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Turbulent Spectrum of the Earth’s Ozone Field
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The total ozone mapping spectrometer database is subjected to an analysis in terms of the Karhunen-

Loeve empirical eigenfunctions.

The concentration variance spectrum is transformed into a wave-

number spectrum, E.(k). In terms of the wave number, E (k) is shown to be O(k~?/3) in the inverse
cascade regime, and O(k~?) in the enstrophy cascade regime with the spectral knee at the wave number
of baroclinic instability. The spectrum is related to known geophysical phenomena and shown to be
consistent with physical dimensional reasoning for the problem. The appropriate Reynolds number for

the phenomena is Re = 10'°.

PACS numbers: 94.10.Fa, 47.27.Jv

Atmospheric mixing is effected at horizontal scales
which are large compared with the scale height (=10 km),
which with inhibition of vertical motion by planetary
rotation and stable stratification contributes to the two-
dimensional picture of atmospheric activity [1,2]. In
addition to its essential role in meteorology, current interest
in mixing is enhanced by its role in regard to the behavior
of the Antarctica ozone hole [3] and to the lack of such an
effect in the Arctic [4].

Our investigation is based on satellite records of the
earth’s ozone fields. We have analyzed fifteen years of
daily ozone fields of the TOMS (total ozone mapping
spectrometer) database [5]. Because of technical and
natural causes, each daily record contains gaps in the form
of missing pixels. A typical snapshot appears in Fig. 1.
The dark regions represent areas of missing pixels caused
partly by technical failure and in part due to polar night
(measurements are based on reflected light). Each record
is stitched together from sixteen separate records obtained
from south-north synchronous orbits that are taken in a
24 h period from the satellite, Nimbus.

Such a large data set recommends a statistical analy-
ses, and we focus on spectral properties of the ozone field.
Although ozone production (equatorial regions) and deple-
tion (polar regions) result from complex chemical reactions
[6], these represent relatively weak sources and sinks, and
we follow common practice and regard ozone as a passive
scalar. The variance spectrum of a scalar contaminant in
turbulent flows has been recently reviewed by Sreenivasan
[7]. Functional estimates for the concentration variance
spectrum (in homogeneous isotropic turbulence) follow
from dimensional arguments based on those first given by
Kolmogorov, leading to the famous Ex(k) = Ke?/3k=/3
energy spectrum for the inertial range [8].

Obukhov and co-workers [9] show that an inertial range
can exist, in particular, the variance per wave number of
concentration, ¢, denoted by E.(k), has the form

E.(k) = Cxe Pk, €))
where C is a dimensionless constant, € is the usual turbu-

lent energy transport rate, and y = («x(Vc)?) is the appro-
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priate dissipation rate. Thus the concentration spectrum
appears tied to the corresponding velocity spectrum. Ex-
perimental observations [7] show departures from the uni-
versal form (1), except at very high Reynolds numbers.
For small diffusional effects, Batchelor [10] has shown
that E. = O(k~!). This holds under a less restrictive

FIG. 1. Typical statellite image of the global atmospheric
ozone field. The grayscale indicates the total ozone in a column
above each location. Missing data is shown as black.
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hypothesis. [11,12]. Except for a recent simulation [12],
confirmation of this result has been elusive. Predictions
of anomalous scalings have also appeared [13].

Arguments leading to the above spectra are unaltered
when applied to two-dimensional turbulence. However,
the interpretation of the cascade of energy represented
by the spectrum Eg (k) requires some additional remarks.
Both energy E and enstrophy Q = [(V A u)?dx are
inviscid invariants in two dimensions. As a result of
this, Kraichnan and Batchelor [14] have shown that the
Kolmogorov spectrum, Eg, represents an inverse cascade
of energy from smaller to larger scales, and that there
also exists a second cascade from small k& to large
k given by the enstrophy Q(k) = Coxok™! (with log
correction) and hence an energy spectrum E(k) « k™3 |
where Cy is a dimensionless constant and yo = v(Vw)?
(also see [15]). Support for E = O(k™?) comes from
many direct simulations [16]. However, recent very
large scale simulations show substantial divergence in the
O(k~5/3) inverse cascade range [17]. Observational data
from the atmosphere are not definitive, and although a
power law energy spectrum is indicated in the enstrophy
range, the exponent appears to lie between —2 and —3
[18]. In particular, Schoeberl and Bacmeister [18] suggest
that the exponent is —2 down to scales in the 10 km range.

