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Abstract. Turbulent solutions of the one-dimensional complex Ginzburg-Landau equation 
when the dissipation is very small aie considered. It is found that probability distributions are 
strictly Gaussian, implying hard turbulence does not occur. Also. no inertial range is observed 
in ule wavenumber spect”. As expected a linear relation between the atuacfor dimension 
and the domain length exists, but the results suggest that ule dimension of the inertial manifold 
is smaller than has been predicted. Finally, universal behaviour in  both the wavenumber and 
Lyapunov exponent speara is demonstrated. 
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1. Introduction 

The study of chaos in spatially extended model systems is an important step towards a 
more complete understanding of complex physical problems such as three-dimensional 
NavierStokes turbulence. One model system which is of particular interest is the complex 
Ginzburg-Landau (CGL) equation. This partial differential equation arises in the course of 
analysing many physical problems 12-81, including Rayleigh-Bbard convection [SI, and 
contains the important effects of diffusion, nonlinear dispersion and amplitude-dependent 
frequency. In addition, solutions of the CGL equation are known to exhibit spatiotemporal 
chaos for certain parameter ranges, even in one spatial dimension [IO, 111. For these 
reasons, the CGL equation is felt to be an important testing ground for the mathematical 
techniques and physical intuition involved in studying turbulent phenomena. 

The CGL equation typically describes the nonlinear modulation of a linearly unstable 
wave close to criticality. It has the basic form 

a A  - = ~ V * A  + y~ + ~ I A ~ ~ A  
at (1) 

where A is a complex amplitude and the parameters 01, j3 and y ,  which can be determined 
for a given physical system, are in general complex. An in-depth survey of the CGL 
equation appears in [12]. Here we consider the one-dimensional CGL equation written in 
the normalized form 113, 141 
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where t is the dimensionless time and x E [O, 27rI is the spatial variable. The parameters 
q ,  p and CO are taken to be real and positive and the Newell criterion [15] for modulational 
instability is assumed, pco c 1. This implies there will always exist values of q at which 
the homogeneous solution to equation (2) is unstable. 

For fixed p and CO, q is the control parameter. As q is decreased, a sequence of 
bifurcations occurs, whose exact form depends on the imposed boundary conditions. For 
sufficiently small q turbulence, defined here as the presence of chaos in both time and 
space series, can occur in solutions of (2). Temporal chaos is indicated by sensitivity to 
initial conditions (i.e., at least one positive Lyapunov exponent) or a broad band frequency 
spectrum, while spatial chaos is indicated by a broad band wavenumber spectrum. The 
turbulent regimes which occur when q is small are the focus of the present study. We note 
that the parameter regions which we consider for (2) are generally far from criticality and 
hence not of direct physical relevance. 

Most of the numerous studies of the 1-D CGL equation which have been undertaken 
have concentrated on solution bifurcations and the transition to chaotic behaviour [13, 16- 
201. Some work has been done on the behaviour in chaotic regimes far from criticality [IO, 
21-23], using p,co - 1 and q < 1. However, length-scale arguments presented in [lo] 
suggest that interesting behaviour might occur for CO << 1 when q is small. In addition, 
recent analytical results [I, 24, 251 suggest that p ,  CO << 1 is an important case to study for 
q << 1. We note that results for the scaling of certain quantities in this last case have very 
recently appeared [26]. 

Sirovich, Rodriguez and Knight [lo] studied (2) subject to Dirichlet boundary conditions, 
A(0, t )  = A(n, t )  = 0. Taking p = CO = 0.25, they obtained the bifurcation sequence 
for 0.08 < q < 1.0 via numerical simulations. For sufficiently small q, both spatial 
and temporal chaos occurred, the attractor dimension increased linearly with l/q, and 
the wavenumber spectrum exhibited a universal form Employing length-scale arguments 
similar to those used in fluid mechanics, Sirovich etnl derived the correct behaviour in both 
the energy-bearing and dissipative portions of the wavenumber spectrum. 

