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We consider a problem of blind signal extraction
from noisy multivariate data, in which each datum
represents a system’s response, observed under a par-
ticular experimental condition. Our prototype exam-
ple is multipixel functional images of brain activity in
response to a set of prescribed experimental stimuli.
We present a novel multivariate analysis technique,
which identifies the different activity patterns (sig-
nals) that are attributable to specific experimental
conditions, without a priori knowledge about the sig-
nal or the noise characteristics. The extracted signals,
which we term the generalized indicator functions,

re optimal in the sense that they maximize a
eighted difference between the signal variance and

he noise variance. With an appropriate choice of the
eighting parameter, the method returns a set of im-
ges whose signal-to-noise ratios satisfy some user-
efined level of significance. We demonstrate the per-
ormance of our method in optical intrinsic signal
maging of cat cortical area 17. We find that the

ethod performs effectively and robustly in all tested
ata, which include both real experimental data and
umerically simulated data. The method of general-

zed indicator functions is related to canonical variate
nalysis, a multivariate analysis technique that di-
ectly solves for the maxima of the signal-to-noise ra-
io, but important theoretical and practical differ-
nces exist, which can make our method more
ppropriate in certain situations. © 2001 Academic Press

Key Words: image analysis; functional imaging; opti-
al imaging; multivariate analysis; signal analysis.

INTRODUCTION

In many scientific experiments, the primary objec-
tive is to investigate the “cause and effect” relationship
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between the input and the output of a system. For
example, in functional imaging of mammalian visual
cortices, one observes the spatial patterns of brain
response elicited by different experimental visual stim-
ulations. Optical imaging (for a review, see Grinvald,
1992; Sirovich and Kaplan, 2001) is one such technique
that measures the intrinsic optical signals from the
cortex. These signals represent the activity-dependent
changes in light absorption and scattering of the un-
derlying tissue (Malonek and Grinvald, 1996; Malonek
et al., 1996; Frostig et al., 1990; Arieli et al., 1995).

ptical imaging has contributed critical insights to
ow different submodalities of visual information are
epresented in V1 and V2 (primary and secondary vi-
ual areas), such as ocular dominance and orientation
Blasdel and Salma, 1986; Blasdel, 1992; Bonhoeffer
nd Grinvald, 1991), direction of motion (Weliky, 1996;
hmuel and Grinvald, 1996), and spatial frequency

Everson et al., 1998; Issa et al., 2000).
In optical imaging experiments, experimenters are

ypically interested in the different spatial patterns of
rain activity under different functional states, which
an be artificially created by controlling the experimen-
al conditions. In the case of the visual cortex, the
xperimental conditions are often represented by dif-
erent parameters of visual stimuli, such as orientation
nd spatial and temporal frequency. In our discus-
ions, however, the conditions could be defined to be
ny kind of variable, continuous or categorical, includ-
ng thermal or metabolic challenges to the brain tissue,
arious pharmacological treatments, or different dis-
ase states. In general, the images acquired under a
ingle experimental condition can exhibit considerable
rame-to-frame variations, despite the uniformly main-
ained experimental parameters. When the sources of
hese variations are not known or cannot be controlled,
ne might treat the observed image as a random vari-
ble, having some probability distribution. Often, it is
ssumed that the nonspecific response that is uncorre-
ated with the condition is the noise. In such cases, the
ondition-specific response is taken to be the difference
1053-8119/01 $35.00
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1310 YOKOO, KNIGHT, AND SIROVICH
between the means of the two distributions, one from
condition “A” and the other from condition “B”.

By far the most popular estimator of the true mean is
the “sample average,” computed from repeated sampling
of the probability distribution. The Law of Large Num-
bers then states that, in the limit of indefinitely many
samples, the sample average approaches the true mean
of the distribution. In actual experiments, however, the
number of samples is limited, and the sample average is
only an estimate, whose standard error is approximately
proportional to s/=N, where s is the standard deviation
of the response and N is the number of samples. This
relation suggests that the error of the sample average can
be made arbitrarily small by choosing an appropriate N.

owever, the required number of samples may be unre-
listically large if the measurements come from a proba-
ility distribution with a large variance. Indeed in a typ-
cal optical imaging experiment, the condition-specific
hanges in activity can be significantly smaller than the
ackground activity of the cortex, which fluctuates due to
ts intrinsic physiological processes, such as respiration,
irculation, and autonomous neuronal activities (Arieli et
l., 1996). Since the signals must be reliably extracted
rom data containing exceedingly large background
oise, analysis of optical imaging data presents a chal-

enging problem.
A number of data analysis techniques have been de-

ised to improve the signal recovery beyond that of the
difference image” (Orbach and Cohen, 1983), a pixel-by-
ixel difference between two sample average images.
hese improved techniques include principal component
nalysis-based methods (Sirovich and Everson, 1992;
irovich et al., 1996), indicator function (Everson et al.,
998), truncated difference (Gabbay et al., 2000), inde-
endent component analysis (Bell and Sejnowski, 1995;
yvarinen and Oja, 1996), and extended spatial decorre-

ation (Stetter et al., 2000; Schiessl et al., 2000). Here we
present a new procedure, the method of generalized indi-
cator functions, which extracts an orthogonal set of func-
tions (images) that indicate the presence of condition-
specific signals. In the next section, we will derive the
method as a optimization problem of a statistic, a
weighted signal–noise difference between the estimated
ignal variance and the noise variance. The method is
elated to the canonical discriminant function (Boch,
975), which optimizes the signal-to-noise ratio, defined
s a quotient of the signal variance and the noise vari-
nce. Although the techniques are related, there are im-
ortant theoretical and practical differences, which will
e illustrated and discussed in detail in later sections.

GENERALIZED INDICATOR FUNCTIONS

Motivation

The generalized indicator functions can be motivated
uite generally for any multivariate data, but in the
interest of concreteness, we will derive the method in
the context of image analysis. Consider an optical im-
aging experiment, in which a charge-coupled device
camera captures digital images of the cortex as it re-
sponds to different visual stimuli (for a review see
Grinvald, 1992). Each image is a two-dimensional ar-
ray of P pixels, whose pixel values are proportional to
the number of photons arriving at those pixel locations
on the camera’s photodetector. Let fm(t, x) represent
the pixel gray-level value at the cortical position x 5 (x,
y), in the tth frame under experimental condition m,
where t 5 1, . . . , T, and m 5 1, . . . , M, and T is the
same for each m. For fixed t and m, and the full range
of x, fm(t, x) is a single image, and it can be regarded as
a vector whose components are indexed by x. In our
discussion we often regard the pixel index x as implicit
and refer to the image as fm(t).

We define f#m, the average image for the mth condi-
ion, and f#, the average image over all conditions, as

f#m 5
1

T O
t51

T

fm~t! (1)

and

f# 5
1

M O
m51

M

f#m. (2)

Then, f#m 2 f# is an estimate of the mean image under
condition m, measured from a reference image, which
we choose to be f#. Similarly, fm(t) 2 f#m is the variation
of the individual images not explained by f#m.

We now seek an as yet unknown image, f(x), with
which we hope to estimate the map of the condition-
specific response, the signal map. Since we have no a
priori knowledge of the spatial or temporal character-
istics of such a signal, the only objective criterion for
signal identification is the presence of a strong corre-
lation between the signal and the experimental condi-
tions. We will exploit this relationship and require the
“strength” of the signal image to vary as a function of
the experimental condition. Such an image, f(x),
which we term the generalized indicator function, in-
dicates the presence of a signal within the dataset. We
formalize this argument by introducing the response
amplitude function rm(t) of the response map f(x).

