It should be noted that 
images of small, bounded samples of real neural tis- 

sue can be expected to depart from the ideal used in 

the analysis, not strictly obeying the symmetry princi- 

ples. For example, if the tissue is not sufficiently large 

then we fall short of achieving symmetry due to un- 
equal populations of neurons. (A piece of tissue con- 

taining just one ocular dominance column obviously 

destroys the right-eye/left-eye symmetry.) Neverthe- 
less the organizing principles which follow from the 

symmetry analysis have proved itself capable of ex- 
tracting meaningful structures from noisy data where 

other methods fail. 
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