Bartuccelli, Constantin, Doering, Gibbon and Gisselfalt [I, 24, 251 performed an 
analytical study of the CGL equation, assuming fully periodic boundary conditions. They 
examined the way in which the q-dependence of various quantities change as p and CO 
become small. This case of p.  CO < 1 is the dissipntioniess limit, since for p = CO = 0 
the CGL equation becomes the (conservative) nonlinear Schrdinger (NLS) equation. 
Asymptotic bounds obtained by Bartuccelli et al suggest that large intermittent fluctuations 
can occur in 2-D and 3-D near the dissipationless limit However, their results imply that 
in 1-D only small deviations from mean quantities are possible. 

Generally, turbulence is termed strong or ‘hard‘ when it displays large fluctuations from 
mean quantities, and termed weak or ‘soft’ when it does not. Therefore, the results of 
Bartuccelli et ai imply that only soft turbulence can occur in the 1-D CGL equation. One 
common criterion for distinguishing between soft and hard turbulence, which will be used 
below, is the form of the probability density functions. As discussed by Heslot et a1 [27] 
and Castaing et a1 [28] in the context of Rayleigh-Bbnard convection, soft turbulence is 
characterized by purely Gaussian p.d.f.’s, while the presence of hard turbulence is indicated 
by p.d.f.’s with exponential tails. Another important characteristic of high Reynolds number 
fluid turbulence, which we might expect in solutions of (2) when CO << 1, is the presence of 
a range of wavenumbers intermediate to the energy-bearing and dissipative ranges. In this 
‘inertial‘ range, both energy production and dissipation are relatively unimportant, hence 
the dominant process is the transfer of energy from low to high wavenumber modes. 

Motivated by the idea discussed above, we have made a numerical investigation of 
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the I-D CGL equation (2) subject to Dirichlet boundary conditions when (and hence the 
dissipation &o) is small. A split-step method recently presented for the CGL equation 
[29] was used to obtain approximate solutions to (2) in the subspace of the sine modes. A 
sine expansion is sufficient because the CGL equation respects parity symmetries. 

Briefly, our numerical method involves splitting (2)  into the two exactly solvable 
equations 

and 

(4) _ -  - PA(’) - ( p  - i)A(’)IA(’)I’. a A (2) 

at 
For Dirichlet boundary conditions, (3) is solved by the ‘diffusion solution’ 

m 

A(’)(x, t) = C $)(~)exp[-k’q~(c~ + i)t] sinkx, (5) 

where jf’(0) is the kth Fourier coefficient of A(’)(x, 0). Equation (4) is solved by the 
‘nonlinear solution’ 

k 0  

1 
2P 

x exp {i[@(x, 0) + - Iog(1- P ( x ,  0) + P ( x ,  o)ezp’)]), 

where R(x ,  0) and O(x, 0) are the magnitude and phase, respectively, of An)(,, 0). Once 
the solutions (5) and (6) have been discretized in space and time, they can be used to 
construct an efficient numerical scheme for (2) which has spectral accuracy in space and 
second-order accuracy in time 1291. 

For each set of parameters, we chose a number of sine modes N ,  based on preliminary 
experiments, such that the energy in the highest modes would be very small (e.g., 
[ f , l / l f i l  - lo-’). We then checked that there were no significant aliasing errors by a 
comparison with the wavenumber spectrum obtained for N’ = 2 N .  Generally, we used a 
spatial resolution of at least N = 255 (which was used for all cases q = 0.05) and a time 
step At - 10-4-10-3. To obtain the results reported here, we initiated all simulations with 
A(x, 0) = 0.02(1 + i) sinx. We then began detailed observations of the chaotic solutions 
after the system evolved to a statistically steady state, which typically required several 
hundred time units. The main result of our simulations, determined from the Gaussian form 
of the probability density functions, is that for both CO J. 0, p fixed and p = CO .1 0 only 
soft turbulence occurs. A related result is that an inertial range does not appear in either of 
these limits. 

In section 2 we present results, including wavenumber and frequency spectra and p.d.f.’s, 
for CO .1 0, p = 0.25. In the next three sections, beginning with the power spectra and 
p.d.f.’s in section 3, we concentrate on the dissipationless limit p = CO J. 0. In section 4 
we discuss estimates of the dimension of the inertial manifold and the attractor dimension, 
and in section 5 we present results on universality in the dissipationless limit. Additional 
remarks on the observed wavenumber spectra are given in section 6, and in section 7 the 
main conclusions are summarized. 

