
http://www.jstor.org

On Some Aspects of the Transonic Controversy
Author(s): Yue-Kuen Kwok and Lawrence Sirovich
Source: SIAM Journal on Applied Mathematics, Vol. 47, No. 2, (Apr., 1987), pp. 279-295
Published by: Society for Industrial and Applied Mathematics
Stable URL: http://www.jstor.org/stable/2101530
Accessed: 05/06/2008 12:18

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at

http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless

you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you

may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at

http://www.jstor.org/action/showPublisher?publisherCode=siam.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed

page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We enable the

scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that

promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

http://www.jstor.org/stable/2101530?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=siam


SIAM J. APPL. MATH. ? 1987 Society for Industrial and Applied Mathematics 
Vol. 47, No. 2, April 1987 006 

ON SOME ASPECTS OF THE TRANSONIC CONTROVERSY* 

YUE-KUEN KWOKtt AND LAWRENCE SIROVICHt 

Abstract. The flow of an inviscid, irrotational and compressible perfect gas in the upper half plane is 
used as a basis for consideration of the transonic controversy. The solution of the complete potential equation 
for the velocity potential + (x, y), with boundary condition 4 + coy = U sin x on y = 0, is developed as a 
regular perturbation series. Thirty-six terms of the series are determined by computer. The effective boundary 
condition is varied with the choice of c; for each of the velocity series, its nature and the location of the 
singularity nearest to the origin are investigated using the ratio method of Domb and Sykes, and Pade 
approximants. The result of the analysis shows that the phenomenon of shockless transonic flow is dependent 
on the imposed boundary condition, which for this example is mediated by the constant c. The relationship 
of series convergence to local sonic conditions shows no obvious pattern. Cases for which convergence lies 
below, above or is at criticality were found. Moreover, the connection of divergence to the appearance of 
shocks is also not apparent. For one class of flows divergent series could be resummed to yield shockless 
conditions for all Mach numbers. For certain values of c no physically acceptable flow exists. 

Key words. transonic flow, potential flow, computer-extended series 

AMS(MOS) subject classification. 76G15 

PACS number. 47.40.Hg 

1. Introduction. Since the 1940's there has been a controversy [1]-[3] over the 
appearance of shock waves whenever the critical Mach number is exceeded. The 
well-known Morawetz theorem [4] demonstrates that smooth, i.e., shockless, flows 
with embedded supersonic regions are mathematically isolated. Any perturbation of 
the airfoil surface embedded in the supersonic region would cause the commencement 
of a shock in the flow field. Recently, Van Dyke and Guttmann [5] computed 29 terms 
of the M2-series expansion for inviscid, irrotational compressible flow past a circular 
cylinder. From the power series for the maximum velocity obtained, they found that 
the estimate of the radius of convergence of the series was higher than the estimate 
of the critical Mach number by some 1.1%. They concluded that the circular airfoil 
can have a continuous range of smooth, shock-free potential flows above the critical 
Mach number. 

Along these same lines we note that it is common in the literature to find that 
breakdown in convergence is taken to imply the nonexistence of smooth solutions-and 
hence the appearance of shocks in the physical flow. This conclusion has not been 
proved, and at least for one set of cases we show that it is untrue. In ? 3 we exhibit a 
class of problems for which breakdown occurs because of an unphysical singularity in 
the complex plane. After a routine mapping of this singularity to infinity, smooth 
solutions are found for all Mach numbers. 

Compressible flow over a wavy wall has been used on several occasions to 
investigate the transonic controversy. The earliest work, by Gortler [6], dates back to 
1940. He calculated terms up to third order using the Hantzsche-Wendt method [3] 
for compressible flow past a kind of wavy wall. To reduce the algebra of computation, 
he adopted the simple boundary condition for the disturbance potential 4 to be 

(1.1) 4 = K cos (2ix/l1) on y = 0, 
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which is approximately a solid wall of wavelength I centered at y =0. He found a 
continuous supercritical flow with local supersonic regions. The solution was also 
attempted with the alternative boundary condition, a4/ay = K cos (2rrx/l) on y = 0. 
This however did not lead to smooth solutions. For the case of an exactly sinusoidal 
wall, the perturbation series solution of Imai and Oyama [7] using the thin-wing 
expansion method seems to be divergent above the critical Mach number. In works 
by Kaplan [8], [9] the perturbation series for the velocity potential, computed using 
the transonic small perturbation equation, is also found to diverge above the critical 
Mach number. More recently, Bollmann [10] extended the perturbation series of 
Kaplan, to 40 terms, using a computer and his analysis of the series led to the same 
conclusion. 

The present study may be regarded as an extension of the approach of G6rtler. 
We consider steady, inviscid, irrotational compressible flow in the upper half plane 
(y _ 0) with the boundary condition 

(1.2a) +coy = UUsinx ony=0, 

(1.2b) 0-0 asy->oo 

where 0=0(x,y) is the velocity potential and c is a parameter which is varied. 
Although (1.2a) is unusual for gas dynamics it is not in the context of heat flow in 
which it appears in the Robin problem [11]. 

