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DYNAMICS OF NEURONAL POPULATIONS: THE EQUILIBRIUM 
SOLUTION* 

L. SIROVICHt , A. OMURTAGt, AND B. W. KNIGHTt t 

Abstract. The behavior of an aggregate of neurons is followed by means of a population equation 
which describes the probability density of neurons as a function of membrane potential. The model 
is based on integrate-and-fire membrane dynamics and a synaptic dynamics which produce a fixed 
potential jump in response to stimulation. In spite of the simplicity of the model, it gives rise to a 
rich variety of behaviors. Here only the equilibrium problem is considered in detail. Expressions for 
the population density and firing rate over a range of parameters are obtained and compared with 
like forms obtained from the diffusion approximation. The introduction of the jump response to 
stimulation produces a delay term in the equations, which in turn leads to analytical challenges. A 
variety of asymptotic techniques render the problem solvable. The asymptotic results show excellent 
agreement with direct numerical simulations. 
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1. Introduction. Quantitative modeling of nervous tissue such as that found 
in the cortex involves both complexity and detail. As an indication of this we note 
that distinct cortical areas contain 0 (108) neurons and a cortical neuron can interact 
with as many as 0 (105) other neurons, [2]. Further, the neuronal and synaptic 
dynamics are themselves complex; the range of time scales experienced in laboratory 
experiments on cortex vary from fractions of a millisecond to tens of seconds. Such 
ingredients vastly increase the difficulty in simulating such a system. Nevertheless, 
with precise information on individual neurons, the blueprint of connectivity, and 
limitless computational resources, one might, in principle, obtain dynamical predic- 
tions of entire systems. Large scale direct simulations with modest goals have been 
investigated ([22], [4], [17]; see also the articles in [10], [12]). 

A philosophically different approach to the simulation of aggregates of neurons is 
to address the statistical dynamical behavior of populations directly. This approach is 
based on the observation that the cortex may be regarded as a collection of relatively 
homogeneous patches, each composed of about 104 neurons and with only a small 
number of specific neuronal types within any particular patch. That perspective 
is adopted in this investigation. This is a newer and less well-studied approach. 
An early contribution with this modern viewpoint is the thesis of Johannesma [6]. 
Another early effort was carried out by Knight [7] in connection with experimental 
research on the limulus retina. More recently a related population approach has been 
taken up in several studies [1], [5], [9], [3]. The presentation that follows is based on 
the formulation of [9] and two more recent expositions [8], [14]. 
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time 

FIG. 1. Hodgkin-Huxley neuron stimulated by a constant current (10/LA) is shown together 
with the membrane potential of the integrate-and-fire neuron. To obtain the latter, the value y = 20 
(sec-1) is used in (3). All subsequent calculations in this paper use the same value for 7. The 
equivalent electrical circuit represented by (1) appears as an inset in this figure. 

It is our intention here to examine the structure of a minimal, but relatively useful, 
population model. Membrane dynamics will be modeled by the integrate-and-fire 
equation, and synaptic dynamics (the dynamics of input) by a fixed potential jump 
response to each synaptic event. In the spirit of simplicity only excitatory interactions 
(positive feedback) will be discussed. The chief goal is to develop an understanding 
of the structure of the population equation and simultaneously to develop a set of 
analytical tools which can be extended to populations of more detailed neurons and 
more complex networks. Some discussion of such extensions appears in the concluding 
section. 

2. Formulation. We consider a patch of nervous tissue composed of like neu- 
rons. A single neuron generates a train of action potentials, as shown in Figure 1. 
A familiar feature of neuronal dynamics is that when the membrane potential, V, 
reaches a threshold, it produces a spike of relatively short duration. This process 
may be approximated by the saw-tooth-like curve of Figure 1, which in turn can be 
modeled by the simple circuit equation 

I = C 
dV 

+ 

as indicated in the figure. Under this model the potential builds up until the threshold 
VT is reached, at which point the potential is reset to the resting state, which may be 
chosen as zero. This is known as the (forgetful or "leaky") integrate-and-fire model 
[19]. 

This model has played an important role in many discussions of collective oscil- 
lations of coupled oscillators [15], [13], [20], [1]. If we take 

(2) =1/RC, = I/CVT, V=V/VT, 

then 

(3) dt = -yv +s; O< v< 1 

is the normalized form of the dynamics. Both a- and s have the units of inverse time, 
although the latter is more properly said to be a current. Note that the model is 
actually nonlinear as a result of the presence of a threshold. 
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The input signal is neuronal and is specified as a firing rate: it has the units 
of inverse time. Synaptic arrivals at a neuronal membrane produce conductance 
changes, which in turn produce a change in the membrane voltage. If the relatively 
short time scale of synaptic dynamics is ignored, the situation can be modeled by 
membrane voltage jumps which we take as size, h. Their arrival times are denoted 
by {tk} and individual neurons follow the equation 

(4) = -yv + h 6 (t - tk), 
k 

where v is reset to zero whenever it exceeds unity. 
Direct simulations. Results of the analysis to be presented will be compared 

with the direct simulation of a large population of neurons, each of which follows the 
dynamics of (4). In such simulations each neuron receives its own Poisson distribution 
of arrival times. The only additional ingredient needed to carry out such a simulation 
is the blueprint of connections. If the neurons are indexed, this is conveniently 
envisioned as a matrix of connectivities. For simplicity only excitatory connections are 
considered. To avoid runaway that accompanies such positive feedback the network is 
sparsely connected. Equivalently, one may consider the network to be coupled in an 
all-to-all fashion but with a high synaptic failure rate; see Abeles [2] for a discussion 
of this point. In any case the connectivity matrix is thought of as drawn from an 
ensemble of random matrices with a specified average number of connections, which 
we denote by G, the gain. A (perhaps subtle) point is that the connectivity matrix 
should be drawn anew from the ensemble after each neuronal firing. Otherwise, if 
the connectivity is held fixed, a neuron takes on an explicit identity and we no longer 
have a population of like neurons. These and related considerations are more fully 
addressed in [14]. 