Results of simulations of the 2-D CGL equation near the dissipationless limit, which 
we have also performed, are forthcoming [30]. 
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Figure 1. Snapshot of A showing the spatial chaos which occurs for q = 0.1, p =CO = 0.25. 
For a fixed time t we plot the real (-) and imaginary (. . .) parts of A as functions of x .  

The existence of two ranges in the universal spectrum is a consequence of dimensional 
arguments. All quantities in (2) except x and q are dimensionless, thus all relevant length 
scales necessarily involve q. One scale is the dissipation length scale 6a = q& [lo]. 
For k << kd E l/&, dissipation is small, whereas for k > kd (the dissipative range) it is 
moderate to large. 

A second length scale can be derived from an analysis of the thickness of the boundary 
layer which is produced by imposing boundary conditions [lo]. This scale equals the 
magnitude of the diffusion coefficient, q ( l  + c;)')lj4, and is designated 6,. Because the 
dynamics at points outside the boundary layer are essentially independent of the boundary 
conditions, 8, is taken to be a measure of correlation. Assuming points separated by 
distances greater than 6, are uncorrelated specifies universal behaviour for k < 1/8, (the 
integral range). 

In [lo] universality was verified down to q = 0.01 using p = CO = 0.25, and no other 
behaviour was found. But when CO - 1, we have 6, N ad ,  so the two length scales are not 
expected to be well separated. This suggests that for CO < 1 there might be an intermediate 
range of wavenumbers between the integral and dissipative ranges, perhaps an inertial range. 

The possibility of an inertial range was considered for CO $ 0 when q = 0.1 and 
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p = 0.25. From the spectra for CO = lo-*, and lo4, shown in log-log form in 
figure 3, it can be seen that no inertial range appeared. The transitional region between 
the integral and dissipative ranges flattened slightly and its boundaries steepened as CO was 
decreased but, contrary to what would be expected for a true inertial range, its extent did 
not increase significantly as the dissipation was decreased. 
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Figure 3. Wavenumber spectra for CO = 1 W 2  (-), IO-; (. . .) and lo-' (- - -1, when p = 0.25 
and q = 0.1. Here we plot log(lfx12) as a function 01 logqk. 

A point to note is that if the smallest scale to be resolved is &, then it should be 
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necessary, for example, to take N = 4r/& =0(104) points for q = 0.1, CO = 
However, using the criteria discussed in the introduction, it was found experimentally that 
far fewer points (- 300) are actually needed to accurately solve the problem. This is 
demonstrated by the sharp fall-off of all three wavenumber spectra in figure 3 for k 2 100. 
This result indicates that the smallness of length scales is strongly limited by their production 
as well as by their dissipation. 

Another important point is that as CO was decreased with q and p fixed, the numerically 
observed boundary of the integral range, denoted k1, moved significantly to higher 
wavenumbers. This should not have occurred if 6, controls the size of the integral range, 
because as CO decreases from 1/4 to 0, S, remains approximately equal to q .  

To help explain these results, as well as those to follow, we consider the linearized 
version of (2) in Fourier space, 
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This shows growth for k2 e pl(4’co) and decay for k2 > p/(q2c0), suggesting a sharp 
change in behaviour near k = k~ = q-“. Modes with wavenumbers less than kL 
are linearly unstable and, in addition to participating in nonlinear energy exchanges, can be 
expected to be dynamically self-sustaining. On the other hand, since for individual modes 
the nonlinear term in (2) acts to limit growth, modes with wavenumbers greater than k~ 
are not self-sustaining and only exist through a net influx of energy from other modes. 
These ideas about kL explain the increase in kr in the numerical experiments, where CO was 

-112. decreased with q and p fixed, since kL c( co 1s expected to be the boundary between the 
energy-bearing modes and those dominated by dissipation. 