With the inner product between two vectors defined
as the standard Euclidean dot product, consider the
projections onto f(x)

rm~t! 5 ~fm~t!, f!x, (3)

where the subscript x indicates that the inner products
are formed by the sum over the pixels. The inner prod-
uct r (t) is a functional of f and represents the degree
m
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1311OPTIMIZATION OF SIGNAL EXTRACTION
to which f(x) is present in fm(t, x). Hence, for any fixed
image f(x), rm(t) represents the amplitude of f(x)
within the tth data image under the mth experimental
condition, where T frames are taken from each of M
conditions. If we define

c 5 ~f#, f!x,

dm 5 ~f#m 2 f#, f!x, (4)

em~t! 5 ~fm~t! 2 f#m, f!x,

the response amplitude function can be decomposed
into three parts:

rm~t! 5 c 1 dm 1 em~t!. (5)

We may reasonably refer to c as the background
amplitude, dm as the signal amplitude, and em(t) as the

oise amplitude. The desired f(x) is then a function
which has maximal variations in dm between experi-
mental conditions m 5 1, . . . , M, while having mini-

al residual variations in em(t) for any fixed condi-
tion m.

The Generalized Indicator Function Problem

We proceed to construct a quantitative criterion for
dentification for the desired signal maps. The sample
ariance of the signal amplitude can be measured by
he mean sum of squares between conditions,

S~f! 5
1

M 2 1 O
m

$dm% 2

5
1

M 2 1 O
m

$~f#m 2 f#, f!x%2,

(6)

nd it can be identified as the average signal power per
mage. If we define the signal operator as

KS~x, y! 5
1

M 2 1 O
m

~f#m~x! 2 f#~x!!~f#m~y! 2 f#~y!!, (7)

then

S~f! 5 ~f, KSf!x. (8)

imilarly, the sample variance of the noise amplitude
an be measured by the mean sum of squares within
onditions,
N~f! 5
1

M~T 2 1!
O
m,t

$em~t!% 2

5
1

M~T 2 1!
O
m,t

$~fm 2 f#m, f!x%2,

(9)

and it is identified as the average noise power per
image. If we define the noise operator as

N~x, y! 5
1

M~T 2 1!
O
m,t

~fm~t, x! 2 f#m~x!!

3 ~fm~t, y! 2 f#m~y!!,

(10)

then

N~f! 5 ~f, KNf!x. (11)

Note that both KS and KN are real, symmetric, and
positive semidefinite operators. Thus their eigenvalues
are real and nonnegative, and each has a set of eigen-
vectors which are real, orthogonal, and complete.

In order to quantify the success of f(x), we define a
performance measure, which we call the signal–noise
difference,

S~f! 2 aN~f!, (12)

where the scalar weighting parameter a is yet to be
specified. It is necessary to apply a constraint on the
length of f(x), which we take to be

ifi x
2 5 ~f, f!x 5 1. (13)

It follows that the criterion function C(f) for this con-
strained maximization problem is

C~f! 5 S~f! 2 aN~f! 2 gifi x
2, (14)

or

C~f! 5 ~f, $KS 2 aKN 2 g%f!x, (15)

where g is a Lagrange multiplier.
In order to find the extremum of C(f), we denote the

desired extremum by fo and consider admissible vari-
ations,

f~x; e! 5 fo~x! 1 eD~x!, (16)

or an arbitrary D(x). The stationarity condition then
states:
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1312 YOKOO, KNIGHT, AND SIROVICH
dC~e!

de
U

e50
5 0. (17)

We apply this to Eq. (15) and obtain the eigenvalue
problem,

~KS 2 aKN!f 5 gf. (18)

Since both KS and KN are real symmetric P 3 P oper-
tors, where P is the number of pixels per image, the

operator in Eq. (18) is also a symmetric P 3 P operator,
regardless of the choice of a. Therefore, this eigenvalue
problem yields a total of P eigenpairs, {gk, fk}, k 5
, . . . , P, and the eigenvectors can be taken to be a
omplete orthonormal set with real eigenvalues.

Interpreting the Solutions

Solutions to the generalized indicator function prob-
em Eq. (18) are the extrema of the signal–noise differ-
nce, S(f) 2 aN(f), under the unit-length constraint,
nd further analysis is necessary to identify the subset
f the solutions that correspond to the maxima. In this
ection, we present a physical interpretation of the
igenvalue problem and the role of the weighting con-
tant a as a quality-control parameter for obtaining the
olutions of desirable quality.
Recall that our strategy for signal identification is

hrough the behavior of the signal in different experi-
ental conditions. If a signal image is found, its be-
avior is characterized by the condition-correlated
hanges in its amplitude. We have seen that, for a fixed
mage f(x), its response amplitude function can be

regarded as a combination of the background, signal,
and noise components,

rm~t! 5 c 1 dm 1 em~t!. (19)

Since the signal variance, S(f), and the noise variance,
N(f), can be identified with the power of the signal
amplitude and the power of the noise amplitude, re-
spectively, the quotient

Q~f! 5
S~f!

N~f!
5

~f, KSf!x

~f, KNf!x
(20)

an be regarded as a measure of signal-to-noise ratio of
he image f(x).

In order to provide a convincing argument that the
kth eigenvector, fk(x), represents a reliable map of the
condition-specific response, its amplitude function
must have a sufficiently large signal-to-noise ratio. We
devise a systematic approach to test a candidate image
by setting a critical Q level, qc, above which we accept
it as the signal of interest. Thus, q represents the
c
minimum acceptable signal-to-noise ratio. Throughout
this paper, we use the minimum acceptable signal-to-
noise of qc 5 4, that is, we consider an image to be a
signal if its mean amplitude changes by at least two
standard deviations of the noise.

Now observe, from Eqs. (7) and (10), that solutions
for the generalized indicator problem satisfy the prop-
erty

~fk, $KS 2 aKN%fk!x 5 gkifki x
2 (21)

and because of the constraint, ifkix
2 5 1, we have,

S~fk! 2 aN~fk! 5 gk. (22)

By rearranging the above equation, and using the non-
negativity of N(f), we have an inequality for all posi-
tive gk,

Q~fk! 5
S~fk!

N~fk!
5 a 1

gk

N~fk!
. a; for all gk . 0. (23)

This relation suggests that, if a is chosen to be a 5 qc,
ach eigenvector fk associated with a positive eigen-

value is guaranteed to have desirable Q level. More-
over, it can be shown that all linear combinations of
such eigenvectors satisfy the minimum signal-to-noise
requirement, and thus the orthonormal basis set {fk;
gk . 0} forms a vector subspace of Q . qc. The weight-
ing constant a (5qc) thus functions as a quality control
parameter for the generalized indicator problem. Be-
cause of this feature, the maximization of S(f) 2 aN(f)
an be viewed as a procedure that seeks out images
ith the maximal signal power, S(f), within a sub-

space whose members have sufficiently large signal-to-
noise ratios.

It is also worth noting that the signal-to-noise ratio
Q(f), Eq. (20), is defined as a ratio of variances, and it
is related to Fisher’s F in statistics,

F~f! 5 TQ~f! 5
TS~f!