Population model. Since the population of neurons is regarded as homogeneous, 
it is natural to consider the probability of finding a neuron in the state v and this will 
be denoted by p (v, t) . Thus p (v, t) dv denotes the fraction of neurons in the range 
(v, v + dv) at time t. We denote the flux of probability, within the interval 0 < v < 1, 
by J, which from continuity is related to the density p through 

(5)9Op _ J 

Since each synaptic arrival induces a voltage jump of h, the arrival rate is s (t) /h. 
From this it follows that 

(6) J (v, t) - -Yvp + p (v') dv', 

so that 

(7) Otp=-v ("Yvp) + h (p (v - h) - p (v)) = Lp; 0 < v < 1. 

This equation was also obtained in the study of neuronal variability by Wilbur and 
Rinzel [21] and somewhat earlier by Stein [18]. A formal derivation of (7) based 
on the concept of an ensemble average over direct simulations, as discussed above, 
is presented in [14]. From this it follows that, in the limit of a large number of 
neurons, the solution of (7) and the direct simulation should agree. This is extensively 
discussed in [14], and illustrations of this will be given below. 
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The per-neuron firing rate, r (t), of the population is a variable of interest. For 
our simplified model this is manifestly given by 

(8) r (t) = J (v = 1, t). 

The ensemble average, over all synaptic arrivals, produces the synaptic arrival 
rate denoted by c, so that the current, s, in (6) is given by 

(9) s = ah. 

Sources of synaptic arrivals are twofold, external and internal feedback. The 
former we denote by oa (t), while the latter is given by the product Gr (t), where G 
is the earlier defined gain (average number of connections per neuron) and r (t), (8), 
the population firing rate per neuron. Thus 

(10) a=a? t)+Gr t) 

which indicates another nonlinearity of the formulation. Equation (10) implies that 
each neuron of the population feels the population firing rate, r (t). This might be 
regarded as a dynamic mean field approximation, [5]. 

Boundary conditions. The flux of probability leaving the unit interval must equal 
the flux entering, thus the jump in J across the interval, denoted by [J (p)], must 
vanish: 

(11) [J (P)] = J (p) Iv=1 
- J (P)v = 0. 

This guarantees that 

(12) p (v) dv = 0 

and, in keeping with the interpretation of p as a probability, the constant of integration 
will be taken as unity: 

(13) p(v)dv - 1. 

Although only one space derivative in v appears in (7), two boundary conditions 
are required. This is a consequence of the delay term in (7). The second boundary 
condition is that 

(14) p(l) =0. 

To see this observe that (6) contains a backward moving flux, -yvp, as well as the 
remaining forward-jumping portion which gives a forward convection. Since only the 
latter term can contribute at v = 1, we must have (14). 

The eigenfunction problem. An eigenfunction analysis of the operator L in (7), 

(15) LoX = -A; X 

b (1) = 0=[J(q)] f' 

may be regarded as a natural method for unraveling the structure of the dynamical 
problem. While we do not pursue this here we observe that A = 0 in (15) furnishes 
the equilibrium solution. This is the focus of our analysis. 
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The equilibrium problem. It follows from (6) that the equilibrium solution in 
response to constant current, so, satisfies 

(16) -Yp+ h p(v') dv = Jo, 

where the flux, Jo, is a constant. In particular the constant firing rate is 

(17) ro = p (v') dv = o p (v') dv' (= Jo) 
h -h -h 

since p (1) = 0, from (14). Thus from (10) 

r1 
(18) ro0 = (0 + Gro) p (v') dv', 

-h 

so that 

(19) r0 = (') dv 
1-G flh p (v')dv' 

We first observe that by fixing o0 the problem of solving (7) becomes linear, and 
second that from (18) this generates a locus of solutions with varying input a? and 
gain G. The possible divergence of (19) is closely related to the issue of stability 
which is considered elsewhere [16]. 

It is convenient to consider instead of p 

8 
(20) (v) = -p, 

Jo 

which may be regarded as the eigenfunction of L corresponding to A = 0. Then 
instead of (16) we consider 

(21) -Vf= + h v (v) dv' = 1. 
s h -h 

If (20) is introduced into (13), once (21) is solved for X (v), the firing rate is determined 
by 

I1 --1 

(22) Jo=s j (v)dv 

The remainder of the paper deals with the analytical solution of (21) and how 
this compares with direct simulations of a population which contains a large number 
of integrators which follow (4). In the direct simulation the population of neurons 
might be stimulated by a constant input and after an initial transient equilibrium sets 
in. 