A difficulty in interpreting these results for E. now
appears. For k large, it might be supposed in analogy
with three dimensions, that E.(k) = O(k~3); i.e., it should
follow the energy spectrum. On the other hand, the
vorticity (a scalar) formally satisfies the same convection
equation as a passive scalar, and one might suppose that
E. = O(k™!), the Batchelor spectrum. As will be seen
shortly, neither of these hold in the atmosphere.

Other possible scalings for E. have appeared in the litera-
ture. For quasi-two-dimensional turbulence Falkovich and
Medvedev [19] find E = O(k~7/3) for large k. Saffman
[20], in considering the Burgers equation [21], observed
that its solutions are nearly piecewise discontinuous which
leads to E, = O(k~2). Pierrehumbert, using concepts from
chaotic mixing, has obtained a variety of scalings for E.
from both mathematical and physical models [22].

Satellite images (see Fig. 1) are clearly inhomogeneous,
and a transformation to wave-number concepts is re-
quired. As will be seen, the Karhunen-Loéve (KL) proce-
dure [23] is ideally suited for this purpose. In particular,
the snapshot method [24] considerably reduces the needed
computational effort. However, the presence of gappy
data required modification of the methodology [25]. This,
as well as an extensive analysis of the results, appears in
Manin, Everson, and Sirovich [26], and a mathematical
treatment is also given elsewhere [27].

To connect the usual wave-number spectrum with that
obtained from the empirical eigenfunctions, we recall an
argument used in another discussion [28]. The concen-
tration fluctuation of ozone is denoted by c(x,¢). For
purposes of later dimensional reasoning, we write the
dimensions of ¢ as dim[c] = m/I?, where m refers to
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molecules (of ozone) per area since the data are two-
dimensional. The mean variance in the homogeneous
case is given by

2= %f c2dx = f&’c(k)dk =fEC(k)dk. )

Thus dim[£.] = m?I™? and dim[E.] = m?]73. To treat
the inhomogeneous case corresponding to the data, we
consider the correlation

Kc(x,y) = {c(x)c(y)), 3)
which from KL can be written in spectral form

Ko =D Mth()¢a(y), (4)

where {y,} are the eigenfunctions of the operator K..
The total variance is given by

<f c?(x) a’x> = TrK = gz\n. ®))

An eigenvalue A, represents the average variance allo-
cated to the projection of ¢ onto ¢,. The summation (5)
is the natural generalization of (2) to the inhomogeneous
case. Each A, represents the variance in a state, thus
generalizing £.(k), and has the same dimensions,

dim[A] = dim[£] = m?172. 6)

In Fig. 2 we display in doubly logarithmic form A,
versus index n. As is seen, the variance spectrum falls, to
good approximation, on two different power laws

A o {n"'; n <35, a; =0.85=*0.035, D
i n*; n>50, a9= —1.56 = 0.022.

The error bounds appearing in (7) are based only on the
least squares fit to the data, and not on the methods used
in arriving at the spectrum which appears in Fig. 2. The
region of the knee, 35 < n = 50, will be discussed below.

In order to relate n to k, we observe that in the
homogeneous case modes carrying variances larger than
those at k£ can be counted in number, N, as

whence k o« N'/2, (8)

N o« k2,
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FIG. 2. Eigenvalues, A,, from a modified Karhunen-Loeve
decomposition of 15 year global ozone data set.
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Before continuing, it is instructive to verify these
relations. For this purpose we employ the inverse relation
between wave number and length scale. Thus (8) implies
that the length scale, L,, of the nth eigenfunction bears
the following dependence on the index:

L, <n™'/2, ©)

An informal perusal of the eigenfunctions themselves
supports this relationship between characteristic length
and index. To quantify this we have computed the
correlation length of each eigenfunction [26], and the
result is plotted in Fig. 3. It is clear from this figure
that (9) provides an excellent fit to the data in the two
asymptotic regimes. The region of the knee is the only
anomaly, and it appears as a plateau in the figure and
corresponds to just one scale.