N~f!
, (24)

here T is the number of frames per condition. Follow-
ng the conventional statistical approach for signifi-
ance tests, one may suppose a null hypothesis that the
mplitude of f(x) is normally distributed and that its

mean amplitude does not change due to different con-
ditions, i.e., there is no signal. Under the null hypoth-
esis, the F statistic is a random variable having an F
distribution with M 2 1 and M(T 2 1) degrees of
reedom. This reference distribution provides a means
o quantify the level of confidence with which we can
onclude that a signal truly exists within the data. For
ur chosen minimum signal-to-noise requirement (q 5
c
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1313OPTIMIZATION OF SIGNAL EXTRACTION
4), the F values of the images in Span{fk; gk . 0}
correspond to confidence levels of virtually 100%.

Computation of the Eigenvectors

The generalized indicator functions can be obtained
by solving the eigenvalue equation (18). In actual sit-
uations, however, the number of pixels, P, can be as
large as O(105), which makes the direct pixel-to-pixel
solution of the P 3 P problem impractical. Fortunately,
a simple observation, which has led to the snapshot
method (Sirovich, 1987; Sirovich and Everson, 1992),
shows that a smaller yet still exact calculation is pos-
sible.

In particular, we note that the operator in Eq. (18) is
the weighted sum of two operators, defined by Eqs. (7)
and (10). Hence, the action of these operators on f(x)
always results in some linear superposition of the ele-
ments of {f#m 2 f# } and { fm(t) 2 f#m}. Any member of {f#m 2
f# } or { fm(t) 2 f#m} must be expandable as a linear com-
bination of the mean-corrected images, { fm(t, x) 2 f# },
ince

f#m 2 f# 5
1

T O
t

~fm~t! 2 f# ! (25)

and

fm~t! 2 f#m 5 ~fm~t! 2 f# ! 2 ~f#m 2 f# !. (26)

This implies that f(x) is necessarily an admixture of
the mean-corrected images of the data, { fm(t, x) 2 f# }.
Since there are MT frames (snapshots) in the dataset,
f(x) can be represented as a linear combination of no
more than MT such images. The direct application of
this observation, although correct and practical, does
not offer the most felicitous framework. Instead, we
consider a more refined formulation based on principal
component analysis (PCA), which also illuminates the
underlying mathematical structure.

To this end, we follow Sirovich and Everson (1992)
and seek to write every mean-corrected image, fm(t,
x) 2 f#, in the form

fm~t, x! 2 f# 5 O
r51

MT

a m
r ~t!srcr~x! (27)

such that

~a m
i ~t!, a m

j ~t!!m,t 5 di,j,

~ci, cj!x 5 di,j.
(28)

The above series expansion is analogous to a procedure
known as singular value decomposition (SVD) in ma-
trix algebra, and in our discussions PCA and SVD may
be considered equivalent.

Now, if the above biorthogonality requirements are
applied to Eq. (27),

~a m
r ~t!, fm~t, x! 2 f#~x!!m,t 5 srcr~x! (29)

nd

~cr, fm~t, x! 2 f#~x!!x 5 sra m
r ~t! (30)

must hold. If we now use our data to define the two
operators,

K~x, y! 5
1

MT O
m,t

~fm~t, x! 2 f#~x!!

3 ~fm~t, y! 2 f#~y!!,

(31)

C~m, t, n, s! 5
1

MT O
x

~fm~t, x! 2 f#~x!!

3 ~fn~s, y! 2 f#~y!!,

(32)

then back substitution of Eq. (29) into (30), and similarly
of Eq. (30) into (29), leads to the two eigenvalue problems,

O
y

K~x, y!cr~y! 5 lrcr~x!, (33)

O
n,s

C~m, t, n, s!a n
r ~s! 5 lra m

r ~t!, (34)

here the eigenvalue lr 5 sr
2.

Because the operators K and C are both symmetric,
he corresponding eigenvectors are orthogonal and
omplete in their respective spaces. The expansion of
he form (27) is now implemented. The method of snap-
hots takes advantage of the fact that Eq. (34) is a
uch smaller problem than (33) when P @ MT. After

Eq. (34) is solved, the spatial eigenvectors {cr(x)} can
be constructed from Eq. (29).

Once given a decomposition of the form (27), we
can rewrite fm(t) 2 f#m and f#m 2 f# as

fm~t! 2 f#m 5 O
r51

MT

$a m
r ~t! 2 ^a m

r ~t!&t%srcr

5 O
r51

MT

$a m
r ~t! 2 a# m

r %srcr

(35)

and

f#m 2 f# 5 O
r51

MT

^a m
r ~t!&tsrcr 5 O

r51

MT

a# m
r srcr. (36)
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The earlier remark that f(x) is a linear superposition
of { fm(t, x) 2 f# } can be taken one step further, and we
may write f(x) as a linear combination in terms of
Eq. (27),

f~x! 5 O
r51

MT

brcr~x!, (37)

where br is the yet unknown coefficient on the rth
spatial eigenvector.

If we now substitute Eqs. (35), (36), and (37) into the
generalized indicator function problem (18), and use
the orthonormal property of the cr’s, we obtain an
equivalent MT 3 MT eigenvalue problem for the gen-
eralized indicator functions,

D~CS 2 aCN!Db 5 gb, (38)

here

b 5 @b1, b2, . . . , bMT# †, (39)

CS~i, j! 5
1

MT O
m,t

~a# m
i !~a# m

j !, (40)

CN~i, j! 5
1

MT O
m,t

~a m
i ~t! 2 a# m

i !~a m
j ~t! 2 a# m

j !, (41)

D 5 Fs1 0
· · ·0 sMT

G . (42)

The † symbol denotes the transpose of a vector or a
atrix. The operator of Eq. (38) is again real and

ymmetric, so the eigenvectors are guaranteed to be
rthogonal and complete, with real eigenvalues. When
he snapshot-space dimension, MT, is smaller than the

pixel-space dimension, P, this alternative formulation
is the computationally smaller problem to solve. Once
the solutions for Eq. (38) are obtained, we can easily
determine f(x) from Eq. (37).

OTHER ANALYSIS METHODS

The Introduction mentions several analysis methods
for signal identification in highly variable data. In or-
der to establish a frame of reference for the generalized
indicator method, we discuss two alternatives here.
First is the differential imaging procedure, which is the
most common analysis method for optical imaging
data. Another analysis technique, called canonical
variate analysis, also deserves attention, because of its
kinship to the method of generalized indicator func-
tions. It has its origin in multigroup classification and
statistical decision theory, but can also be applied to
signal extraction problems in a natural way as demon-
strated by Friston et al. (1995).

Differential Imaging

In differential imaging, the sample average of the
nth condition is subtracted from the sample average of
the mth condition to produce a difference image Dm,n(x):

Dm,n~x! 5 f#m~x! 2 f#n~x! 5
1

T O
t51

T

fm~t, x! 2
1

T O
t51

T

fn~t, x!.

(43)

In the limit indefinitely large and unbiased samples
(T 3 `), each sample mean approaches its true mean,
and then Dm,n(x) represents the true signal difference
between conditions m and n. When the condition n is
taken to be some “control” condition, f#n(x) estimates
the condition-independent activity, and its subtraction
from f#m(x) is essentially an attempt to remove the
background. The resulting difference image estimates
the characteristic activity map under the condition m.
However, with a limited number of samples T, the
standard error of this estimate at pixel location x is
approximately sx/=T, where sx is the standard devia-
tion of the pixel value at position x. Hence, the errors of
the sample averages may significantly corrupt the dif-
ferential image, in the event of a large variance in the
response probability distribution.

Canonical Variate Analysis

Under Generalized Indicator Functions we moti-
vated our analysis method as a maximization problem
of the signal–noise difference and then argued that the
desired solutions are the ones whose signal-to-noise
ratios exceed some threshold constant qc. Instead, one
may opt to look for a function x(x) that directly maxi-
mizes the ratio

Q~x! 5
S~x!