Note that there is no uniform upstream flow in this formulation. However, it can 
be assumed that a blowing and suction mechanism along y =0 occurs so that the 
desired flow field is obtained and satisfies the above boundary conditions. 

The rationale behind constructing such flows is to reduce the algebra in computing 
the perturbation series. Since there is no upstream flow in the problem, the perturbation 
parameter will not be the free stream Mach number as is usually the case for the 
Jansen-Rayleigh expansion. Indeed, from energy conservation, we have 

(1.3) q2 a2 
Q2 

2 (-y-1) 2 

where q2 = V4 * V ) is the square of local speed, a is the acoustic speed, y is the ratio 
of specific heats and Q2 constant. The natural perturbation parameter in the problem 
will be 

(1.4) 6 = u2/ Q2 

where U is defined in the boundary condition (1.2a). 
The boundary condition imposed along y = 0 varies with different values of the 

parameter c (see 1.2a). With each such boundary condition, the perturbation series 
for the velocity is developed up to 36 terms. Then the location and nature of the 
singularity nearest to the origin of each of the series are investigated using Domb and 
Sykes' ratio method [12], [13] and Pade approximants [14]-[20]. The radius of 
convergence of the series is compared with the value 8cr at which local sonic speed is 
first attained. 

This present work may be regarded as a regular perturbation problem. Unlike the 
classical approach of calculating the higher order terms of the perturbation series 
analytically, the routine labour is delegated to a computer. This work contributes 
another example to the subject of extending perturbation series by a computer in fluid 
mechanics. Excellent reviews of this subject have been given by Van Dyke [21]-[23]. 
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2. Series derivation. Consider steady, two-dimensional flow of an inviscid, irrota- 
tional, compressible perfect gas in the upper half plane (y ? 0). The nonlinear second 
order partial differential equation for compressible potential flow is given by 

(2.1) a 2V2 =,V V(q2/2). 
From energy conservation, we have the Bernoulli relation, given by (1.3). In numerical 
calculations y will be taken to be 1.4. If (1.3) is substituted into (2.1) we obtain 

(2.2) V20 = (q2/Q2)V24 +[1/(y - 1)]V4 _ V(q2/ Q2). 

Henceforth we normalize both the velocity potential X and the velocity q by U. 
Then (2.2) can be rewritten as 

(2.3) V24)= =q2V24 + [1/(y - 1)]&V4 Vq2 

where 8 is defined in (1.4). 
We adopt a regular perturbation expansion and assume that the velocity potential 

4 can be expanded in the form 

(2.4) ? = 0 + 601 + 62 2+*- 

Notice that the right-hand side of (2.3) involves triple products in 4. The computational 
complexity can be reduced by treating the triple products as repeated double products, 
as noted by Van Dyke and Guttmann [5]. For this purpose, we expand q2 as 

(2.5) q 2= q 2 
+,6 2aq2 q 62q+ 53 q 2 + *- 

(2.5) 3 

The equations at the first few orders are given as 

(2.6a) (i) V240 = 0, 

(2.6b) qo = V 40 * V 00, 

(2.7a) (ii) V241 = [l/(y - 1)]V40 *Vqo, 

(2.7b) q 2= 2V4l .V4o, 

(2.8a) (iii) V202 = q 2V21 +[l/(Y_ 1)][,V00 *V Vq2+,V0b *Vq 2], 

(2.8b) q 2 =2V42 * V00+V41 *V l, 

and so forth. 
The boundary conditions at different orders are 

(2.9a) 4o+ cooy = U sin x on y = 0, 

(2.9b) 0,, + c4,,y = 0 on y = 0, n = 1, 2,3,** 

(2.9c) 4n-*0 asy->oo, n=0,1,2,3, - . 

The procedure can be continued and carried out order by order. The solution at 
the first few orders are found to be 

(2.10Oa) 00 = [1/(1 - c)] e-Y sin x, 

(2. 1Ob) 41 = [-(5/8)(1 -3c)/(1 - c)4]e-y sin x + [(5/8)/(1 - C)3] e-3Y sin x, 

02 = [(75/64)(1 - 3c )2/ (1 _ 
C)7_- (65/32)(1 - 5c)/ (1 _ c)6 ] e-Y sin x 

- [(75/64) (1 - 3 c)/(l _ -c)6 ] e -3y sin x 

+ [(65/32)/(1 - c)5] e-5y sin x 
(2.lOc) + [(25/128)(1 - 5c) (1 -3C)6] e -3 sin 3x 
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and 

(2.11la) q2 = [1/(1- _c)2 ] e-2y, 

(2.1lb) ql2 = [(-5/4)(1 -3c)/(1 - c)5] e-2y + [(5/2)(1 - C)4] e-4Y 

- [(5/4)/(1 - C)4] e-4y cos 2x, 

q2 = [(175/64)(1 -3 c)2/ (1 - c)8 - (65/ 16) (1 - 5 c)/ (1 - C)7] e-2y 

- [ (25/4) (1 - 3 c)/ (1 _ 
C)7 ] e-4Y + [(905/64)/(l _ 

C)6 ] e-6y 

(2.1 l c) + [(75/64)( 1 -5Sc)/(l - 3c)(1 _ 
C)6 

+ (25/8)(1 - 3c)/(1 - C)7] e-4Y cos 2x 

- [(45/4)/(1 - C)6] e-6y cos 2x + [(25/64)/(1 - C)6] e-6y cos 4x. 