Another effect found for CO J. 0 is that higher temporal frequencies appeared as CO was 
decreased. This can be seen in the frequency spectra in figure 4, which were computed 
by averaging over segments of data taken from a long time series. It is thought that the 
increase in the highest physically relevant frequency is related to the increase in kI, since 
the complex diffusivity in (2) associates with each Fourier mode k an angular frequency 
q2k2. 

Probability density functions for CO .1 0 are shown in figure 5. It can be seen that these 
p.d.f.’s are Gaussian, implying there are no unusually large deviations. Only soft turbulence 
is observed for the 1-D CGL equation (2)  in the limit CO J. 0 with q and p fixed. 

3. The dissipationless limit: p = 

A problem in the low dissipation l i t  CO J. 0, made clear by the discussion of kL, is that 
as the characteristic wavenumber of dissipation increases, so does the characteristic integral 
wavenumber. Thus in this limit the two scales may not become sufficiently separated for 
an inertial range to appear. To resolve this issue we can study the limit p = CO J 0, q fixed, 
in which (2) becomes the NLS equation 

J 0 

(8) 

Thus the limit p = CO J 0 is a special case of the dissipationless limit p.  CO J 0 and therefore 
is appropriate for investigating the low dissipation behaviour of the CGL equation. 
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Figure 4. Frequency spectra when q = 0.1 and 
p = 0.25 for (a) CO = (b) cg = and 
(c) cg = w4. we plot 1ag(l~(o)l2) versus the 
frequency oJ2n.  

3.1. Wavenumber spectra 

With the preceding discussion in mind, numerical simulations were performed on (2) 
for q = 0.1 and p = CO < 0.25. Figure 6(a) shows the wavenumber spectrum when 
p = CO = 0.01 and, for comparison, the specmm when p = CO = 0.25, both for q = 0.1. 
It can be seen that for p = CO = 0.01 the drop-off in the dissipative range is less steep than 
for p = CO = 0.25. This is as expected since 6a is smaller for the p = CO = 0.01 case. It 
can also be seen that the behaviour of the low wavenumber modes is different for the two 
cases. From a close-up of the low wavenumber portion of figure 6(a), shown in figure 6(b), 
it appears that in the integral range (Ifil) is nearly constant for p = CO = 0.25 but decreases 
with increasing k for p = CO = 0.01. It can be seen that k~ is larger for p = CO = 0.01 and 
that a transitional region appears in the range 1.00 < qk  < 1.25. However, there is no true 
inertial range. As p = CO is decreased further, first to IO-’ and then to IOM4, wavenumber 
spectra remain nearly identical to that found for p = CO = 0.01. These results are shown in 
figure I. There is no further increase in kI, and the only effect seen for 0 < p = CO < 0.01 
is the continued decrease of the decay rate in the dissipative range. 
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Flgure 5. ProbabiIily density functions forco = 10” (-) and CO = (.. .),when p = 0.25 
and q = 0.1. We plot log P ( A ,  = b) versus s, where P ( A ,  = s) is the probability that the real 
parr of A is approximately equal to S. Far comparison, we also plot the parabola -2.03s’-2.71 
(- - -). 
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Figure 6. Wavenumber spectra for p =eo = 0.01 (. . .) and p = ca = 0.25 (-), when q = O S .  
We plot the logarithm of (I fkl) against the normalizd wavenumber qk (a) for the full range of 
k. (b) for qk < 3. 

These results indicate that the extent of the integral range is in fact controlled by kL. 
Once kL and kd become well separated, the integral range becomes as large as possible, 
given q and p = CO. In other words, as p = CO 0, kI t kL. For fixed q. the above results 
also indicate that, except at very high k, the wavenumber spectra quickly converge to a 
single curve. Given the results shown in figure 7, it is now assumed that the dissipationless 
limit p = CO J. 0 is well described by the case p =CO = 0.01. 

To better understand the wavenumber spectrum near the dissipationless limit, we seek 
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Figure 7. Wavenumber spectra for p = CO = IO-1 (-), IO@ (. . .) and IO-' (- - -), when 
q=O. l .  WeplotIog(lfkl) versus qk. 