N~x!
5

~x, KSx!x

~x, KNx!x
. (44)

The maximization of a quotient of two quadratic forms,
called a Rayleigh quotient, is a classical problem (Bell-
man, 1960), and this particular form of the Rayleigh
quotient has been treated extensively in multivariate
statistics under several aliases, such as canonical vari-
ate analysis, canonical discriminant analysis, and mul-
tiple discriminant analysis. The maximization of the
ratio (44) can be shown to be equivalent to a general-
ized eigenvalue problem (Boch, 1975),

K x 5 l K x . (45)
S k k N k
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The eigenvector xk is known as the kth canonical vari-
ate and satisfies the following property,

lk 5
~xk, KSxk!x

~xk, KNxk!x
. (46)

Thus, when ordered in descending magnitude, the eig-
envalue lk is the kth largest local maximum of the
signal-to-noise ratio, associated with the canonical
variate xk. Thus, canonical variate analysis seeks the
images {xk(x)} such that the power of the signal,
(xk, KSxk)x, is maximized relative to the power of the
noise, (xk, KNxk)x. We also note that the maxima of Q
also correspond to the maxima of the F ratio, as these
quantities are proportional to one another. For this
reason, the canonical variate analysis is often pre-
sented in the literature as a maximization problem of
the F ratio.

In practice, we choose to solve a different form of the
same problem, instead of solving Eq. (45) directly. This
alternative formulation, which we derive in part A of
the Appendix, transforms Eq. (45) into a standard eig-
envalue problem, for which computationally efficient
algorithms exist.

NUMERICAL SIMULATIONS

Numerically simulated data will be used to illustrate
the method of generalized indicator functions and to
compare its performance with differential imaging and

FIG. 1. Construction of the simulated dataset. (Left) A set of no
cortex. (Middle) The artificial signal is modeled as a checkerboar
determined by rm(t). (Right) The simulated dataset is generated by
typically chosen to be O(1023) 2 O(1024) for all m and t, the checker
canonical variate analysis. Artificial data will be con-
structed from a known signal and well-characterized
background noise. Each technique will attempt to re-
cover the signal from the noisy data, and their solu-
tions will be quantitatively evaluated, as the true sig-
nal is known.

An overview of the data construction is shown in Fig.
1. We construct the data, a collection of 96 3 128 pixel
mages, by adding an artificial spatial pattern p(x) to a

set of 660 unstimulated, or “blank,” images of cat pri-
mary visual cortex, bm(t, x). These images were ac-
quired while the anesthetized cat was viewing a blank,
uniformly illuminated screen, thus assumed to contain
no stimulus-evoked signals. We design the artificial
response map as a “checkerboard” pattern p(x), ip(x)ix

2

5 1. In order to simulate the correlated changes in the
response amplitude due to stimuli, an artificial ampli-
tude function rm(t) is introduced, so that the response
ignal is modeled as

sm~t, x! 5 rm~t!p~x!. (47)

We do not specify the amplitude function rm(t) now, but
once we choose a specific rm(t), the synthetic data fm(t,
x) can be constructed by adding the model signal to the
blank images,

fm~t, x! 5 bm~t, x! 1 sm~t, x!, (48)

where the images in bm(t, x) are normalized; ibm(t)ix
2 5

1. The amplitude function r (t) thus determines the

alized “blank” images, bm(t, x); ib(t, x)ix
2 5 1, of cat primary visual

attern p(x), ip(x)ix
2 5 1, whose amplitude in each data image is

ding the artificial signal to the blank set of images. Since rm(t) is
rd pattern p(x) cannot be visually detected in the data images.
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1316 YOKOO, KNIGHT, AND SIROVICH
amount of p(x) added to each of the blank images. In all
simulations that follow, the signal will be added at
O(1023) 2 O(1024) of the background strength, so the
pattern p(x) cannot be perceived by the naked eye.

For the purpose of simulation, we “prepare” the
background, so that it is orthogonal to the signal,

~bm~t!, p!x 5 0, (49)

hence, p(x) is projected out of the blank set. It therefore
follows that

~fm~t!, p!x 5 rm~t!. (50)

The purpose of this step will become clear in the next
two sections, when we consider situations in which the
background is not orthogonal to the signal.

We consider a two-group experiment in which M 5 2
and T 5 330. The first 330 frames of fm(t, x) are as-
signed to condition group m 5 1 and the remaining 330
to group m 5 2. The condition-specific responses are
then given by r1(t)p(x) and r2(t)p(x), respectively.

Now, the goal of our analysis is to recover an esti-
mated signal f(x) from the dataset, fm(t, x), in the
absence of any information about p(x) or rm(t). If the
recovery were perfect, we would have f 5 p, and thus
the amplitude rm(t) of the recovered signal should
equal the modeled amplitude rm(t),

rm~t! 5 ~fm~t!, f!x 5 ~fm~t!, p!x 5 rm~t!. (51)

We can quantify the success of signal recovery by f(x)
since the true signal p(x) is known. Since f and p are unit
vectors, we have cos u 5 (f, p)x, where u is the angle
between f and p vectors. Then the efficiency defined as

E 5 ~f, p! x
2 (52)

gives unity when f(x) 5 p(x) and zero when f(x) '
p(x). We also examine the signal-to-noise ratio of the
recovered signal, Q(f), in comparison with the model
signal’s signal-to-noise ratio Q(p).

A Nonstochastic Signal

We first model the response signal whose amplitude
changes only as a function of the condition index m
with no frame-to-frame variation in t. Let the artificial
amplitude function be

rm~t! 5 H25 3 1024 if m 5 1
15 3 1024 if m 5 2 (53)

s shown in Fig. 2A. The weights 65 3 1024 are
hosen so that signal is added to the blank images at

signal-to-background ratio of 5:10,000, a typical
strength of the intrinsic signals in optical imaging.
Since rm(t) has zero variability in t, so does rm(t) by
Eq. (50), and the signal-to-noise ratio of p(x) becomes
unbounded.

We first examine the result from the differential
imaging procedure (Fig. 2B). A difference image D(x) is
computed as D1,2(x) using Eq. (43), and its response
amplitude is given by rm(t; D) 5 ( fm(t), D)x. Although
D(x) shows a definite resemblance to the true signal
(E 5 0.408), it is corrupted by a significant amount of
noise from vascular pulsations, vasomotor effects, and
other less obvious sources. Since D(x) carries the ex-
pected signal within it, one might be misled to believe
that D(x) is a good representation of a real difference
between conditions m 5 1 and m 5 2. However, from a
signal-vs-noise point of view, such a statement neglects
the fact that the response amplitude rm(t; D) shows
xtensive within-condition variability. The small sig-
al-to-noise ratio, Q(D) 5 0.0508, suggests that the

FIG. 2. A two-condition simulated experiment with a nonsto-
chastic signal. (A) The model signal pattern and its amplitude used
in the simulation. The estimated signal and its amplitude extracted
by (B) differential imaging, (C) canonical variate analysis, and (D)
the method of generalized indicator functions are shown.
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1317OPTIMIZATION OF SIGNAL EXTRACTION
underlying signal is obliterated by the presence of ex-
cessive noise.

