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THE WIGNER TRANSFORM AND SOME EXACT
PROPERTIES OF LINEAR OPERATORS*

B. W. KNIGHT+ anDp L. SIROVICHt

Abstract. The Wigner transform of an integral kernel on the full line generalizes the Fourier transform
of a translation kernel. The eigenvalue spectra of Hermitian kernels are related to the topographic features
of their Wigner transforms. Two kernels whose Wigner transforms are equivalent under the unimodular
affine group have the same spectrum of eigenvalues and have eigenfunctions related by an explicit linear
transformation. Any kernel whose Wigner transform has concentric ellipses as contour lines, yields an
eigenvalue problem which may be solved exactly.

1. Introduction. The integral kernel K{x, y} which defines the functional linear
transformation

[s o]

tRY [ ayKie ro)=ge) or Kf=g

on the full line may be reexpressed as
X+
1.2) K{x, y}=K(x—y, _2_y)

If K should prove independent of its second argument (x +y)/2, then (1.1) may be
reduced to an elementary form by Fourier transformation. More generally, if the
dependence of K upon (x +y)/2 is slow then Fourier transformation upon only the
fast variable u=x—y

(1.3) R (p, )= [ du exp (~ipw)K (4, q)

leads to a very detailed approximate description of the structure of K as a linear
operator, through the use of a two-scale analysis [1], [2] (this issue, pp. 356-377).
The transformation (1.2) followed by (1.3) was used by Wigner [3] in another context
(Wigner states that the transform was “found by L. Szilard and the present author
some years ago for another purpose”) and will be called the Wigner transformation,
while K will be called the Wigner transform of K{x, y}, and the (p, q)-plane will be
called the Wigner plane. By (1.2), if K{x, y} is Hermitian then K (u, q) undergoes
complex conjugation if u is replaced by —u, and it follows from (1.3) that K(p,q)is
real. If (1.2) and (1.3) are merged, the Wigner transformation becomes

(1.4) WK =R (p,0)= | duK{a+5, -3 exp (~ipu),
whose inverse is

1. 1 </ x+ .
15) WR =Kix, v =5 [ doR(p."52) explip(x —y))

Thus any real K, for which (1.5) is integrable in some sense, yields a Hermitian kernel.
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THE WIGNER TRANSFORM 379

In (1.1) we allow generalized functions which are equivalent to differential (or more
generally pseudo-differential) operators, which still will yield a well-defined Wigner
transform from (1.4); for example, if K represents a Sturm-Liouville operator, the
two-scale analysis referred to gives the familiar results of the WKB procedure [1].

In particular, the two-scale analysis of the Wigner transform yields a generic
asymptotic result for the eigenvalues of kernels whose dependence upon (x +y)/2 is
slow: Asymptotically a particular value of the Wigner transform, constant on a contour
line which encloses an area (2n +1)7r on the Wigner plane, will be an eigenvalue of
the kernel. Thus asymptotically A, is an eigenvalue if the closed curve (referred to as
a A-curve)

(1.6) K(p, q) = A, encloses area {(A,)= (2n + 1)

Relation (1.6), which we term the ‘‘area rule’’, was demonstrated in [1]. Under wide
circumstances the area rule remains valid if instead of slowness we consider n 1 o0;
examples of this will be shown in the present paper.

Consider the following.mapping of the Wigner plane:

(1.7) (2)=(g‘:})+'1\4(5:), detM=1.

Such a transformation, which carries straight lines to straight lines and triangles to
triangles with the same area, we will call unimodular affine. When a member of the
unimodular affine group of transformations acts upon the arguments of a Wigner
transform K (p, q), a new kernel transform results, K' = K'(p', q'), for which the area
rule (1.6) yields the same spectrum of approximate eigenvalues. We will show that
K'is the transform of a kernel which in fact has exactly the same eigenvalue spectrum
as the kernel K. In addition the eigenfunctions of K and K' may be explicitly related.

Under this same group, ellipses transform to ellipses. The special nature of
elliptical A-curves is underlined by the following result, also proven here. If K(p,q)=A
are a family of concentric ellipses then the eigenvalues and eigenfunctions are explicit.

2. Some elementary relations. If A{x, y} and B{x, y} are two Hermitian kernels,
then their product trace (or natural inner product) is related to their Wigner transform
by

1 . .
@1 TrAB=[didy Al 1Bl xt=5— [ dpda A(p, @B (p, @)

1 Y

-5 [asdBe,

ar

where in the last form we use the 2-dimensional variable
14

2.2 =( )
(2.2) § q

An informal proof is immediate if we substitute (1.5) for both A and B into (2.1)
and recognize the Fourier representation of the §-function.
The Wigner transform of the identity kernel is immediate from (1.3):

(2.3) If A{x, y}=8(x—y) then A(£)=1.
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If one member of the operator product (2.1) is the identity, and the other is K,
(2.3) gives

2.4) TrK=j de{x,x}=% I dER(®)
(which may be divergent).