We will address the singularities evident in (2.11) in ? 3. 
It has been checked that the maximum velocity occurs at y =0 and x = rr/2 + 2nir, 

n an integer. For example, taking c = 0 gives the maximum velocity to be 

(2.12) qrnax = 1 + (5/2)8 + (890/64)82+ 

Higher order terms beyond the first few are involved and the extension of the 
series has been relegated to a computer. The early terms of the series have been 
calculated with the help of the symbolic manipulation computer language Macsyma. 
This serves to reveal the form of the general term of the expansion. A Fortran program 
was then written to extend the series to arbitrary order. To check the accuracy of the 
computation, calculations have been done using double precision and then quadruple 
precision (32 significant figures). Up to 36 terms of the series were obtained on an 
IBM 3081. Comparison of the two calculations indicates an accuracy of at least 10 
significant figures. Velocity series and velocity potential series have been obtained with 
different choices of c in the boundary condition and at different field points. 

In the following section, the series are analyzed to find their singularities and 
hence their radii of convergence, 5iim. In each case, the radius of convergence is 
compared with 8cr, the value at which sonic speed is first attained. Equality of the two 
quantities is often taken to mean that smooth continuous flow does not exist beyond 
sonic conditions; as we pointed out in the Introduction this assertion is in general 
unwarranted. 

3. Analysis of series. q2_-series are obtained with different choices of c in the 
boundary condition and at different field points. Sample results are shown in Tables 
1 and 2. 

Determination Of 8cr. First we determine the value of the perturbation parameter 
8cr for which the flow becomes locally sonic. Local sonic flow occurs first at x= 
ir/2 + 2nrr and y = 0, where the velocity is maximum. Putting a2 = q2ax into the energy 
conservation equation (1.3), we get 

(3.1) qmax[(Y+ l)(y -1)] = 1/6, 

and substituting the series qmax = , q8n ' into (3. 1), we obtain a sequence of polynomial 
equations in 8. The smallest positive roots of the equations are found and checked to 
determine whether they exhibit a converging trend. If n terms of the qmax-series are used, 
then the root gives an estimate of 8cr to the nth approximation. 

To get the best estimate of the limit of the sequence of approximations to 8cr, one 
can employ a nonlinear transformation to hasten the rate of convergence [24]. An 
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TABLE 1 
Coefficients of q2 ax-series evaluated at x = 1/2, y = 0 for different boundary conditions. 

n q2 (c =-0.5) q2 (C=O) q2 (c = 0.5) q2 (c = 1.5) 

0 0.444444E + 00 1.OOOOOOE + 00 4.OOOOOOE + 00 4.OOOOOOE + 00 
1 0.329218E + 00 0.250000E + 01 0.800000E + 02 -0.800000E + 02 
2 0.582228E + 00 0.139063E + 02 0.298000E + 04 0.250571 E + 04 
3 0.122283E+01 0.959440E+02 0.133312E+06 -0.926689E+05 
4 0.284073E + 01 0.742746E + 03 0.664100E + 07 0.375463E+07 
5 0.705012E+01 0.617153E+04 0.354328E+09 -0.161416E+09 
6 0.183397E+02 0.537905E+05 0.198108E+11 0.723260E+10 
7 0.494234E+02 0.485270E+06 0.114567E+ 13 -0.334092E+ 12 
8 0.136918E + 03 0.449327E + 07 0.679637 E + 14 0.157969E+ 14 
9 0.387834E+03 0.424597E+08 0.411278E+ 16 -0.760833E+ 15 