The canonical variate analysis guarantees the opti-
mal signal-to-noise ratio. The solution x(x) and its am-
plitude rm(t; x) 5 ( fm(t), x)x are displayed in Fig. 2C,
which shows highly successful signal recovery with
E 5 0.958 and a faithful reproduction of rm(t). The
calculated signal-to-noise ratio of x is greater than the
machine-infinity (eps21) and we denote it Q(x) 5 `.
This extreme signal-to-noise ratio is in agreement with
the completely noise-free nature of the modeled re-
sponse amplitude function, rm(t). Why and how the
canonical analysis can achieve an unbounded signal-
to-noise ratio is explained in part B of the Appendix.

The generalized indicator f(x) (Fig. 2D) is computed
with qc 5 4, which sets the minimum acceptable signal-
to-noise ratio. The quality of the solution, f(x), is com-
parable to that of the canonical variate, as it recovers
E 5 0.952 of the original signal. The response ampli-
tude rm(t; f) 5 ( fm(t), f)x offers a highly significant
signal-to-noise ratio, Q(f) 5 372.28, although it does
not achieve the greatest possible signal-to-noise ratio,
as demonstrated by the canonical variate. The ampli-
tude of rm(t; f) is distributed tightly around 65 3 1024

and gives a good approximation of the modeled re-
sponse amplitude, rm(t).

A Stochastic Signal

Next, we consider data in which the signal of interest
not only changes in amplitude as a function of the
condition index m, but also fluctuates randomly in the
rame number t. Let rm(t) be

rm~t! 5 H25 3 1024 z IIDN~1, s2! if m 5 1
15 3 1024 z IIDN~1, s2! if m 5 2, (54)

where IIDN(1, s2) denotes an independently, identi-
cally, and normally distributed random variable with
mean of 1, and here we let the noise variance be s2 5
1/4 (Fig. 3A). Therefore, r1(t) and r2(t) are samples from
normal distributions centered around 65 3 1024. Us-
ng the definition (20) and a little arithmetic, the ex-
ectation of Q(p) can be shown to be 8. Since we use

qc 5 4 in these simulations, this artificial signal, de-
pite the presence of noise, is considered significant.
his addition of the stochastic component is our at-
empt to model two equivalent situations: (i) the signal
tself is intrinsically noisy or (ii) the signal itself is
onstochastic, but the background already contains
andomly fluctuating image components that, re-
arded as vectors, are parallel to the true signal. As far
s the analysis is concerned, these two situations are
athematically indistinguishable, because the noise

ources are assumed to be unknown.
The result from the differential imaging procedure

Fig. 3B) is qualitatively identical to that from the
reviously considered noise-free case. Significant dis-
ortion by the background noise is present in D(x),

which shows only a modest signal recovery, E 5 0.406,
and the amplitude rm(t, D) has extensive within-group
variation, which results in a small signal-to-noise ra-
tio, Q(D) 5 0.050.

The most striking consequence of this randomly fluc-
tuating signal is the drastic quality deterioration in the
canonical variate x(x) (Fig. 3C). The solution x(x)
shows poor signal recovery with E 5 0.114; the image
is heavily infiltrated by pixel noise, and the spatial
pattern p(x) is hardly discernible. On the other hand,
its amplitude function rm(t; x) 5 ( fm(t), x)x shows the
optimal resolution with Q(x) 5 `, even though the true
signal has only Q(p) ' 8. It is also evident from the plot
of rm(t; x) that the amplitude of the recovered signal is
considerably attenuated, compared to the modeled re-
sponse amplitude. We see that canonical analysis has
overestimated the signal-to-noise ratio, by choosing a

FIG. 3. A two-condition simulated experiment with a stochastic
signal. (A) The model signal pattern and its amplitude used in the
simulation. The estimated signal and its amplitude, extracted by (B)
differential imaging, (C) canonical variate analysis, and (D) gener-
alized indicator function, are shown.



s
r
F

s

c
b

a
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spurious pattern which does not contain any frame-to-
frame noise.

Figure 3D shows the result from the analysis with
the generalized indicator method. Despite the intro-
duction of noise, the solution f(x) maintains excellent
signal recovery at E 5 0.926. The recovered response
amplitude rm(t; f) 5 ( fm(t), f)x preserves a significant
signal-to-noise ratio at Q(f) 5 8.647, which is close to
the true signal’s signal-to-noise ratio, Q(p) ' 8 (see
Fig. 3A). It also recaptures the stochastic nature of the
modeled response amplitude rm(t), with no overall am-
plitude attenuation. The robustness of the generalized
indicator method against noise follows from its more
reasonable demand on the signal, namely, Q(p) . qc,
which permits its realistic applications to stochastic
signals with suboptimal signal-to-noise ratio.

Noise Analyses

Similar noise analyses can be performed with the
addition of Gaussian noise at various strengths. The
noise variance s2 of the stochastic signal (Eq. (54)) has
been modulated to be s2 5 2, 1, 1

2 , 1
4 , 1

8 , 1
16 , and the

imulation and the analysis of the previous section is
epeated with these progressively less noisy signals.
igure 4 (left) shows the plot of signal recovery E as a

function of the corresponding signal-to-noise ratio of
the model signal Q(p) 5 1, 2, 4, 8, 16, 32. When Q(p) is
below the critical value qc 5 4, both methods show poor
ignal recovery. As Q(p) is increased past the critical

value, the generalized indicator rapidly outperforms
the canonical variate and reaches its maximum recov-
ery at about E 5 0.95. On the other hand, the signal
recovery of the canonical variate improves only slug-
gishly as the true signal is made less noisy. Figure 4
(right) shows the relationship between the signal-to-

FIG. 4. Noise analyses. The variance of the Gaussian fluctuat
signal-to-noise ratio of the true signal p(x) corresponds to Q(p) 5 1, 2
s a function of F(p). (Right) A plot of the recovered signal’s Q valu
noise ratio of the model signal Q(p) and that of the
generalized indicator, Q(f). If the recovery were per-
fect, we would have Q(f) 5 Q(p), and the recovery
curve would fall on the diagonal line. However, when
the model signal is exceedingly noisy such that Q(p) ,
qc, the generalized indicator tends to overestimate the
signal-to-noise ratio, as the algorithm always guaran-
tees Q(f) . qc. Such overestimation error in Q(f) is
onsistent with the poor signal recovery performance
y f(x) in this low signal-to-noise regime. On the other

hand, when Q(p) . qc, the true signal becomes statis-
tically significant, and the generalized indicator’s Q(f)
closely approximates the signal-to-noise ratio of the
true response. Incidentally, the recovered signal-to-
noise ratio of the canonical variate is consistently un-
bounded, regardless of the amount of noise introduced
into the model signal (for explanation, see part B of
Appendix). This result suggests the relative robustness
of the generalized indicator method over the canonical
variate analysis in the signal extraction problem of
noisy, yet reasonably robust, signals.