Commonly, a Hermitian kernel has a complete orthonormal set of eigenfunctions
¥, (x) which satisfy

2.5) j dy K {x, y}n(y) = An (x),

in which case K has the spectral representation

(2.6) K =Y AE., where E.{x, y}=,(x)¢7(y).
Under the operator product
(2.7 (AB){x, y}= j dz A{x, z}B{z, y},

the projection operators E,, satisfy
(2.8) E.=E, E.E.=0 ifm#n..
From (2.6), (2.4),

1 .
2.9) 1= [ ax oo xb=5- [ a8 B,
while from (2.8), (2.1),
(2.10) [ 4t BB © =
ar

where if m #n, 8,.,. =0, and §,,,, = 1.

By (2.6), (2.8), the eigenvalue equation (2.5) has its counterpart for projection
operators
(2.11) KE, =\,E,.
In (2.11) we may regard the argument ‘““y”’ as a constant in E,{x, y}, so that E, as a
function of x solves the eigenvalue equation (2.5).

3. The image of operator multiplication on the Wigner plane. The operator
multiplication law (2.7) above implies a corresponding bilinear rule upon transforma-
tion to the Wigner plane:

(3.1) AB=A®B,

which may be evaluated by expressing A and B in (2.7) in terms of their Wigner
transforms by (1.5) and then transforming the operator product by (1.4). The necessary
algebra is simplified if we note that

(3.2) A= [ deasE-e0A (),

and similarly for B(£), which reduces the job 'to evaluating the composition law for
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S(E—£4)®6(E—Ep). We easily calculate

8(q—qa)

5 oxp (iupa),

(3.3) Ws(E—£4) =

from which we calculate

(3.4) S(E—EA)®S(E—Ep)= W(W T '8(E—£4)(W'8(E—Ep)))
= % exp {41A(§A, gB, g)}a

where

daA—q d4B—(q

(3.5) Men aB)=5] 0 27

is the area on the Wigner plane contained within the triangle with vertices at €4, s, €.
It therefore follows that

| . - )
(3.6) A®B=—3 J d€a dEp A(Ea)B(EB) exp {4iA(Ea, €5, )}
4. An invariance law for eigenvalues. Under unimodular affine transformation
(1.7)
4.1) E=6+ME=T(),

the area of any triangle, and in particular (3.5), is preserved. In addition, the Jacobian
of the transformation (4.1) is unity. Thus if we write

4.2) A®)=ATE®)=A"®)=(TA)E),
and similarly for 1§, it follows that
4.3) T(A®B)=A'®B".
Now, by (3.1), the eigenvalue equation (2.11) becomes
(4.4) K ®E, =\,E,.
Under unimodular affine transformation this becomes, by (4.3),
4.5) K'®E,=\E,
with the same eigenvalue. Under inverse Wigner transformation, (4.5) yields
4.6) K'E,=\.E,,

another kernel and another set of eigenfunctions but the same spectrum. Thus there
are whole classes of operator kernels with identical eigenvalue spectra, whose Wigner
transforms map to one another under unimodular affine transformation of the Wigner
plane.

5. The unimodular affine action upon eigenfunctions. Evidently there is a relation
between the eigenfunctions ¢, (x) of a given kernel K, and the eigenfunctions U (x")
of the related kernel K'{x', y'} whose Wigner transform is obtained from K (&) by
unimodular affine transformation on the Wigner plane. In the projective kernel
E.L{x', y'} of (2.6) we may regard y’ as a fixed parameter, whence E, regarded as a
function of x' is proportional to ¢'(x"). Thus the transformation from ¢(x) to ¢'(x")
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may be evaluated through explicit calculation of
(5.1 E,=W 'TWE,,

by (1.4), (4.2), (1.5). The calculation is straightforward and the result is most con-
veniently stated as two separate partial results for the translational and unimodular

parts of T.
Case 1. Translation. If M in (1.7) is the identity then

(5.2) , p=p'+Py, q=4'+Qo.
From (1.5) we can virtually read off the result
(5.3) ¥'(x") = e (x'+ Qo).
Case 2. Unimodular transformation. Po=0, Q=0 in (1.7) and
(5.4) M=(3 f:) with a8 — By = 1.
In this case the two integrations contributed by W and W~ in (5.1) may be separated,

by a change of variable, into a product of functionally decoupled integrations upon
the two factors of E,{x, y}= ¢,,(x)¢¥¥ (y), and we find

(5.5) W)= «/2—717(,7, j dx exp [—-zi-{gx'z—%xx'+%x2}]¢,,(x),

which is the integral transformation induced by the unimodular action on the Wigner
plane. w represents a constant of unit magnitude up to which (5.5) is undetermined.
We note that both (5.3) and (5.5) are unitary transformations, a property guaranteed
by (2.9), (4.6) and the area-preserving property of the transformation T.