10 0.111895E+04 0.407842E+09 0.252892E+ 18 0.371963E+ 17 
11 0.327872E+04 0.397040E+10 0.157555E+20 -0.184110E+19 
12 0.973559E+04 0.390885E+ 11 0.992405E+21 0.920803E+20 
13 0.292434E +05 0.388504E+ 12 0.630937E+23 -0.464623E+22 
14 0.887352E+05 0.389307E + 13 0.404345E+25 0.236238E+24 
15 0.271687E+06 0.392888E+ 14 0.260935E+27 -0.120917E+26 
16 0.838570E+06 0.398976E+ 15 0.169416E+29 0.622538E+27 
17 0.260713E+07 0.407391E+ 16 0.110588E+31 -0.322176E+29 
18 0.815925E+07 0.418021E+ 17 0.725338E+32 0.167505E+31 
19 0.256894E + 08 0.430812E + 18 0.477786E + 34 -0.874506E + 32 
20 0.813319E+08 0.445750E+ 19 0.315939E+36 0.458273E+34 
21 0.258813E+09 0.462856E + 20 0.209649E+38 -0.240969E + 36 
22 0.827494E+09 0.482183E+21 0.139561E+40 0.127098E+38 
23 0.265740E+ 10 0.503811E+22 0.931744E +41 -0.672280E+ 39 
24 0.856909E + 10 0.527846E + 23 0.623718E+43 0.356524E + 41 
25 0.277387E+ 11 0.554415E+24 0.418550E+45 -0.189526E+43 
26 0.901176E+ 11 0.583672E+25 0.281508E+47 0.100974E+45 
27 0.293775E+ 12 0.615793E+26 0.189735E+49 -0.539071E+46 
28 0.960773E+ 12 0.650977E + 27 0.128130E + 51 0.288344E+48 
29 0.315175E+ 13 0.689451E+28 0.866855E+52 -0.154507E+50 
30 0.103691E+ 14 0.731465E+29 0.587461E+54 0.829296E+51 
31 0.342078E + 14 0.777299E + 30 0.398751 E + 56 -0.445808E + 53 
32 0.113149E + 15 0.827263E+31 0.271064E + 58 0.240006E + 55 
33 0.375200E+ 15 0.881698E+32 0.184523E+60 -0.129388E+57 
34 0.124714E+ 16 0.940980E+33 0.125778E+62 0.698438E+58 
35 0.415491E+ 16 0.100552E+35 0.858412E+63 -0.377480E+60 
36 0.138727E+ 17 0.107578E+36 0.586542E+65 0.204250E+62 

effective method is the s-algorithm of Barber et al. [25]. If {If} denotes the sequence 
of approximations to ocr, this scheme of successive nonlinear transformations is defined 
as 

(3.2a) f (nm+1 = f (n ) + 1 [(tnm) + E(nm)l ], 

(3.2b) E (m) = amE(m 1) + 1/y[f(n) +f (m)] 

where am = 0 if m is even and am = -1 if m is odd: 

{fn?)}={fn} and E(1-)=O n=1,2,3, 

Table 3 lists the values of 8c, for various q42ax-series. The determination of the 
values is based on the apparent convergence in applying the E-algorithm. 

When c> 1, the radius of convergence of the q2-series is limited by the nearest 
singularity lying on the negative real axis of 8. Though this singularity is nonphysical, 
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TABLE 2 
Coefficients of q2-series evaluated at x = ii/4, y = 0 for different boundary conditions. 

n q2 (c =-0.5) q2 (C=O) q2 (c = 0.5) q (C= 1.5) 

0 0.444444E + 00 1.000000E + 00 4.OOOOOOE + 00 4.000000E + 00 
1 0.823045E-01 0.125000E+01 0.600000E+02 -0.100000E+03 
2 0.127267E+00 0.617188E+01 0.223500E+04 0.327500E+04 
3 0.130576E+00 0.343327E+02 0.101279E+06 -0.123394E+06 
4 0.528379E -01 0.211576E + 03 0.509839E + 07 0.505749E + 07 
5 -0.192304E + 00 0.139982E + 04 0.274050E + 09 -0.219021 E + 09 
6 -0.765748E+00 0.973388E+04 0.154028E+ 11 0.986219E+ 10 
7 -0.188091E+01 0.702369E+05 0.894161E+ 12 -0.457173E+ 12 
8 -0.356724E+01 0.521748E+06 0.531972E+ 14 0.216741E+ 14 
9 -0.470825E+01 0.396916E+07 0.322650E+ 16 -0.104607E+ 16 

10 0.720851E-01 0.308117E+08 0.198757E+ 18 0.512261E+ 17 
11 0.293821E+02 0.243449E+09 0.124015E+20 -0.253898E+ 19 
12 0.139047E+03 0.195426E+ 10 0.782130E+21 0.127128E+21 
13 0.482763E+03 0.159170E+ 11 0.497786E+23 -0.642085E+22 
14 0.145891 E + 04 0.131406E + 12 0.319309E+25 0.326738E + 24 
15 0.405347E+04 0.109881E+ 13 0.206225E+27 -0.167359E+26 
16 0.106193E+05 0.930131E+ 13 0.133990E+29 0.862179E+27 
17 0.266174E+05 0.796688E+ 14 0.875183E+30 -0.446441E+29 
18 0.645063E+05 0.690239E+ 15 0.574348E+32 0.232226E+31 
19 0.152656E+06 0.604700E+ 16 0.378518E+34 -0.121294E+33 
20 0.357012E+06 0.535529E+ 17 0.250412E+36 0.635874E+34 
21 0.838586E+06 0.479293E+ 18 0.166235E+38 -0.334474E+36 
22 0.202121 E + 07 0.433370E + 19 0.110702E + 40 0.176475E+38 
23 0.511972E+07 0.395742E+ 20 0.739333E+41 -0.933733E+39 
24 0.138802E+08 0.364844E+21 0.495074E+43 0.495313E+41 
25 0.404255E + 08 0.339448E + 22 0.332319E+45 -0.263371 E + 43 
26 0.124941E+09 0.318592E+23 0.223571E+47 0.140350E+45 
27 0.401604E + 09 0.301510E+24 0.150724E + 49 -0.749444E + 46 
28 0.131744E+ 10 0.287595E+25 0.101809E+51 0.400950E+48 
29 0.435213E+ 10 0.276361E+26 0.688933E+52 -0.214886E+50 
30 0.143653E+ 11 0.267418E+27 0.466979E+54 0.115357E+52 
31 0.471980E + 11 0.260452E + 28 0.317032E + 56 -0.620232E+53 
32 0.154157E+ 12 0.255213E+29 0.215551E+58 0.333959E+55 
33 0.500580E+ 12 0.251496E+30 0.146758E+60 -0.180064E+57 
34 0.161733E+ 13 0.249138E+31 0.100052E+62 0.972119E+58 
35 0.520506E+ 13 0.248009E+32 0.682938E+63 -0.525461E+60 
36 0.167060E+ 14 0.248006E+33 0.466709E+65 0.284354E+62 