APPLICATION TO EXPERIMENTAL DATA

In this section we reexamine the experimental data
(Everson et al., 1998) which have been considered pre-
viously by two techniques, truncated difference (Gab-
bay et al., 2000) and indicator function (Everson et al.,
1997). We will briefly review these techniques and
point out how the generalized indicator function
method improves upon them, in terms of analytic sim-
plicity, generality, and objectivity. We see that, when
applied to actual experimental data, our method pro-
duces qualitatively similar results, with better statis-
tical characteristics and less subjective intervention.

s in the artificial signal amplitude, rm(t), is modulated such that
, 8, 16, 32. (Left) A plot of the signal recovery efficiency, E 5 (p, f)x

2,
s a function of the true signal’s Q value.
ion
, 4
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1319OPTIMIZATION OF SIGNAL EXTRACTION
Previous Analysis Strategies

The method of Gabbay et al. (2000), which may be
egarded as a refinement of the standard differences
see Differential Imaging), is based on the observation
hat the difference image (Eq. (43)) is expected to con-
erge to the true response map in the limit of indefi-
itely many samples. When the sample size is limited,
rincipal component analysis and a statistical analysis
f the principal modes make possible the identification
f the modal index range for the most relevant and
ignificant principal components; from this an im-
roved difference image, called the truncated differ-
nce, can be constructed. On the other hand, the indi-
ator function method of Everson et al. (1997) is, in

spirit, akin to Fisher’s discriminant function (Fisher,
1936). As with the truncated difference method, it in-
volves a band-pass filtering of the principal component
spectrum. Although the construction of such filters is
warranted by sound principles in both methods, an
element of subjectivity enters into the analyses
through the investigator’s choice of the pass-band. In
contrast, no explicit filter is introduced into the gener-
alized indicator procedure; instead, the selection of
signal-associated principal components is performed
implicitly by the optimization algorithm. Another dis-
tinction is that these earlier methods are inherently
one-dimensional procedures, as they generate a single
image (vector) by contrasting two experimental condi-
tions at one time. For experiments that use multiple
conditions (M . 2), the response space can be M di-

ensional. To deal with such cases, Everson et al.
(1998) introduce a “pairwise” analysis strategy and
compute multiple contrast images for all possible pairs
of conditions. A subsequent principal component anal-
ysis on all pairwise contrast images then determines
the basis elements of the response space. Although
such a pairwise procedure makes good mathematical
sense, it is unnecessary in the generalized indicator
method, as the procedure directly addresses the mul-
tidimensional nature of the signal space.

Data Analyses

In the experiment of Everson et al. (1998), a cat is
presented with a visual stimulus, a drifting sinusoidal
grating oriented at 0, 45, 90, and 135°, at six different
spatial frequencies (0.07, 0.14, 0.28, 0.57, 1.14, and
2.28 cycles/deg), and the cortical intrinsic signals are
imaged. For each orientation–spatial frequency combi-
nation, 40 frames are imaged, for a total of 960 frames,
with 240 frames per orientation. Here we analyze the
orientation-specific response by pooling all the images
corresponding to each orientation. We set m so that u 5
[0, 45, 90, 135] corresponds to m 5 [1, 2, 3, 4]. The
following analyses are performed strictly on raw data,
and we do not introduce any ad hoc processing of the
data, such as whitening, spatial/temporal filters, or
any kinds of normalization or approximation.

The four sample mean images for each orientation
are shown in Fig. 5. Although no obvious differences
can be visually detected, the stimulus-specific signal is
presumably present in each image. Figure 6 shows the
two dominant basis functions (images) and their re-
spective response amplitudes for the orientation re-
sponse space, extracted by: (Fig. 6A) pairwise trun-
cated differences, (6B) pairwise indicator functions,
(6C) canonical variates, and (6D) generalized indicator
functions (computed with qc 5 4). These pairs of basis
images represent the four estimates of the “signal
space,” each calculated by different algorithms. For
each analysis method, the estimated neural response
to any particular orientation can be expressed as a
linear combination of the two basis images.

The basis images obtained by the pairwise truncated
differences show superior smoothness and clarity of
the emergent patterns, but their response amplitudes
show large within-group variations, and their signal-
to-noise ratios are Q(t1) 5 1.472 and Q(t2) 5 1.158,
respectively. The pairwise indicator basis images are
strikingly similar to the corresponding generalized in-
dicator functions and their amplitudes have better sig-
nal-to-noise ratios, Q(i1) 5 3.775 and Q(i2) 5 2.982. The
anonical variates are heavily contaminated by pixel
oise, although some underlying structures are visible.
careful comparison reveals that the canonical vari-

tes actually represent extremely noisy versions of the
ame maps as the generalized indicator functions. The

FIG. 5. An analysis of actual optical imaging data. A cat is
presented with a series of sinusoidal grating, oriented at 0, 45, 90,
and 135°, and 240 images of the primary visual cortex are imaged for
each orientation, i.e., M 5 4 and T 5 240. The cortex is illuminated

ith 600-nm light. The mean image over all orientations, f#, which we
ake as the reference image, is shown in the center. The difference
mage, f#m 2 f#, is also shown for each orientation.
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1320 YOKOO, KNIGHT, AND SIROVICH
unbounded signal-to-noise ratios of their response am-
plitudes are consistent with the objective of the canon-
ical analysis and demonstrate that such extreme sig-
nal-to-noise ratio can be achieved within the limits of
the data. The generalized indicator function algorithm
guarantees that the solutions, if found, always yield
acceptable signal-to-noise ratio. Indeed, the first two
generalized indicators exceed the minimum signal-to-
noise requirement, Q(f1) 5 6.108 and Q(f2) 5 5.878,
espectively. Note that any method could potentially
eturn basis images whose signal-to-noise ratios clear
he minimum requirement level. However, the gener-
lized indicator functions are unique among all images
f significant signal-to-noise ratios, because they rep-
esent the images of the maximal signal power, and
hus their amplitude changes most robustly as a func-
ion of orientation. One remarkable feature seen in this
nalysis is the regular repeating pattern in amplitude
unctions. Recall that there is nothing in the algorithm
hat forces these patterns to emerge. The systematic
ariation within each oriented stimulus presentation is
resumably due to the different response strength to
ifferent spatial frequencies, which we do not address
ere.
From the two generalized indicator functions and

heir respective amplitude functions, an orientation

FIG. 6. Two dominant basis functions of the orientation respons
pairwise truncated difference method, (B) pairwise indicator functio
function method.
reference map can be constructed (for method, see
verson et al., 1998). Each colored pixel value of such
aps represents the stimulus orientation at which the

ixel’s stimulus-evoked response is maximal. Figure 7
hows the orientation preference map obtained from
he generalized indicators, after a spatial smoothing by
low-pass filter. The map crisply shows the pinwheel

tructure of the orientation columns, indicated by as-
erisks, in agreement with previous reports (Blasdel
nd Salma, 1986; Bonhoeffer and Grinvald, 1991;
verson et al., 1998). These results show that the gen-
ralized indicator method can be useful in the analysis
f actual experimental data, as it generates solutions
hat are not only desirable in their statistical proper-
ies, but also consistent with the results from other
nalysis techniques and/or from other laboratories.

DISCUSSION

Generalized Indicator and Canonical Variates

The relationship between generalized indicator func-
ions and canonical variates deserves further discus-
ion. These analysis techniques are similar in the
ense that they both use, directly or indirectly, the
ignal-to-noise ratio as a guide to identify the signals

pace and their corresponding amplitude functions, extracted by: (A)
ethod, (C) canonical variate analysis, and (D) generalized indicator
e s
n m
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1321OPTIMIZATION OF SIGNAL EXTRACTION
that are hidden in the background noise. Their funda-
mental difference lies in their requirements for the
extraction of such signals. Loosely speaking, the canon-
ical variate analysis aims to extract the “cleanest” sig-
nals, while the generalized indicator method seeks the
strongest signals that are “clean enough.”