If, in particular, the unimodular matrix M defines a rigid rotation of the Wigner
plane

cost sin t)
—sint cost/’

(5.6) M=(
then (5.5) reduces to

() = e [i{ cot £)(x>+x"? —Zx—x'}]

67 v =] drexp {0t 064225 uco)

This integral transformation may be recognized as the action of the Green’s function
for the time dependent normalized Schrodinger harmonic oscillator equation, upon
the arbitrary initial function (x). The transformation (5.5) is far more general than
(5.7); however, as unimodular matrices fall into three types, (i) “elliptic”, (ii) “hyper-
bolic”, (iii) “parabolic”’, depending on whether the eigenvalues of M are (i) complex
conjugates on the unit circle, (ii) real and reciprocals, (iii) both unity. The form (5.6)
is representative only of the elliptic type. In the limiting case where y=8 =0 and
8 =1/a, it is easily shown that

(5.8) K'{x',y't= éK {ax', ay'},

whence ¢, (x) = ¢ (ax’)/V a.
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6. An illustration. A useful example is the quantum mechanical harmonic oscil-
lator equation
2

(6'1) (—d_2+x2)‘//n=)‘n‘//n-
dx
Then, as is well known, the eigenvalues and eigenfunctions are given by
6.2) An=2n+1,
H,(x)exp (—x%/2
63) n(x) = 3, () = P X (o [2)

(71_1/22nn |)1/2

In (6.3), H,(x) represents the Hermite polynomial [4] of order n and the set {&,(x)}
are orthonormal. According to definition (2.6),

_H.()H,(y) exp (=(x*+y?)/2)

(6.4) E,{x, y} 725 =Hu()H0(y),
and as shown in § 8,

2 2
6.5) WE, = E, = 2(-V'L2(p* + ") exp (-E51),

where L, is the Laguerre polynomial [4] of order n. Observe that the A-curves for
(6.1) are concentric circles,

(6.6) p>+q’=A
In a more general vein we consider the Hermitian eigenvalue problem,
d’ d d 2 d
—A——iB{x—+—x)+Cx"+2i +APy)—
{-ass-iB(xs+ x)+ C? +2i(BQo+ AP 5
(6.7)
—2(CQo+ BPo)x + (AP} +CQ3+ ZBPoQo)}d/ =AY,

where the coefficients are real and
(6.8) D*=AC-B*>0.

Except for (6.8) there is no restriction on the constants of (6.7); the particular
arrangement of coefficients is taken for convenience. In fact, the Wigner transform
of the kernel corresponding to the operator in (6.7) leads to the A-curves

(6.9) A(p—Po)*+2B(p—Po)(g— Qo)+ C(q—Qo)* = L.
Under the restriction (6.8), this is a family of concentric ellipses, centered at (P, Qo).

The quantum mechanical harmonic oscillator is just a special case of (6.7) or (6.9).
Under the unimodular affine transformation

L —
(6.10) (2—:)= \/112 V\l/2 (5——2(;)

/.4,\/5, uu\/z
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with

A\ VAC-B\ "
6.11 = (—) s ( )
6.11) #=\c " \Vac+B

(6.9) reduces to
(6.12) p?+q”=

Hence the eigenvalues of (6.7) are
(6.13) An=Q2n+1)D.

We can also explicitly represent the eigenfunctions of (6.7). Taking this in two
stages, the translation portion of the transformation (6.10) is accounted for by express-
ing the eigenfunction corresponding to (6.13) as (see (5.3))

(6.14) Un(x) =T, (x — Qo) exp (—iPox).
Then, from (5.5),

1
V2mryw

where the values of a, B, v, 6 follow from
(a 6)=(uu/\/§, —p,/m/i)_l=( 1/uvV2, p,/u\/i)
vy 8 v/ uv2, 1/urv2 —v/pn/i, uv/N2

and (6.11). The integral in (6.15) can be directly evaluated by means of the generating
function

(6.15) ¥, (y)= de . (x) exp[—{;(&yz—bcy +ax2)],

) x2 n 77_1/22 1/2
(6.16) G=exp[2xz—z —7]=Zz ( —=) ).