TABLE 3 
List of the values of Scr for various q2 .x-series. 

c -1.5 -0.5 -0.1 0 0.3 0.5 0.8 

Scr 0.848301 0.261443 0.118695 0.089616 0.019714 0.014035 0.0009116 

its presence limits the utility of the series expansion. We defer the discussion of this 
case to the end of this section. 

Nonexistence of solutions for c = 1, 1/3, 1/5, * - - . Examination of the terms in the 
potential expansion (2.10) shows that these diverge for c = 1, 1/3, 1/5, *, 1/(2n + 
1),***, for all integer n. We conjecture the nonexistence of bounded solutions to our 
problem for all such values of c. The basis for this conjecture is the following simple 
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linear problem: 

(3.3a) V20 =0, y>0, 

(3.3b) +coy= Usinx, y=0. 

This problem has no bounded solution for c = 1. The proof of this is immediate, since 
if we assume that 4 is bounded, we can easily construct the solution and from this 
find that the solution to (3.3) has a pole at c = 1. (Linear problems of this sort, for 
which no bounded solution exists have been treated in generality by Agmon, Douglas 
and Nirenberg [26].) As the construction of (2.10) demonstrates the nonlinear equation 
(2.3) generates the additional poles at 1/(2n + 1) and thus our conjecture. 

Singularity structure and the radius of convergence. The next step is to determine 
the location and the nature of the nearest singularity 8iim of each of the q2-series. 

(1) Ratio method of Domb and Sykes [12]. The convergence of the series in 8 is 
limited by the singularity closest to the origin at 8iim We shall suppose the relation [27] 

(3.4a) p(8) = Y00Pn8n = (1-5 /8iim)-Vb(8) + a(6) 

with 

(3.4b) b(5) = lLoobn ( - 51im) n a (6) = I 'an (16 _,im) ng 

where the functions b(8) and a(8) have their respective radii of convergence greater 
than 8iim. Then the ratio rn =Pn/Pn-l has the asymptotic expansion 

(3.5) rn - (1/161im)11 + (v - 1)/n + (IJ - 1)b1,61im/[n(v + n - 2)bo] + O(1/n 3)}. 

To estimate 1/5iim from a finite number of terms of Pn, a natural method is to fit 
polynomials by Lagrangian interpolation in (1/ n) to rn and extrapolating to 1/ n = 0. 
This can be accomplished by constructing a Neville table [13]. The sequence ofjth-order 
extrapolants in the Neville table is given as [13] 

(3.6) L(i) = [nL('-1) - (n -j)L(i/f)]/j 

with 

L(-) = rn, n=1, 2, 3, 

The estimate of 1/8Iim can be read off from the value to which the entries in the Neville 
table are apparently converging. 

To estimate P', the critical exponent, one can form the sequence {In'} 

(3.7) IJn = nrnlim -n + 1 

where 8lim is the best estimate of 8iim from the Neville table. The sequence {I n} can 
then be extrapolated to 1/ n =0 by any sequence transformation to obtain the best 
estimate of iP. 

Examination of the coefficients of the q2-series in Tables 1 and 2 shows that the 
signs are either fixed or alternating. This suggests that the nearest singularities will 
probably be of algebraic type, the usual kind in most solution of physical problems. 
Neville tables are constructed to find the location of nearest singularity for different 
q2 -series. 

(2) Method of Pade' approximants [14]-[20]. The other widely used method for 
identifying singularities of a power series is Pade approximants. For a typical series 
of the form 

(3.8) P(8) = Po+P186 +P262 +. +Pm+n5 + 
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the [m/n] Pade approximants to p(8) is the rational polynomial expression 

(3.9) Rm(8)/Sn(8) =(ro+ rIS+ *. + rm8m)/(1 +s8+ + +Sna ) 

where the coefficients rO, * , rm, Si, ** , sn are uniquely determined so as to make 
the first m + n + 1 terms of the expansion of (3.9) agree with the corresponding terms 
in (3.8) of p(8). A table of Pade approximants [rm/n] can be constructed with varying 
m and n but m + n cannot be greater than the total number of terms in the q2-series. 