From a signal analysis point of view, the ratio of the
two variances, Q 5 S/N, represents the magnitude of
the signal power, S(f), relative to the power of the
noise, N(f). By design, the canonical variate analysis

aximizes the signal-to-noise ratio and does so irre-
pective of the absolute magnitude of the signal.
ence, it is possible for the solutions to achieve the
axima while compromising the absolute signal

ower, as seen in the example under Numerical Sim-
lations. On the other hand, the method of generalized

ndicators attempts to maximize the signal–noise dif-
erence, S(f) 2 aN(f), a performance measure that

respects the absolute power of the signal. Because the
weighting parameter a is chosen such that the solu-
tion’s signal-to-noise ratio is always significant, the
method can be understood as a technique which seeks
the most “robust” signal, while preserving our ability to
discriminate a real causal relationship from random
fluctuations. Hence, the method of generalized indica-
tor functions may be used as an alternative to canoni-
cal variate analysis when one wishes to focus on the
absolute difference rather than the relative difference
between the power of the signal and that of the noise.

FIG. 7. An orientation preference map is constructed from the tw
mplitudes. The color in each pixel represents the stimulus orientati
eveals a clear pinwheel pattern on the cortex (white asterisks), and
A pictorial illustration of the problem’s subspace
structures is presented in part B of the Appendix, as it
facilitates the understanding of the similarities and
the differences between the two analysis methods.

Robustness

We have subjected a wider variety of optical imaging
data to the generalized indicator method (than re-
ported here), and we have found that it performs ro-
bustly in all instances. When applied to the data such
as those discussed under Application to Experimental
Data, the new method consistently returns results that
are qualitatively similar to the previous analysis re-
sults, but with superior sensitivity and signal–noise
properties. Application to more recent data, such as
those from a thermal and GABA-mediated V2 inacti-
vation experiment (Sailstad, 2001) and a V1 color dis-
crimination experiment (Gegiu et al., 2001), gives reli-
able results that are consistent among different
experimental animals. Our experience suggests that
the method is robust and well-behaved in optical im-
aging data, and we anticipate that it will be useful in
other imaging media, such as fMRI and PET.

Comments on the Assumptions

Although the method of the generalized indicator
functions has been presented here as an image analy-
sis technique, the algorithm itself is very general, as it

eneralized indicator functions, f1(x) and f2(x), and their respective
at which the greatest stimulus-specific response is evoked. The map
e preferred angle varies smoothly around each pinwheel center.
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1322 YOKOO, KNIGHT, AND SIROVICH
can be applied to practically any type of multivariate
data. However, a meaningful interpretation of the so-
lutions may require the following assumptions to hold:
(i) the data contain no spurious group-dependent bias
and (ii) the signal-to-noise ratio of the true response is
at least qc. If these assumptions fail to hold, the anal-
ysis becomes less effective in capturing the true re-
sponse and leads to compromised signal extraction ef-
ficiency.

The presence of a spurious group-dependent bias
(Assumption i) could be a serious challenge to the “sci-
entific” validity of the generalized indicator. This can
arise because of the change in the experimental envi-
ronment or the change in the basic physiological states
of the animal, such as depth of anesthesia, CO2 level,
blood pressure. Since the analysis extracts the largest
variations among different experimental conditions
(within the confines of Q . qc), regardless of the source
of the variations, the presence of such bias can contam-
inate the extracted signals. Eliminating such bias is an
important issue in the experimental design, and well-
randomized data acquisition sequences could keep
such undesirable effects at a minimum.

Assumption ii states that the success of the analysis
by the generalized indicator functions depends on the
success of the experiment itself. We saw under Noise
Analyses that the generalized indicator method
showed poor signal recovery when the true response’s
signal-to-noise ratio was below the chosen value of
minimum Q level. The method is predicated on the
basis that Q(f) . qc, and it is theoretically impossible
for the method to reliably recover the hidden signals
whose signal-to-noise ratios are below qc. Thus the

ata must contain a robust response with sufficient
ignal-to-noise ratio, and it is a prerequisite for a valid
ignal identification.

CONCLUSION

We have considered the problem of extracting sig-
als from multivariate data that are highly contami-
ated by noise from unknown sources. We have pre-
ented a novel data analysis technique, the method of
eneralized indicator functions, which identifies the
mage components of the noisy data, which represent
he characteristic response differences between exper-
mental conditions. The method of generalized indica-
or functions is related to a multivariate analysis tech-
ique called the canonical variate analysis, which aims
o directly maximize the signal-to-noise ratio. The fun-
amental difference between the two methods is that
he canonical variate analysis’ sole objective is the
aximization of the signal-to-noise ratio, irrespective

f actual magnitude of the signal power, while the
ethod of generalized indicator functions attempts to

chieve the maximum signal power, while maintaining
ufficiently large signal-to-noise ratios. Unlike many
other existing techniques, the algorithm does not re-
quire any explicit filtering procedures, nor does it de-
pend on statistical or probabilistic assumptions about
the data. In the application to actual and numerically
simulated experimental data, we have demonstrated
excellent performance and robustness of generalized
indicator functions, in comparison with the standard
difference method and the canonical variate analysis.
Since this method may be applied to any vectorizable
data type, it may improve the signal extraction in
different kinds of experiments in which the conven-
tional analysis methods suffer from insufficient signal-
to-noise ratio.

APPENDIX

(A) Computation of Canonical Variates

A computationally efficient form of canonical variate
analysis is derived here as a transformation of a gen-
eralized eigenvalue problem into a regular eigenvalue
problem of lower dimension. Although not necessary,
for the sake of notational simplicity we annotate the
signal and the noise operators as

KS~x, y! 5
1

M O
m

~f#m~x! 2 f#~x!!~f#m~y! 2 f#~y!!, (55)

KN~x, y! 5
1

MT O
m,t

~fm~t, x! 2 f#m~x!!~fm~t, y! 2 f#m~y!!.

(56)

The only difference from the previous definitions (7)
and (10) is in the leading normalization constants,
which do not alter the validity of the following argu-
ments. Recall that the canonical variate x(x) is a solu-
tion to a maximization problem for the Q ratio,

Q~x! 5
~x, KSx!x

~x, KNx!x
. (57)

In this Appendix, we prefer to use the following equiv-
alent notation,

Q~x! 5
xKSx

xKNx
, (58)

in which the inner products are written as matrix
multiplications, e.g., (x, KSx)x 5 xKSx.

Now, consider the identity

K ~x, y! 1 K ~x, y! 5 K~x, y!, (59)
S N
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1323OPTIMIZATION OF SIGNAL EXTRACTION
where K(x, y) is the mean-corrected data covariance
operator, defined in Eq. (31). Then the Q ratio can be
written as

Q~x! 5
xKSx

xKNx
5

xKx

xKNx
2 1. (60)

ence, the extremization of Eq. (44) can be performed
quivalently on the quotient,

Q9~x! 5
xKx

xKNx
. (61)

Note that this problem is analogous to Eq. (45), hence
the solutions can be obtained by solving the general-
ized eigenvalue problem,

Kx 5 mKNx, (62)

where the eigenvalue m represents the quotient Q9 of
the solution x,

m 5
xKx

xKNx
. (63)

ote the eigenvalue m has a lower bound, m $ 1, be-
cause Eq. (60) is nonnegative.

Now, we make three observations which directly
lead to the transformation of Eq. (62) into a regular
eigenvalue problem.

Observation 1

The direct consequence of principal component anal-
ysis (Eq. (27)) is a spectral decomposition of K,

K 5 CLC †, (64)

where L is an R 3 R diagonal matrix of the real
positive eigenvalues {l1, . . . , lR}; l1 $ . . . $ lR . 0;
C 5 [c1(x), . . . , cR(x)] is a P 3 R matrix of correspond-
ing orthonormal eigenvectors (the principal compo-
nents of the mean-corrected images, { fm(t, x) 2 f#(x)});
and R is the number of nonzero eigenvalues. Here,
without loss of generality, we can exclude from our
calculations the zero eigenvalues and their correspond-
ing eigenvectors, because they have no contribution in
the matrix multiplication (Eq. (64)). If we exclude zero
eigenvectors, L becomes invertible, because all diago-
nal elements are .0.