If (6.16) is applied to (6.15), a straightforward analysis then leads to
- z'a) "2 % (y/NY +a?)
yti Vuvy +ia

The ¥, are orthonormal by construction, a fact which is also obvious by inspection.
We eliminate unnecessary constants by choosing w so that, instead of (6.17),

HuONY +a®) T _iy?
S Lexp[-2-(ap +19)]

@) w0(@) Ve[S 5

where in the last form we have substituted in terms of the original constants of (6.7)
and (6.8).

These exact results find immediate application in approximately determining
those eigenfunctions and eigenvalues, of a more general integral kernel, which arise
from the presence of a summit or valley in its Wigner transform, which gives a leading
dependence as in (6.9). This matter is discussed further in [2].

The observatlon after (5.7), that there is a natural sense in which the operator
(—=d?/dx*+x?) ‘“generates” a rigid rotation (5.6) of the Wigner plane, has a natural

617 W) =ir(2 eXP[—%(aB+78)].

v, =
(6.18)
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generalization in the operator (6.7) which in the same sense generates on the Wigner
plane a “flow” that is area preserving, carries straight lines to straight lines and has
as invariant streamlines the conic sections (6.9). If D>>0 then the flow is on ellipses
and is similar, under a unimodular transformation, to a rigid rotation. If D?*=0, the
flow is along parabolas, and if D*<0, the flow leaves invariant a set of hyperbolas
given by (6.9).

7. Representation of operator composition as a series. The image on the Wigner
plane of a scalar multiple of the identity operator is simply the same scalar, according
to (2.3). In this case the composition (3.1) with another operator image reduces to
ordinary numerical multiplication. This suggests asymptotic simplifications in operator
composition if one of the two operators in (3.6) is ‘“‘slow on the Wigner plane.” With
this in mind we rewrite (3.6) as

(1.1) A®B= % [ dg: e A +£0BE+£2) exp 14081, 8,01
and formally expand A in the Taylor series;
o 1 a\" .
Agrer-3— (& E) A®.

If this is substituted into (7.1), each term may be evaluated with the use of §-functions
and their derivatives. The result is

)" & (—)"(n) "B A

2" ,Eo n! \k/ap* 6q”_k'aqk ap"_k

A®B=Y
(7.2) ) .
P o & PR - & v
=AB _E(Bqu _BpAq)_g(Bq v~ 2BpaApq + BopAgg) £
which gives the desired expansion.
An alternate, formal, representation is gotten by inspection:

v o~ ifo 9 a ~ ~
7.3 A®B={ex [——(— ———————)]A B }
(7.3) P172\2ap 3pa pm 944 (§a)B(EB)
A related form of this operator was presented by Moyal [S]. On comparison with
(3.6) we can also formally write,

Ea=Ep=&

1 ) i/ @ 8’
(1.4)  —rexp[4ibEn Es D= 5E—ENSE—Es) exp| =5 ; P qA)].

If either A or B is polynomial the series in (7.2) terminates after a finite number
of terms. Thus, for example, if

A=B=p’+q’,
then
(7.5) A®B+1=(p*+¢>»>

Simple inspection then reveals that
2

2
(7.6) W“g4->(—%5+x2) +1.

Thus (7.6) leads to Hermite functions, (6.3), for eigenfunctions; and eigenvalues given
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by 2n + 1)®+ 1. Further, it is clear that we can treat any polynomial in £ by the same
considerations, and thus that any polynomial in & 2 corresponds to the Wigner transform
of a differential operator which has {%,(x)} as eigenfunctions.

8. The case of concentric circular contour lines. If the Wigner transform of a
linear operator is constant on contour lines which are similar ellipses, concentric about
an arbitrary point and with principal axes at arbitrary inclination, the unimodular
affine transformation (6.10) will carry that Wigner transform to one whose contours
are concentric circles about £= 0. Thus, as suggested in § 6, an exact solution to the
eigenvalue problem for operators which yield concentric circular contours will also
solve the eigenvalue problem for the wider class of operators just described. We will
now develop the exact solution for any operator which yields concentric circular
contours.

We begin with two generating function identities, of which the first defines the
normalized Laguerre functions %, :

o el A § rmmvn

Here %, is related to the corresponding Laguerre polynomial L, by
8.2) %)= (DL exp (-3).

Equation (8.1) results from (8.2) and the standard generating function for Laguerre
polynomials [6].
In terms of the normalized Hermite functions, (6.3), Mehler’s formula [7] is
{_(1/2)(22+ (x> +y?)—2zxy
1-2°

83) G= }= Zoz"%,.(x)wy).