The elementary form of the linear equation (21) belies the complexity to which it 
gives rise. In fact as summarized in section 9 there are four well-defined regions, each 
of which requires different mathematical tools. A naive approach takes advantage of 
the smallness of h (based on physiological considerations we fix the normalized value 
of h to be .03). As we see next this leads to diffusion theory. This both is interesting 
in its own right and sets the stage for later deliberations. 
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3. Diffusion approximation. It is useful to consider (21) under the formal 
limit h l 0. We can expect this to be nonuniform but valid for some still to be 
determined region 0 < v < 1. Under this limit (21) yields 

(23) - vb + ~= 1, 
s 

from which it follows that 

(24) ;b 1 
1 -7v/s' 

In order for the denominator to remain positive in the interval we must have s-7y > 0. 
If (24) is substituted into (22) we obtain 

(25) Jo= - / 
In (1 - 7/s) 

for the population firing rate. Note, that when s > y 7, then Jo s, which says that 
the firing rate tracks the current, as one might expect. In fact (25) is the firing rate 
of a single integrator in response to a constant current. Through one more order in 

7/s, we calculate 

(26) Jo/7 y (s/7) - 2 

for s >> y, which extrapolates to 0 at s/y =- I while the exact result (24) vanishes 

(gives zero firing rate) at s/7 = 1. 
In the terminology of matched asymptotic expansions the integrate-and-fire so- 

lution, (25), is the outer solution. It fails to meet the boundary conditions at both 
endpoints of the interval. Also when s/7y < 1, since (24) is divergent at v = sy/7, an 
internal boundary layer appears to be necessary. Both considerations would appear 
to be met by proceeding to the next term of the Taylor expansion in h of the integral 
in (21): 

(27) (1-v) h- 0 =-1. \sI 20v 

It is worth observing that when this is done in the framework of (7) we obtain the 
diffusion equation 

90 0 $ sh 024 
(28) (-y + v2 

Under the boundary conditions (11) and (14), integration of (27) yields 

(29) - exp -(y 2) p ( (x) 2) dv'. 

We see in (29) that the normalized potential v is scaled with h. The exponent also 
contains the ratio of the two rates present in (7), 

0a 5 
(30) - = h=0. 

7 7h 
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FIG. 2. The normalized probability density at equilibrium with (a) 0 = 40, (b) 0 = 50, (c) 
0 = 60, and (d) 0 = 100. The gray jagged curve represents the density of a population of 104 
noncommunicating integrate-and-fire neurons computed by direct simulation and averaged over a 
period of three seconds after reaching equilibrium [14]. The dashed curve is the density obtained at 
the diffusion limit. The combined inner, WKB, and outer solutions are shown as the solid curves. 
For the purpose of illustration the peaks have been clipped. Insets in each case show the full range 
of variation. In these and all subsequent calculations h = 0.03. 

This dimensionless ratio is a large parameter of the problem. In typical situations, 
it lies in the range, 40 < 0 < 100. 

If (29) is substituted into (22) this yields Jo/-y as a function of s/-y: 

(- -hi dvlnv {(7 (1- v) - 1)exp -- _ + h (2 -1)) 

(31) -( -y_ exp ( _ 2v) } 

The equilibrium solution (29) is plotted in Figure 2 for several values of 0 and the 
corresponding population firing frequency (31) is plotted in Figure 3. 

The exact equation governing equilibrium is 

(32) v = (v)- (v h) 0 dv (vb) = ~b (v) - dv (v 
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2.5- 

2.0- 

* WKB solution 
diffusion approximation 

o direct simulation 

,I a 

1.5- 

Jo/Y 
1.0- 

0.5- 

n n 
0.0 0.5 1.0 1.5 2.0 

S/y 

2.5 3.0 3.5 

FIG. 3. The equilibrium firing rate normalized with respect to -y plotted as a function of s/l. 
The continuous curve is calculated using the diffusion approximation. The squares are obtained 
from direct simulations as described in Figure 2. The firing rates given by the WKB solution are 
shown by the filled circle symbols. 

and from (21) a first integral is 

(33) iv | (v ') dv' - v4 (v) = -. 
-h .y 

Although (32) is only first order as a differential equation, the presence of the delay 
term suggests that some complexity can be expected. The well-known equation of 
Mackey and Glass [11] provides an example of the complexity which can appear as a 
result of a delay term. 

Within the framework of the posed problem, we may take 

(34) 

Thus when v is less than h, the delayed second term on the right in (32) is zero. This 
special case is easily integrated and the solution in this range is 

(35) 

The appearance of the delta function term, which clearly satisfies (33), is due to the 
accumulation of members of the population at the origin from the flux at v = 1. If 
the solution (35) is substituted into (32) it permits us to exactly calculate X in the 
second interval, [h, 2h], in terms of an integral. On proceeding in this way we may 
recursively determine 0 throughout the interval, with a finite number of integrations. 

In preparation for this procedure each subinterval is normalized to unit length, 
and we write 

4n () = ( )(nh+zh); 0 < z < 1. 
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Equation (32) can then be put in the form 

(37) 
d 

[(n + z)9-1 In 
= -0 (n + z)-0 on-i (z), 

which integrates to give 

(38) I(n (z) = 1 +-) I -O (n + z)-n+ - 1r ) 'n (Z) 
n/ no (n + z')? 

At any point of continuity we write 

(39) 4)on = (in (0) 
- 

Ibn-1 (1). 

From (35) we see that in the first interval 

(40) (o (z) = 6 (z) + ?-z0-1 

where q5- = X (h-). As a result of the presence of the delta function at the origin 
;q (v) is discontinuous at v = h. 0 therefore has a discontinuous first derivative at 
v = 2h, a discontinuous second derivative at v = 3h, and so forth. Hence (39) holds 
for n > 1. 

In the case n = 1 we may substitute (40) into (38) to obtain 

(41) I )l (z) = (?' -) (1 + z)0-1 (1 + z)o-1 s ds 

Clearly 

(42) + = 
- - 0 

is the value of X$ at v = h as we approach this point from the right. Recursive 
substitution into (38) now provides the solution throughout the interval 0 < v < 1. 
Note that at this stage (42) supplies the jump in 0 (v) at v = h, but neither q+ nor 
~- are known. Only after the boundary conditions are imposed can we expect to 

determine these. 
A practical difficulty of this procedure is now apparent from (41). At the endpoint 

of our small interval where z - 1, the constant ,+ (= ~ - 0, (42)) has a coefficient 
20-1, which is 0 (1030) if 0 = 100. Since we anticipate that X = 0 (1), 0+ must 
be correspondingly small. The situation of extreme smallness and largeness places a 
burden on machine calculations since high precision is needed. This leads to numerical 
difficulties which may be avoided by the use of asymptotic approximations. 