Observation 2

By the definition (56) of KN, the right-hand side of
Eq. (62) is necessarily a linear combination of { fm(t) 2
f# } and, therefore, of { f (t) 2 f# } by Eq. (26). Similarly,
m m
Eq. (62) yields a linear combination of { fm(t) 2 f# } on the
left-hand side. This implies that the solution x can be
uniquely determined within and up to the subspace
spanned by { fm(t) 2 f# }. Therefore, in the spirit of prin-
ipal component analysis (Eq. (27)), we write x as

x~x! 5 O
r51

R

wrcr~x!, (65)

or in a vector notation,

x 5 Cw; where w 5 @w~1!, . . . , w~R!#†. (66)

Observation 3

Another consequence of principal component analy-
sis (Eq. (27)) is that the KN operator can be written as

KN 5 CDCNDC †, (67)

where CN and D are defined in Eqs. (41) and (42),
respectively.

Now the substitution of Eqs. (64), (66), and (67) into
(62) yields the equation

m 21~CLC †!Cw 5 ~CDCNDC †!Cw. (68)

he division by m is allowed, because m $ 1. (See Eq.
63).)

Because C†C 5 I, where I is an R 3 R identity
matrix, and L 5 D2, Eq. (62) can be reduced to an R 3
R regular eigenvalue problem:

m 21w 5 ~D21CND!w. (69)

Because CN and D are symmetric, the operator of Eq.
(69) is real and symmetric, so the eigenvalues are real,
and the eigenvectors wk, k 5 1, . . . , R are orthonormal
nd complete in the R-dimensional space. The canoni-
al variate x can then be computed by the linear com-
ination (Eq. (65)). Since the eigenvalue mk

21 is the
reciprocal of the quotient Q9(xk), the eigenvector wk

associated with the kth smallest mk
21 determines the

desired kth local maximum, xk. Hence, we have suc-
cessfully transformed a P 3 P generalized eigenvalue
problem (Eq. (62)) for the canonical variate analysis
into a smaller R 3 R regular eigenvalue problem.

The canonical variates can be shown to be an orthog-
onal set. Because of Eq. (65) and orthonormality of
{cr(x)} and {wk} in their respective spaces,

~xi, xj!x 5 O
x

$O
r51

R

wi~r!cr~x!%$O
s51

R

wj~s!cs~x!%

5 ~wi, wj!r 5 di, j.

(70)
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(B) The Subspace Structures

Here we illustrate the subspace structures of the
canonical variate and the generalized indicator prob-
lems (Fig. 8). We also make an informal argument why
the canonical variates analysis leads to Q(x) 3 ` in
general.

To begin, we first note that the two analysis methods
share common grounds; namely, both involve vector
operations in the subspaces

V ; $v [ RP; vKv . 0% 5 Range~K!,

S ; $v [ RP; vKSv . 0% 5 Range~KS!, (71)

N ; $v [ RP; vKNv . 0% 5 Range~KN!,

where K, KS, and KN are P 3 P matrix operators de-
fined in Eqs. (31), (55), and (56), respectively (Figs. 8A,
8B, and 8C). By construction, the ranges of the K, KS,
and KN operators correspond to Span{ fm(t) 2 f# },
Span{f#m(t) 2 f# }, and Span{ fm(t) 2 f#m}, respectively. We
also know from Eqs. (25) and (26) that S and N are
subspaces of V, and therefore S and N have comple-
mentary subspaces (which could be empty) within V,
Sc, and Nc, where

S c ; $v [ V; vKSv 5 0% 5 V ù Null~KS!,

N c ; $v [ V; vKNv 5 0% 5 V ù Null~KN!.
(72)

Under Computation of the Eigenvectors and in part
of the Appendix, we argued that any canonical vari-

te x or generalized indicator f can be uniquely deter-
ined up to the range of K, spanned by its eigenvectors

with positive eigenvalues. Hence, x and f are members

FIG. 8. The subspace structure of the canonical variate and the
generalized indicator problems.
of V, and we consider V as our fundamental working
space from which the signal images are sought.

Now, because of the identity (59), we have

Rank~K! 5 Rank~KS 1 KN!. (73)

Since S # V and N # V, we can infer that the union of
hese subspaces cover V entirely (Fig. 8D),

V 5 S ø N. (74)

ow, since the Q ratio is defined as Q(v) 5 vKSv/vKNv,
(v) 5 0 for any v [ Sc, Q(v) 5 ` for any v [ Nc, and

0 , Q(v) , ` for v [ S ù N. Also from Eq. (73), it
follows that

Rank~K! # Rank~KS! 1 Rank~KN!, (75)

0 # Rank~K! 2 Rank~KN! # Rank~KS!. (76)

This inequality implies that Nc can have at most
Rank(KS) dimensions, thus canonical variate x can
exist within V such that xKNx becomes 0, that is,
Q(x) 3 `.

For example, let us consider the simplest (yet per-
haps most general) situation, in which the set of all
data images { fm(t)} is linearly independent. This is
indeed the most likely case in a typical optical imaging
experiment, in which the total number of pixels per
image, P, far exceeds the number of collected images,
M, that is, MT ! P. In the presence of random photon
noise, etc., the set { fm(t)} tends to be linearly indepen-
dent and forms MT dimensional subspace. In this sce-
nario, it is straightforward to calculate the exact di-
mensionality of the subspaces, V, S, and N, vis.,

dim~V! 5 Rank~K! 5 MT 2 1,

dim~S! 5 Rank~KS! 5 M 2 1, (77)

dim~N! 5 Rank~KN! 5 M~T 2 1!,

where M is the number of conditions and T is the
umber of samples per condition. It is now evident
rom the relation (73) that KN becomes “inevitably”

more rank-deficient than K by precisely M 2 1, and
his creates a subspace Nc of dimension M 2 1 in which

the Q ratios become unbounded.
We should remark that this feature is independent of

the data’s signal content; an unbounded Q could occur
even if the dataset carried absolutely no signal in it.
However, an infinite Q could also occur due to the
presence of a noiseless signal, as we witnessed under A
Nonstochastic Signal. Therefore, when one obtains an
infinite Q, one cannot conclude whether it represents a
real signal or merely an artifact. One might call such
dataset “ill-conditioned” but unfortunately, this is of-
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ten the case in optical imaging experiments. This ob-
servation casts shadows on the validity of a signal
identification strategy based solely on the signal-to-
noise ratio.

The generalized indicator method, on the other
hand, identifies signals by the weighted signal–noise
difference (Eq. (12)) and relies on the Q ratio only as a
surrogate statistic to score the purity of the extracted
signal. In effect, the generalized indicator analysis
seeks an image f in S such that f is as parallel to S as
possible while keeping Q above some threshold level,
qc. Hence, it allows solutions to lie inside the space S ù
N, even when a nonempty Nc exists in V. This feature
becomes especially important when the true signal in
question actually has some intrinsic fluctuations, as is
the case with many biological systems. A vector v of a
noisy signal, by definition, belongs to the intersection S

N, i.e., 0 , Q(v) , `. While the generalized indicator
method is capable of capturing such a signal, the ca-
nonical analysis will completely miss the signal, as
demonstrated under A Stochastic Signal, because it
yields Q(x) 3 ` by forcing x to be orthogonal to N.
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