Since the Pade approximants will represent all singularities as poles, it therefore 
will be most accurate if the singularity is a pole. As suggested by Baker [16], it is 
advisable to find the Pade approximants to the logarithmic derivative of the function. 
For example, for p(8) as defined by (3.4a) we have 

(3.10) d[log p(8)]/d8 --v/(6-81jm) 

The pole closest to the origin of the Pade approximants is located by the smallest root 
of the denominator polynomial Sn(x). 

To find v, Baker [16] proposed forming the Pade approximants to 

(3.11) (Slim-8)d[log p(5)]/d5 8-v 

for an assumed value of 5ilim and then to obtain an estimate of v by evaluating the 
Pade approximants at 8 = Slim. Pade approximants to the q2ax-series and to the 
logarithmic derivative of the qmax-series are used as alternative methods to locate the 
nearest singularities of the series. In general the converging trends in Pade tables are 
less apparent than those in Neville tables. 

First the radius of convergence is found for each of the qmax-series. When c _ 0, 
the entries in Neville tables show marked converging trends indicating that the nearest 
singularities Slim are algebraic. As an example, the Neville table for c = 0 is shown in 
Table 4. One can confirm from the converging trend of the data that Slim = 0.089616 
(accuracy to sixth decimal place) for c = 0. Values of Slim are read off from the tables 
and then used to find the critical exponent P'. Pade approximants to the series and to 
the logarithmic derivative of the series are also calculated to check the estimates for 
Slim. The agreement between estimates using different methods are very good to 
excellent. Domb-Sykes plots for c = 0.5 and c = 0, Figs. la and lb, are good straight 
lines and are representative of the case c _ 0. 

However for c < 0, both the Neville tables and Pade tables fail to exhibit converging 
trends. As we see in Fig. lc, the Domb-Sykes plot for c = -0.5 shows a nonzero 
curvature. This suggests that the closest singularity for c = -0.5 is not of algebraic type 
or algebraic but not on real axis. Another resort is to apply the e-algorithm to the 
sequence {rn}, where rn is the ratio of consecutive coefficients. This technique was used 
by Van Dyke and Guttmann [5] in their estimation of the radius of convergence of 
the velocity series for compressible flow over a circle. It has been used successfully 
here to find estimates for 8iim Such a method will be successful if the ratios of successive 
coefficients appear as rn - (1/ 5lim)(1 - a/ na). However, the nature of singularity struc- 
ture suggested by such behavior is still not known. 

(i) 0_ c < 1. Table 5 locates the nearest singularity 81im and critical exponent P 
for various values of c in this range. Comparison of this table with Table 3 indicates 
that within numerical tolerance 8iim = 8cr. Thus the series solution (2.11) ceases to 
converge beyond the critical value. Although nothing definite can be said about the 
smoothness of flows for 8 > 1im = Scr, it is perhaps likely that shocks do occur then 
since the singularity is on the positive real axis. 

(ii) c < 0. Table 6 locates the nearest singularity Slim for various values of c less 
than 0. As mentioned above, the nature of the nearest singularity is not of algebraic 
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TABLE 4 
Neville table of the q2 ,,-series for c = 0. Only the first and last few columns are shown. 

l/rn l/Ln~(2) lL(4) lL(6) lL(8) 

0.40000000 
0.17977528 
0.14494130 0.09953170 
0.12917471 0.09121986 
0.12035047 0.09052134 0.09039570 
0.11473263 0.09015929 0.08966996 
0.11084648 0.08995452 0.08959526 0.08957195 
0.10799940 0.08983403 0.08958498 0.08958327 
0.10582421 0.08976123 0.08959356 0.08961123 0.08962352 
0.10410839 0.08971577 0.08960070 0.08961279 0.08961202 
0.10272045 0.08968629 0.08960414 0.08960864 0.08960357 
0.10157467 0.08966649 0.08960581 0.08960803 0.08960825 
0.10061282 0.08965277 0.08960691 0.08960925 0.08961199 
0.09979393 0.08964302 0.08960781 0.08961048 0.08961278 
0.09908836 0.08963594 0.08960860 0.08961131 0.08961274 
0.09847412 0.08963071 0.08960929 0.08961186 0.08961286 
0.09793457 0.08962678 0.08960989 0.08961226 0.08961316 
0.09745688 0.08962380 0.08961041 0.08961260 0.08961348 
0.09703100 0.08962152 0.08961086 0.08961289 0.08961375 
0.09664893 0.08961974 0.08961125 0.08961314 0.08961396 
0.09630424 0.08961836 0.08961159 0.08961337 0.08961413 
0.09599172 0.08961727 0.08961189 0.08961356 0.08961428 
0.09570706 0.08961642 0.08961217 0.08961374 0.08961441 
0.09544670 0.08961574 0.08961241 0.08961389 0.08961453 
0.09520766 0.08961520 0.08961262 0.08961403 0.08961463 
0.09498742 0.08961477 0.08961282 0.08961415 0.08961473 
0.09478384 0.08961443 0.08961300 0.08961426 0.08961481 
0.09459512 0.08961416 0.08961316 0.08961437 0.08961489 
0.09441967 0.08961395 0.08961331 0.08961446 0.08961496 
0.09425616 0.08961379 0.08961345 0.08961454 0.08961502 
0.09410339 0.08961366 0.08961357 0.08961462 0.08961508 
0.09396035 0.08961356 0.08961369 0.08961469 0.08961513 
0.09382614 0.08961349 0.08961379 0.08961476 0.08961518 
0.09369996 0.08961343 0.08961389 0.08961482 0.08961523 
0.09358111 0.08961340 0.08961398 0.08961488 0.08961527 
0.09346898 0.08961337 0.08961407 0.08961493 0.08961531 