4. Asymptotic analysis of the inner region. For many reasons it is desirable 
to have an analytical form for the solution. In this spirit we introduce an asymptotic 
analysis on the basis of 0 T oc. The density in successive intervals is given by (38). 
The collection of early intervals will be referred to loosely as the inner region. 

The integral in (41) lends itself to asymptotic evaluation for 0 T oc. From (A5) 
in the appendix we obtain 

f s$-1ds z-1I 
(43) J(1 + $)0-1 r-(0- 1)(1 + z)-l' 
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which substituted into (41) yields 

0 -1 ) (44) (1 (z) (1 + z)?-l (o _- I Z 

whence 

(45) 0 = _ 2 (0) = 41 (1) 20-1? - 0----. 

Thus (44) may be rewritten as 

(1 i \ 0-1 \-1 - 1 

(46) ( 2 1 (2z)) +.0 

To obtain '2 (z) we substitute (44) under the integral of (38) and again asymp- 
totically evaluate the integral (see appendix). In this way we may recursively obtain 
(In (z). The result is 

n-i ( 0 )k (n z -k) 0-1+k ( (_ 
n 

(47) ( ) n (Z_ )- -k + z0 ,., 
k=O (n-k) k! + ! 1 

for n = 1, 2,... , with (o = _+. As pointed out in the appendix the above forms are 
valid when n << ? 0. 

As Figure 2 indicates the solution exhibits several ranges of behavior. The inner 
region, just discussed, gives way to a smoother intermediate zone which connects to 
the outer solution, (19), which finally connects to an outer boundary layer that takes 
q to its zero value at the right endpoint, v = 1. We will deal with this in generality in 
the next section. For the moment it is useful to see how these regions are described 
under the diffusion approximation. Equation (29) may be made more transparent 
under the h l 0 asymptotics. In this case, for s > ?y (see (24)), the integrand has a 
sharp maximum at the left endpoint. Because of this one easily finds 

(48) 1-v/s - exp -2 (-- 
- 

sh 

which clearly exhibits a narrow, 0 (h) boundary layer at the right endpoint, v = 1, 
which (as will be seen) can be incorrect in detail. This form is clearly incorrect for 
the inner region, but it does show transition to the outer solution (24). 

5. WKB asymptotics. The diffusion limit which appears in (21) is based on 
the expansion 

(49) ? (v-h)-(v) ! (-hv ) (v), 
n=1 

taken through two orders. However, as is clear from (48) this leads to a solution for 
which (h ) = 0O (1) when v I 1, and thus the approximation is cast into doubt. 
Moreover, as is seen in Figure 2 there is a wide region of the interval, beyond the 
inner zone where the local scale size is 0 (h). To capture such fast scales we first 
expand the interval under the transformation, 

(50) V 
h 
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so that 

(51) ((h), 

and thus (32) becomes 

ld 1 
(52) d()= (,- -1), 0< <h 

~, which is v rescaled, ranges from 0 to 1/h. Note that from (36) 

(53) ? (n+ z) = n(z) - 

WKB analysis. The WKB method offers us a framework for treating the two- 
scale effects observed in Figure 2. To carry out this procedure we seek solutions of 
(52) in the form 

r(/0 
(54) p () = exp 0 a (t; 0) dt 

J./0 

The integrand a plays the role of a slowly varying (complex) wavenumber. The ratio 

(55) o/0 = 

is slow and the lower endpoint C* = */0 is chosen to be a convenient reference point. 
The dependent variable to be found is supposed to have the expansion 

(56) a (t; ) = O (t) + (t) + 2 (t) + 

The solution 4> (~) to (52) will be seen to be a superposition of solutions of the form 
(54). If (54) is substituted into (52) we obtain 

(57) + a )=- 1 )= 

From the supposed solution, (54), the ratio on the right is given by 

(58) 
~/O 

A )=exp ct(t;) dt, exp -a 4; 0 + -a/ + 
0) (-) =exp 02 

(--1)/O 

where the integrand has been developed in a Taylor expansion about the upper end- 
point, ~ =- /0, to get the second form. If this is substituted into (57) we obtain 

(59Next) + (t; 0) ( I - ), (56), 20 
+ substituted into (59). To lowest order we 

Next the development of a(l ; 0), (56), is substituted into (59). To lowest order we 
obtain the dispersion relation, 

(6l) &a= -e- , 
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and at the next order we find 

(61) 1+a=--(a 2- 

As shown in the appendix there are two real roots to (60), ac = 0 and another which 
we denote by ao_ since it is positive. All other roots occur in complex conjugate 
pairs 0ak and ak and have negative real parts. We denote the corresponding WKB 
solutions by o00, +, Pk,k. It remains for us to determine the admixture of these 
WKB solutions needed to solve the problem. 