27 /k« = L« = 4000 km . (10)

It is generally stated in the geophysical literature
[1,29] that the baroclinic instability gives rise to a
pattern of wave number roughly seven; i.e., the unstable
pattern is made up of approximately seven pairs of
cyclonic/anticyclonic motions. With some indulgence on
the part of the viewer, eigenfunction 44 shown in Fig. 4
appears to have this property. Roughly speaking, each
of the eigenfunctions in the range 35 = n = 50 shows
this spatial arrangement. To explain the plateau in Fig. 3
we suggest an analogy with the von Karman vortex trail.
In that case a period seven disturbance requires fourteen
independent modes for its description [30]. In view of the
nature of the results and the similarity in the number of
modes, this would appear to be a reasonable explanation.

The energetics of the atmosphere has its origin in solar
heating. However, dynamical activity introduces L. as the
length scale at which mechanical energy is supplied, and
is thus the significant length scale of the problem. If € is
the energy transport rate which characterizes the inverse
energy cascade, then

Xo = kie an

characterizes the enstrophy cascade to higher wave num-
bers. Using estimates for the physical parameters of the

5000

2000

1000

[ n

500 " MRS | " PSS | .
1 2 5 170 20 50 100 200 500
FIG. 3. Correlation length of empirical eigenfunctions plotted

against mode number.

FIG. 4. Empirical eigenfunction, 4, displaying the wave
number 7, characteristic of the baroclinic instability.

atmosphere and L. from (10), we obtain the Reynolds
number, R =~ 10'°. Henceforth, we will regard scales
smaller than L. as being in the enstrophy range.

We now return to the implications of the power laws
for A, (7) to the wave-number spectrum. In keeping with
customary practice, we consider the variance per wave
number E.(k) = k&.(k). It follows from (7) and (8) that

—2/3

L
Specific exponents are entered only for suggestive rea-
sons, and the reader is reminded of the range in Eq. (7).
Actually, the second exponent lies slightly outside
the error bound. (However, it should be noted that
Kraichnan [14] actually estimated the enstrophy falloff
as 1/k3In'/?k; see also [15].) With the exception of the
Saffman-Burgers spectrum [20], theoretical predictions
outside the above range are in conflict with (12).

In view of (12), we observe that elementary dimen-
sional analysis yields

E.(k) = xe PkP f(k/ke) . (13)
Equation (12) implies

cilk/ka) 723,

Flk/ks) ~ { Sy k/k. <1,

k/ke > 1, a4
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where ¢; and ¢ are dimensionless constants. Hence
cix€ \VPkIkT3, k/ke < 1,
coxo Pxkak™2 k/ke > 1,

where the first form is appropriate for the inverse energy
cascade and the second form is in a form appropriate
for the enstrophy cascade. It should be noted that k.
(or L.) does not disappear under either asymptotic limit.
In fact, as the functional form (13) implies, it would be
impossible to eliminate this parameter entirely in both
limits, in contrast with the Kolmogorov law, (1), in which
the integral scale does disappear.

The spectra obtained above covers a wide range. The
range k/k. <1 extends to the 10000 km wavelength
limit imposed by dynamics [1,31], and the k/k. > 1
extends down to wavelengths of the order of 100 km,
the resolution of the data. Lilly, and Smith and Yakhot
[32] have recently suggested that an inverse cascade for
E(k) exists for a range of wavelengths greater than 10 km
(support for this assertion is found in Nastrom, Gage, and
Jasperson, [18], but see Schoeberl and Bacmeister [18]).
This is based on the assertion that cumulus cloud activity
acts as an energy source. We see no evidence for this, but
do not regard this as a contradiction since the resolution
of the satellite data is greater than 100 km.

It is of course vexing that much of the theory and
numerical experiments (also [33]) discussed earlier do
not agree with the observed satellite analysis which
we present above. Only the Saffman-Burgers spectrum
shows agreement. To test this further we have looked at
the “discontinuity” patterns of the data and find that |Vc|?
shows filamentous one-dimensional patterns [26]. A pos-
sible explanation for such strandlike patterns has been dis-
cussed recently. Both satellite observations and computer
simulations show the presence of tongues of stratospheric
air extending from the tropics to midlatitudes. These re-
sult from the breaking of Rossby waves at the edge of the
polar vortices [34].
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FIG. 1. Typical statellite image of the global atmospheric
ozone field. The grayscale indicates the total ozone in a column
above each location. Missing data is shown as black.



FIG. 4. Empirical eigenfunction, ., displaying the wave
number 7, characteristic of the baroclinic instability.