1/Ln(27) 1/Ln (29) IlLn(31) IlLn(33) IlLn(35) 

0.08961572 
0.08961575 
0.08961578 0.08961579 
0.08961582 0.08961583 
0108961586 0.08961586 0.08961587 
0.08961588 0.08961589 0.08961589 
0.08961590 0.08961591 0.08961592 0.08961592 
0.08961592 0.08961593 0.08961594 0.08961595 
0.08961594 0.08961595 0.08961596 0.08961597 0.08961597 
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FIG. la. Domb-Sykes plot for c = 0.5. FIG. lb. Domb-Sykes plot for c = 0. 
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FIG. lc. Domb-Sykes plot for c = -0.5. 

type and therefore the critical exponent is not applicable in this range. Comparison 
of Table 6 with Table 3 shows that ilim> 8cr by 1 to 3 percent on average. Hence the 
series solution converges beyond 8 = Sr and smooth flows persist beyond sonic condi- 
tions. 
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TABLE 5 
List of the values of ilim for various q2 .-series (0 _ c < 1). 

c 0 0.3 0.5 0.8 

slim 0.089616 0.019717 0.014041 0.0009118 

v -0.514 -0.508 -0.505 -0.503 

TABLE 6 
List of the values of Slim for various q2 X-series (c < 0). 

c -1.5 -0.5 -0.1 

slim 0.88 0.265 0.1206 

The case c > 1 will be discussed separately later in this section. 
Figure 2 shows the plot of q 2ax against 8 for two different cases. The plot 

exemplifies the divergence of the q2ax-series beyond their respective radii of conver- 
gence. For c > 1 the singularity lies on the negative axis while for c < 1 it is on the 
positive axis. 

2 
qmax 

7 

6 

L/< t10 

4 

3 

2 8 
0 0005 001 0015 002 0025. 

FIG. 2. Plot of q2 ax against 8 for c = 1.5 and c = 0.5. 
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It is instructive to find the maximum local Mach number given by 

(3.12) M qmax/a 

where a2 can be obtained 'from (1.3) as 

(3.13) a = [(y-1)/2][1/8-qmax]. 

Hence 

(3.14) = [2/(y- l)]8qmax/(l - Sqmax), 

which can be easily computed using the qmax-series. Graphs of M2 against 8 for 
different cases are shown in Fig. 3. We observe that the plot diverges well below sonic 
conditions for c = 1.5 and diverges approximately at sonic conditions for 0_ c < 1. 

M2 
30 

25 

20 

V? U') 

15 0 0 

supersonic 

subsonic 

0 5 

0 0 6 
0 0 005 0 01 0 015 0 02 0 025 

FIG. 3. plot of M2 against 8 for c =1.5 and c = 0.5. 

We also plot the isobars of the flow fields for c =1.5 and c = 0 at values of 8 which 
are close to the limits of convergence in Figs. 4a and 4b. The values of the isobars are 
normalised with respect to the minimum pressure at x = v-/2, y = 0. 

The radius of convergence was also found for the q2_ -series evaluated at other 

_~~~~~~2 2 

field~o pont scasxI/ , y . an x. I!, y=.Frc0 e idta h 

estimates~ ~~ IG of 8maeid Pendet of the fgield poin at whc the serie is evalated 

However, for c < 0 and c =0, the nearest singularity of qa series other than qax cannot 
be located as all the above methods fail to give any reasonable sense of convergence. 
Following a method of Hunter and Guerrieri [27] we also tested for conjugate pairs 
of complex algebraic singularities, but these attempts were unsuccessful. 

c > 1, a convergent example. The case c > 1 is of special interest and will be treated 
now in some detail. In Table 7 we give results of the sort given previously. We first 
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FIG. 4a. Plot of isobars for c = 1.5 and a = 0.0175. 