A model problem. For this purpose we return to (52) and consider the equation 
in the neighborhood of the reference point ~*, 

(62) () () - 1); < o. 
0 d< 

Equation (62) is translationally invariant and may be solved by transform methods. 
For ~ near *, (62) approximates the solution to the problem. We further specify *, 
by taking it to be the endpoint of an interval *, and therefore an integer. On applying 
the Laplace transform to (62) the solution is found to be 

(63) 4 () 1- i/ ( do 
v/27riZ -1 +e- 

where T denotes an appropriate Bromwich path. As a result of the delay term in (62), 
q4 (~) for I - 1 < ~ < * also figures in the solution which accounts for the presence 
of 

(64) k 
(a) - e-~- (k - 1 +r)dr-= e-(k_k-1 (r) dTr 

in the solution (63). 
The roots of the dispersion relation, the denominator in (63), 

(65) v - 1 + e-~ = 0 

are derived in the appendix. In the present case, 0 < << 1. In this instance 
ro = 0 and or+ - 1/*, are roots, in addition to which there are infinitely many 

conjugate pairs rk, Fk, all of which have negative real parts. In residue form we may 
write the solution (63) as 

(66) 1 () = e +( C+ + C (e+ Ck + .) 
k 

where the pole-strengths determine 

(67) Ck = - 
•, - e--k 

with corresponding definitions for C+ and Co. 
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WKB solution. We now observe that the WKB solution to our problem is given 
by 

(68) ? () = -O+C+ + 0oCo + Z (sOkCk + (kCk), 
k 

where the indexing of the ps follows that of the as. Clearly for small ~ each WKB 
solution 'Pk is well approximated by the corresponding exponential which occurs in 
(66), and thus we recover the appropriate solution in the neighborhood of ~ = ,*. 
Beyond the neighborhood of ~ near *,, each of the terms o+, ?o, pk, ik is a solution 
to (52) to any desired order in inverse powers of 0. We further argue that (68) is valid 
from the inner through the outer region including the right-hand endpoint. 

6. Boundary layer. In the neighborhood of the right endpoint v = 1, I = 1/h 
(or y = 7/s), all WKB modes are exponentially small with the exception of 0o and 
9+- 

Therefore, as we approach the right-hand endpoint, the summation in (68) decays 
exponentially and we have 

(69) () - oCo + ~+C+. 

To determine o90 we recall that ao = 0 and so observe from (61) that through the 
first two orders of a0, 

(70) a (t) =l- + (0 0(1 -t + 2 

it therefore follows from (54) that 

(71) o91- . 