\/77'(1 ) exp

If z is a real number with magnitude less than unity, (8.3) defines a Hermitian operator
and expresses it in terms of a sum of projection operators. Thus, as a special case of
(2.6):

(8.4) Gix,y;z}= ZO z"E,{x, y}.

In this sense G{x, y; z} in Mehler’s formula (8.3) is the generating function for the
projection operators

E,.{x, y}= . (x)%,(y).

The Wigner transformation (1.4) upon (8.3) is a standard Gaussian integration
easily accomplished by ‘“‘completing the square”, and yields

~ 1-z, 5 ® .

8.5 G(p,q;2)= {——+}= "E.(p, 9),

(8.5) (P, a3 2) =1 exp 1+ P q’) .EOZE(" q)

whence (8.5) is a generating function for the Wigner transforms E, of the projection

operators E,, in (8.4). If we compare (8.5) with (8.1), it follows that
(8.6) G(p,q;2)=2Y 2"%,(2J), where J=p*+q°,
whence

-~

8.7 E,=2%,22J).
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(Equation (8.7) is a special case of a more general result given by Groenewald [8],
who essentially Wigner transforms #,,(x)7,(y) and finds a radial dependence which
is an associated Laguerre function and a sinusoidal angular dependence. See also
Bruer [9, Appendix].)

Two notable facts bear mention. The first is that every projection operator image
is constant on the same set of concentric circles. Hence this same set of contours will
be inherited by any linear combination of them of the form

838) R(p*+a") = T MEQ(p™+47)

for arbitrary A,.. Secondly, the normalized Laguerre functions form a complete orthonor-
mal basis for a wide class of functions on the half line, so that any reasonable K
which is constant on concentric circles may be expanded as in (8.8), with

(8.9) An=j0 dTK ()&, (2T).

We note that this is a special case of (2.1), as

(8.10) A, =Tt KE, =%j dt RE, = j WIRWNE, ().
0

Thus any kernel K{x, y} whose Wigner transform is constant on concentric circles is
an inverse transform of (8.8), and has eigenfunctions %, (x) as in (6.3) and eigenvalues
given by (8.9).

As special cases we observe:

8.11) jxn(zf) ar=1,
8.12) j L.QNTdJ = 2n+1),
(8.13) j LN AT =@n+12+1.

Equation (8.11) follows from the fact that a delta function has unit eigenvalue, (8.12)
is a restatement of (6.1,2) and (8.13) follows the example at the close of § 7. (All
three results also follow easily from the generating function (8.1).)

9. Comparison with area rule. For cases reducible to concentric circular A-curves,
the area rule calculation of eigenvalues may be compared with the exact form for the
eigenvalue (8.9). This we now discuss under the limit n 1 00, but give up the requirement
of a slow variation in the underlying operator.

An asymptotic analysis demonstrates that the Laguerre function &, (8.2) has a
peaking form when J = O(n) [4]. We can avoid the details of such an asymptotic
analysis with the observation that

9.1 Jgn(ZJ)[J—(2n+l)]dJ=0.
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This follows directly from (8.11) and (8.12). Thus, if we write

An= I L.2NKJ) dJ
0

9.2) ~ I 5£,,(2J){I€'(2n 1)+ [T -@n+ DR @n +1)

0
1 .
4300 —@n+ DFR"2n + 1)} ar+- -,
it follows from (8.13) that

9.3) A~KQ2n+1)+iK"2n +1).

The first term of (9.3) is the prediction of area rule and the second term has been
carried as an error estimate for purposes of delimiting the range over which area rule
is correct. In fact, it is clear from (9.3) that if

9.4) InKJ)=o0(J),
then the area rule, which in this case gives
9.5) A ~KQ2n+1),

is asymptotically valid.

As this argument demonstrates, the area rule for an operator K, which behaves
exponentially for J 1 0o, is in general incorrect. As an illustration of this phenomenon
we recall an example given in [1]. The kernel

2 2
k=23 Pe {-(3) (23 |
has the Wigner transform
R =Vm(1+B) exp (~(p*+4") =Va(1+8) exp (-J)
(with g = B(x +y)/2). Use of the area rule gives

A ~Vm(1+B) exp [-(2n +1)B],

in contrast with the exact value

1-8\"
il
An=Nm 1+8
In this case In K = O(J), so that the criterion (9.4) is violated; thus, although A, and
A, agree in the limit B8 = 0, n fixed, the agreement is not uniformly valid in n. Another
case
1

~

147

is treated in [2]. In this case In K = O(InJ)=0(J) so that (9.4) is fulfilled and the
area rule is valid for n 1} co.
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