1 6 

1 4 

1 0 

0 8 

y0 

0 6 

0 4~~~~~~ 
04 2 

0 0 
0 02Z 0 4 0 6 0 8 1 1 2 1 4 

FicG. 4b. Plot of isobars for c = 0 and 8 = 0.089. 

note that the singularity, which is of square root type, lies on the negative real axis and 
is therefore unphysical. Also we see that 1jim can be quite small in magnitude. In fact 
convergence of the series (2.10), (2.11) is now restricted to values of 8 well below 8.r, 

i.e., convergence fails before sonic conditions are achieved (see Fig. 3). On the other 
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TABLE 7 
List of the values of 8iim for various q2..-series (c > 1). 

c 1.1 1.3 1.5 1.7 

'8lim -0.000121574 -0.00350274 -0.0177376 -0.0556437 

v -0.500 -0.500 -0.500 -0.500 

hand since the singularity is on the negative real axis we can hope to transform it 
away. We therefore attempt to use the Euler transformation to map Slim to infinity. 
This is accomplished by recasting the series in the new perturbation parameter e = 

8/ (8 - 8jim). The radius of convergence is then extended to some further singularity. 
The nearest singularity of the transformed series was then investigated by Pade 
approximants and the radius of convergence found to be greater than 1. This implies 
that the original series does not have a singularity in the right half plane Re 8 > Slim. 

Therefore we have constructed a flow field which goes smoothly from subsonic into 
supersonic condition without shocks. 

As a verification another useful method for the analytic continuation of the series 
is the use of Pade approximants. This is due to the property that Pade approximants 
is invariant under Euler transformation [15]. In fact, if Rm(X)/Sm(x) is the [m/m] 
Pade approximants to p(x), then Rm(Ay/(1+By))/Sm(Ay/(1+By)) is the [m/m] 
Pade approximants to p(Ay/(1 + By)). Using the information that q2 iS finite for infinite 
8, the Pade approximants are found with numerator and denominator having the same 
degree. 

Values of q2ax and M2 were calculated up to relatively large values of 8 using 
the Euler transformed series and Pade approximants. The agreement of the two methods 
was excellent. Results of these calculations are plotted in Fig. 5 and Fig. 6, respectively. 

Additional comments. We also repeated the series analysis described above using 
the velocity potential instead of q2. The results were the same except in the case c = 0. 
When c = 0, 0 = U sin x at y = 0 and the 4 expansion is reduced to a single term. 

For each of the cases in which the critical exponent could be identified the nature 
of the singularity appears to be close to a square root branch point. Since this implies 
a double valuedness in the neighborhood of Slim a likely course to pursue is inversion 
of the q2ax-series. These inverted series were investigated to find the nature and location 
of the nearest singularity but the Neville tables do not exhibit marked converging 
trends. Also the Pade tables gave estimates of the nearest singularity of the inverted 
series which were close to that of the original series. In this sense the reversion procedure 
provides no further information about the nature of the series. 

In the study by Bollmann [10] of subsonic flow along a sinusoidal wall in the 
transonic approximation he reported that the series expansion of the Umax was a Stieltjes 
series, with the result that the series failed to converge beyond the critical Mach number. 
The point is that exponentially small terms contributed. We therefore applied the test 
for Stieltjes series to our case but found that the basic moment property failed, so 
Bollmann's procedure could not be applied. 
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FIG. 5. Plot of q2 against 6 using Euler transform series and Pade approximants for c = 1.5. 

4 

3- 

2 / 

supersonic 

subsonic 

O 1 , , ,,, I . 6 
0 0.2 0.4 0.6 08 1 

FIG. 6. Plot of M2 against a using Euler transform series and Pade approximants for c - 1.5. 

4. Conclusions. Our calculations offer a solution to the compressible potential 
equation as a regular perturbation series and furnishes another example of extension 
of perturbation series by a computer. The primary conclusion is that the phenomenon 
of shockless transonic flow is dependent on the imposed boundary condition. Van 
Dyke and Guttmann [5] and Bollmann [10] considered different flow configurations 
and have reached apparently contradictory conclusions about the appearance of shocks 
in transonic flow. Here by varying the boundary condition we have shown that there 
is a continuous range of boundary conditions where Slim is higher than 8, by a few 
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percent. This implies the existence of smooth transonic solution. On the other hand 
another range of boundary condition gives 1jim = 5cr suggesting that shocks will com- 
mence at sonic condition. Also we have constructed a flow field that is smooth for all 
Mach numbers. 

For c > 0, the location and nature of singularity do not change with the field point. 
Within this range of c, the problem remains elliptic in its circle of convergence since 
3jim = ,cr For c < 0, the singularity structure does change with the field point and, in 

this case, the flow is mixed elliptic-hyperbolic in its circle of convergence. For the 
bounding case, c = 0, the problem is elliptic in its circle of convergence but the 
singularity structure changes with field point. It is worthwhile to mention Whitley's 
[28] work on the regular perturbation series solution of potential flow past a sinusoidal 
wall of finite amplitude. His problem is elliptic, but the choice of field point does affect 
the behavior of convergence of the power series. 

It is interesting, and perhaps disquieting, to observe that at successive orders only 
the Poisson equation is solved, even though in a number of cases the problem is mixed 
elliptic-hyperbolic. Thus we have constructed continuous solutions beyond sonic 
conditions using only elliptic operators. 
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