For the second term in (69), 9p+, we simply write 

~~~~~(72) r+ e~~~0 feh a+(t)dt (72) p-e 
and leave open for the moment the number of terms of a+ (t; 0) which will be used. 

The asymptotic form for Co is given by (A16) and we find 

(73) oCo 0 - = 
1 - ~ 1 - -yv/s' 

which is just the outer integrate-and-fire result, (24). 
If this is substituted into (69) and the boundary condition 4> (1/h) = 0 is imposed, 

we obtain 
1 ely/s Q+(t)dt 

(74) 0= - +C+e t 

since (h0)-1 = 7y/s. This is solved for C+ and when the result is introduced into (69) 
the integral in the exponential of C+ combines with that in 9+ and we obtain 

(75) 1 1 - -/0 exp 1-0 J a+ (t) dt) 

The second term of (75) which is C+( +, clearly is exponentially small unless v (= ~/0) 
is near 7y/s. Thus it describes the right-hand 0 (0-1)boundary layer. In our calcula- 
tions we have used just two orders in a+ (t). 
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7. Inner transition. From (74) it is clear that C+ is exponentially small in 0. 
As shown in the appendix, (A17), this implies that 

2 (76) ? 2 e-0/2 

Therefore with the exception of the neighborhood of the right endpoint the contribu- 
tion to (68) from so+C+ is negligible. Thus the transition from the integrate-and-fire 
region to the inner region is described by 

(77) ) 1(kCk + c.c), 

where we have substituted from (73). The ingredients for evaluating the summation 
(77) are given in the appendix. In particular it is shown that Ck ~ 1 and that 

(78) ak (t) ~ -2k27r2t2 + 27rik (1 + t + t2) 

Therefore 

(79 ) - 1 - + Ckexp 0 -k2 ( - - 3) 

+27rik 2+ 
2 

+ 3-22 \ cc 
0 202 303 +2 k( 2 p2 _22 ?(3-23) }+ } 

in the transition. This solution connects to (47) on the left and to (24) on the right. 

8. Summary. In this brief section we collect together the asymptotic solution in 
the four layers which divide the interval. Starting at the right we have the following 
layers. 

Boundary layer. From (75) we obtain 

i i -/v/s 
(80) q(v) 1-v/s 1 - 

_/s exp -0 a+ (t) dt 

In our calculations we take 

(81) a+ ao (t) + a+ (t) /0; 

ao_ is determined by (60) and a' by (61). 
Intermediate layer. This is the integrate-and-fire region given by (24), 

(82) $(v) - 1v/ 
1 - v/S' 

Transition layer. This follows from (79) and is given by 

(83) O(v) 1-,k + I - + - ( e) )0 } I 
2 / _ ) _ 

-27rik -yv 2+ 
I - _ 3 232 +c.c. 

o_ +~' ~'3 8 

2022 



NEURONAL POPULATIONS 

Inner layer. This is covered by the exact treatment of section 4 and the subsequent 
asymptotic analysis of section 5. 

In general, 

(84) $?(v) = (n (v -nh) for nh < v < (n+ 1) h 
h 

- 

and, in particular, 

(85) q (v) =6 (v/h) + ( ) f- for < v < h 

and 

(86) q(v)( ) q+ i (v- h)O h - for h < v < 2h. 

Recall that 0- = ? (h-) and 0+ = - -0 
It should be observed that (80) smoothly joins to (82) for fixed v < 1 as 0 T oo, 

and similarly, that (83) smoothly joins (84) to (82). For computation, there is a 
choice of the integer . If ~, is a small integer, then the inner layer solution (47) 
which contains ~, + 1 terms is relatively simple. However, by (66), the transition 
solution (83) essentially re-expresses the inner solution as a Fourier series (as (66) 
suggests); as the solution for ~ near small ~, departs from a sinusoid (see Figure 2), 
more terms in the sum (83) are required. Our computations use ~, = 2 for which at 
least five terms in the sum of (83) were used. The need for many terms arises from 
the nonsinusoidal character of the inner solution. 

It remains for us to compute the firing rates. The firing rate follows from assem- 
bling all parts of the solution which we have just summarized and then applying (22). 
The result of these calculations are shown in Figure 3. As this figure indicates the 
diffusion approximation, without repairs, gives excellent results over the full range. 
This good agreement for firing rates can just as well be attributed to the integrate- 
and-fire density (24) which is responsible for a broad region of the density. The firing 
rate, (22), is quite insensitive to details of the density p. In dynamical situations 
this is no longer true and there are clear departures from the exact firing rate that is 
completed from solutions of (7) versus (28) [14]. 

It is of interest to observe that as a result of synaptic arrivals the solution for 

s/7y < 1 still has a nonzero firing rate. Examples of the equilibrium solution in this 
case are exhibited in Figure 5. The asymptotically small toe at s/f y .5 shown in 
Figure 3 is due to this range. 

9. The diffusion limit. The diffusion approximation introduced in section 3 
was cast into doubt by the solution, (48), and and we now reconsider this limit. 
From (48) we see that for v l,dno/dvn = 0 [(1 - y7/s)/h], and so from (49) 
the diffusion approximation breaks down unless 7y/s is near enough to unity. When 
this is the case the diffusion approximation is valid in the neighborhood of v = 1. 
The WKB approximation, (54), implicitly assumes that a (t, 0) is 0 (1). But as (70) 
indicates a0 diverges at t = 1, or equivalently when v = sf/y. Thus if s/7 . 1, the 
WKB approximation can be expected to fail. As s/7y passes across unity the diffusion 
approximation is valid and when this ratio is sufficiently large the WKB solution takes 
over. This is in Figure 2. For s/y = 1.2, 0 = 40, the diffusion approximation better 
approximates the right-hand boundary while for s/7y = 1.5, 0 = 50, and beyond, the 
WKB is clearly the better approximation. 
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FIG. 4. The position of the peak in the equilibrium probability density shifts toward the right 
as the external input is increased from 0 = 15 to 0 = 30. The gray jagged curves are the densities 
(for different values of 0) of a population of 104 leaky integrate-and-fire neurons computed by direct 
simulation [14]. The continuous curves which show the corresponding densities obtained in the 
diffusion limit agree well with the direct simulations. When the firing threshold is reached, neurons 
reentering the unit interval from the left generate the spiky appearance in the density near the left 
boundary. 

To consider the range s < y we rewrite (29) in the form 

(87) h= h/ e 'h )2&dv'. 

The integrand peaks sharply at the endpoints. Although asymptotic evaluation of 
the integral is straightforward, some complexity results since one or both endpoints 
contribute depending on the values of y/s and v. For example if s > -y, the left-hand 
endpoint furnishes the greater contribution and the result is given by (48). On the 
other hand if s/7y < 2, the right-hand endpoint is the major contributor and in this 
case we obtain 

~(88) Q ~e0(Y/s-1)2 --_a(v-s/_)2( e2(Qy/s)(1-v)/h) (88) '~ 
1-/s- e sh- e1- . 

The shape yielded by this expression is dominated by a gaussian, centered at v = s/7. 
A plot of this regime compared with direct simulation is shown in Figure 4. 

Generally, the shape of 0, for s/y < 1, is a gaussian centered at v = s/y and 
whose width is /sh/-y. It thus follows that hdd = 0( ) and the Taylor expansion 
of the integral in (21) is a self-consistent approximation. Confirmation of this is found 
in Figure 4. 

As pointed out earlier the diffusion limit is not valid for small values of v and 
therefore the boundary condition at v = 0, (11), is not met. Even when leakage 
exceeds current, s/-y < 1, this can clearly be repaired by connecting the diffusion 
solution, for small v, to the exact development and its asymptotics contained in 
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sections 4 and 5. Thus, when needed the transition analysis of section 8 can be 
used for v < s/-y to connect the diffusion solution to the inner solution, as we did for 

s/7 > 1. 

10. Concluding remarks. The description of a population of interacting neu- 
rons has been formulated in probabilistic terms to certain similarities with the Boltz- 
mann equation of statistical mechanics [14]. While the description is nonlinear, the 
equilibrium case was reducible to a linear problem. In addition it was further shown 
that a single equilibrium solution corresponds to a range of cases starting with no 
neuronal connections to the possible interconnections discussed for (19). Due to the 
delay term in (7) the solution exhibits a high degree of complexity. As indicated in 
Figure 2 the analytically derived solution, as summarized in section 9, is in excellent 
agreement with the exact numerical equilibrium solution of (7). Figure 2 also con- 
tains the result of a direct simulation of as much as 90,000 interacting neurons acting 
under the same integrate-and-fire dynamics. The agreement is excellent. From the 
viewpoint of simulations it is noteworthy that integrating (7) is a modest calculation 
when compared with the direct simulation such as the one for 90,000 neurons. 

The neuron model, defined by (4) and by the reset condition, was deliberately 
chosen to be near the minimal caricature able to still capture the three most essential 
dynamical features of a real impulse-encoding neuron. These are (1) the discounting 
of input from earlier times, which is achieved by the relaxation term -yv; (2) a non- 
linear thresholding mechanism for the fast voltage return of a charged cell membrane; 
and (3) a stochastic input jitter which arises from the temporal uncertainty of indi- 
vidual synaptic input events. The extreme simplification of the third feature, by the 
assumption of a single event size h, introduces what is probably the most unrealistic 
feature of this model, which is the extended sequence of narrow peaks in the probabil- 
ity density. We have also investigated a modified equation (4) in which the synaptic 
event size h is variable with a realistic probability distribution [14]. This new feature 
quickly spreads and damps the sequence of peaks. Although an exact solution is 
no longer available in this case, the same tactical asymptotic procedures used above 
still can be carried through to achieve an equilibrium solution. The generalization 
to include synaptic dynamics, inhibition, and interacting populations has also been 
considered [8], [14]. 

Appendix. The purpose of this appendix is to furnish background details for 
a number of calculations which have been left out of the body of the paper for a 
smoother reading. 

Asymptotic integration. The integral which appears in (41) is a special case of 

Z7 
t 

7n; 
) z! - 1 

(Al) I(n',n; z)= j 
n 

) ds; n > n'. 
(n + s) 

This more general form is needed in arriving at (47). We observe that for p >> 1 the 
main contribution to the integral comes from the neighborhood of the upper endpoint. 
We therefore set s = z - u and rewrite (Al) as 

(A2) I= -? t exp [pE (n', n, z, u)], n where z - u 

where 

E = n (n'+ z - u) -n (n + z - ). 
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FIG. 5. The positive root of the dispersion relation, (A6), is shown by the solid curve. Near 
x = 0 it is well approximated by the function (1/x), plotted as a dashed curve. 

For z bounded away from the origin we may apply Watson's lemma or equivalently 
expand E in the neighborhood of u 0: 

n + ( z+ u u ( u2 \ 
(A4) E =lin - ( + +0 

n+ z n' +z n+z (n + z)2 

If (A4) is substituted into (A2) we obtain 

(A5) (n' + z)0 
(I + z)0-1 (n+ 

- 
nt)--1' 

The error term which appears in (A4) indicates that n2 << 0 is a sufficient condition 
for the asymptotics. To see this observe that (A4) substituted into (A3) shows that 
only the neighborhood of the origin u ~ n/p contributes to the integral. 

Roots of the dispersion relation (Figure 5). The dispersion relation 

(A6) xa=l1-e-a; x>0 

figures in the calculation in two ways, in the WKB solution (60), and in (65) which 
is the solution of (62). 

An exact solution to (A6) is 

(A7) a0 = 0. 

There is one more real solution which is positive for x < 1, and we denote it by a+. 
In fact for 0 < x < 1 we see from (A6) that 

(A8)+ ~ -1 
x 
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A graph of the root and comparison with (A8) is shown in the figure. 
There are infinitely many roots of (A6) in the left half of the complex a-plane 

and a perturbative analysis for small x yields 

(A9) Ck = -2k27r2x2 + 27rki (1 + x + x2) + 0 (X3). 

The function 1> (4r). It was found that the full WKB solution depends functionally 
on the integral 

(A10) <P (a) = j e-fk_l (r) dr. 

Instead of evaluating this in general we take k = 2, which is the case used in our 
calculations. In this case we can substitute (46) in (A10) to obtain 

r1 -'~ 
1 + \ 1 

(A1) ()~/i e- T{(1 ) -I+ (l2) -rP+1 - dr. 

The support of the curly bracket lies in the neighborhood of r = 1. If we write 
r = 1 - u, then 

(A12) 

u01 {( --1 -u)0- ( )-1 - 0 ( 
- e-a eu I - (o + I - ( -(1 u)) du. 

Next if we take (1 - 2)P ~, e-Pu/2 and (1 - u)P e-Pu, we obtain 

(A13) 

{a_(_ (_ - 1)/2 I0 1 - (0-) 1/2 -e0 - 

We observe that each quotient is nonsingular where its denominator vanishes, in 
agreement with (All) which has no singularities in the finite plane. 

In the solution of either (52) or (62) we require the evaluation of (I (a) at the roots 
of the dispersion relation (65), and from that follows the evaluation of the coefficients 
C+, Co, and Ck. As seen from (42) 0- m 0, which is therefore relatively large. On 
the other hand, as will be seen momentarily, (D? is exponentially small, for 0 m 40, 
( = 0 (10-7). If these two observations are applied to (A13) we obtain 

(A14) ^(^^-e- -2 1 
- ea(-)/2 1 -- (A14) (I (a) -, -e- 0 

02 -i 
_eo-(0-1))/2 e-O 

Thus 

(A15) ( = 0) -1 

and therefore from (67) 

(A16) Co 1- 
l1-;. 
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Next, since , = 2/0, it follows that ao+ - p/2 from which it follows that 

(A17) C+ - 02e )/2 

For the remaining roots 

(A18) P (ak) = k e e-k 

and 

(A19) Ck 1. 

REFERENCES 

[1] L. ABBOTT AND C. VAN VREESWIJK, Asynchronous states in networks of pulse-coupled oscil- 
lators, Phys. Rev. E, 48 (1993), pp. 1483-1490. 

[2] M. ABELES, Corticonics: Neural Circuits of the Cerebral Cortex, Cambridge University Press, 
Cambridge, UK, 1991. 

[3] T. CHAWANYA, T. AOYAGI, I. NISHIKAWA, K. OKUDA, AND Y. KURAMOTO, A model for feature 
linking via collective oscillations in the primary visual cortex, Biological Cybernetics, 68 
(1993), pp. 483-490. 

[4] M.-N. CHEE-ORTS, K. PURPURA, AND L. OPTICAN, A Dynamical Model of the Primate's Early 
Visual Pathway: Effect of Luminance Contrast, Spatial Scale, and Spatial Orientation in 
Shaping Neuronal Firing Patterns, unpublished report, 1996. 

[5] W. GERSTNER, Time structure of the activity in neural network models, Phys. Rev. E, 51 
(1995), pp. 738-758. 

[6] P. JOHANNESMA, Stochastic Neural Activity: A Theoretical Investigation, Ph.D. thesis, Uni- 
versity of Nijmegen, Nijmegen, The Netherlands, 1969. 

[7] B. KNIGHT, Dynamics of encoding in a population of neurons, J. Gen. Physiol., 59 (1972a), 
pp. 734-766. 

[8] B. KNIGHT, Dynamics of encoding in neuron populations: Some general mathematical features, 
Neural Computation, 12 (2000), pp. 473-518. 

[9] B. KNIGHT, D. MANIN, AND L. SIROVICH, Dynamical models of interacting neuron populations, 
in Symposium on Robotics and Cybernetics: Computational Engineering in Systems Ap- 
plications, E.C. Gerf, ed., Cite Scientifique, Lille, France, 1996. 

[10] C. KOCH AND I. SEGEV, Methods in Neuronal Modeling: from Synapses to Networks, MIT 
Press, Cambridge, MA, 1989. 

[11] M. MACKEY AND L. GLASS, Oscillation and chaos in physiological control systems, Science, 
197 (1977), pp. 287-289. 

[12] T. MCKENNA, J. DAVIS, AND S. ZORNETZER, Single Neuron Computation, Academic Press, 
San Diego, CA, 1992. 

[13] E. MIROLLO AND S. STROGATZ, Synchronization of pulse-coupled biological oscillators, SIAM 
J. Appl. Math., 50 (1990), pp. 1645-1662. 

[14] A. OMURTAG, B. KNIGHT, AND L. SIROVICH, On the simulation of large populations of neurons, 
J. Comp. Neurosci., 8 (2000), pp. 51-63. 

[15] C. PESKIN, Mathematical Aspects of Heart Physiology, Lecture Notes, Courant Institute of 
Mathematical Sciences, New York University, New York, 1975. 

[16] L. SIROVICH, B. KNIGHT, AND A. OMURTAG, Dynamics of Neuronal Populations: The Stability 
of Equilibria, submitted. 

[17] D. SOMERS, S. NELSON, AND M. SUR, An emergent model of orientation selectivity in cat visual 
cortex simple cells, J. Neurosci., 15 (1995), pp. 5448-5465. 

[18] R. STEIN, A theoretical analysis of neuronal variability, Biophys. J., 5 (1965), pp. 173-194. 
[19] H. C. TUCKWELL, Introduction to Theoretical Neurobiology, Vol. 2, Cambridge University Press, 

Cambridge, UK, 1988. 
[20] C. VAN VREESWIJK AND L. ABBOTT, Self-sustained firing in populations of integrate-and-fire 

neurons, SIAM J. Appl. Math., 53 (1993), pp. 253-264. 
[21] W. WILBUR AND J. RINZEL, An analysis of Stein's model for stochastic neuronal excitation, 

Biological Cybernetics, 45 (1982), pp. 107-114. 
[22] F. WORGOTTER AND C. KOCH, A detailed model of the primary visual pathway in the cat: 

Comparision of afferent excitatory and intracortical inhibitory connection schemes for 
orientation selectivity, J. Neurosci., 11 (1991), pp. 1959-1979. 


	Cover Page
	Article Contents
	p. 2009
	p. 2010
	p. 2011
	p. 2012
	p. 2013
	p. 2014
	p. 2015
	p. 2016
	p. 2017
	p. 2018
	p. 2019
	p. 2020
	p. 2021
	p. 2022
	p. 2023
	p. 2024
	p. 2025
	p. 2026
	p. 2027
	p. 2028

	Issue Table of Contents
	SIAM Journal on Applied Mathematics, Vol. 60, No. 6, May - Jun., 2000
	Volume Information [pp.  2203 - 2208]
	Front Matter [pp.  i - vi]
	A New Framework for Reconstruction of Images from Boundaries [pp.  1841 - 1866]
	Shear Localization with an Arrhenius Flow Law [pp.  1867 - 1886]
	Diffusion Approximation of Radiative Transfer Problems with Interfaces [pp.  1887 - 1912]
	Dynamical Stability of Phase Transitions in the p-System with Viscosity-Capillarity [pp.  1913 - 1924]
	Liquid Crystal Flow: Dynamic and Static Configurations [pp.  1925 - 1949]
	The Effects of Yield Stress Variation on Uniaxial Exchange Flows of Two Bingham Fluids in a Pipe [pp.  1950 - 1976]
	On the Derivation of Heterogeneous Reaction Kinetics from a Homogeneous Reaction Model [pp.  1977 - 1996]
	Singularities in Droplet Pinching with Vanishing Viscosity [pp.  1997 - 2008]
	Dynamics of Neuronal Populations: The Equilibrium Solution [pp.  2009 - 2028]
	Bifurcation Behavior of a Superlattice Model [pp.  2029 - 2057]
	Global Asymptotic Behavior of a Chemostat Model with Two Perfectly Complementary Resources and Distributed Delay [pp.  2058 - 2086]
	Mathematical Analysis of Conducting and Superconducting Transmission Lines [pp.  2087 - 2113]
	A New Approach to Dimensionality Reduction: Theory and Algorithms [pp.  2114 - 2142]
	Frequency-Dependent Acoustics of Composites with Interfaces [pp.  2143 - 2181]
	Unexpectedly Linear Behavior for the Cahn-Hilliard Equation [pp.  2182 - 2202]
	Back Matter