Figure S. Wavenumber s p e m  for P = CO = 0.25 (-), 0.01 (. . .) and 0.001 (- - -), when 
y = 0.05. We plot log(l fxl') versus yk (a) for the full mge of k, (b) for qk < 2.5. 

a larger integral range than occurs for q = 0.1. Therefore, simulations were performed on 
(2) for 0.25 < p = CO < when q = 0.05. Examination of the q = 0.05 wavenumber 
spectra for p = CO J. 0, given in figure 8(a), gave qualitatively the same result as for q = 0.1. 
Figure 8(b), a close-up of the integral ranges in figure 8(a), shows that for p = CO << 1 
we have (Ij%l*) N constant for approximately the first ten wavenumbers (qk < OS), just 
as it is for p .= CO = 0.25. This suggests that the correlation length arguments used in 
[IO] to derive the universal form of the integral range for p ,  CO - 1 continue to be valid 
near the dissipationless limit. However, as figure 8(b) shows, since these arguments require 
k c O( I/&), they do not apply throughout the full, dissipationless integral range. As a final 
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demonstration that no inertial range occurs, a log-log plot of the wavenumber spectrum for 
q = 0.05, p = co = 

D Golainan and L Sirovich 

is shown in figure 9. 
I I I 
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Figure 9. Wavenumber specmm for q = 0.05, p = CO = 
logqk. 

Here we plot log(l AIz) versus 

The modifications near the dissipationless limit to the wavenumber spectrum derived in 
[lo] for p ,  CO - 1 have now been described. These modifications have been explained by 
using the wavenumber sc,ale kL, in addition to the length scales 8, and 8,. 

3.2. Frequency spectra and correlation functions 

Frequency spectra were computed for p = CO = 0.25 and p = CO = 0.01 when q = 0.05. 
This was done by averaging the frequency spectrum at each grid point, I j ( x j ,  w)lz, over 
all j = 1,2, . . . , N. As figure 10 shows, the fall-off becomes exponential at high 
ftequencies, as expected from theoretical considerations, and no dramatic changes occur 
in the dissipationless limit. 

From the wavenumber and frequency spectra presented above, one can directly calculate 
correlation functions. This was done for p = CO = 0.25 and p = CO = 0.01, using q = 0.05. 
The temporal correlations in figure ll(a) show that there is actually a slight increase in 
the largest physically relevant time scale as the dissipationless limit is approached. The 
spatial correlations in figure l l ( b )  give a slight decrease in the correlation length near the 
dissipationless limit, from 1, = 0.27 for p = CO = 0.25 to I ,  = 0.24 for p = CO = 0.01. The 
observed decrease in the correlation length is small (7.4%), but still larger than the 1.5% 
decrease predicted by 8, = q(1+ c,3lI4. Thus the assumption that 8, is a measure of the 
correlation length [lo] is seen to be an approximation. 

3.3. Probability density functions 

We now consider the prediction in [l] that large variations from spatial and temporal 
averages do not occur near the dissipationless limit of the 1-D CGL equation. Since 
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F i g u s F r e q u e n c y  s p e m  when y = 0.05 for (0) p = CO = 0.25, (b) p = CO = 0.01. We 
plot I+)lz versus the frequency w/2n.  
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Figure 11. Correlation functions when y = 0.05 for p = cg = 0.25 (-) and p s CO = 0.01 
(. . .): (a) temporal correlation c(t), (b) spatial correlation C(x). 

the determination of hard or soft fluid turbulence is often made using probability density 
functions, we calculated p.d.f.’s for p = C O  = 0.25 and p = CO = 0.01 when q = 0.05. 

As can be seen from the profile in figure 12 of the time-averaged squared magnitude, 
( [A(x ,  t)l2), Dirichlet boundary conditions produce boundary layers at x = 0 and x = x .  
In order that all points used to obtain the p.d.f.’s be nearly equivalent, only points at least 
a distance of n/10 from the ‘boundaries’ were used. The p.d.f.’s were constructed by 
sampling the real part of A ( x ,  t) at these interior points at a series of uncorrelated times, 
the same procedure used to obtain the p.d.f.’s for CO .1 0, p = 0.25. As figure 13 shows, 
the p.d.f.’s for p = co = 0.25 and p = co = 0.01 are similar, indicating no dramatic change 
in behaviour near the dissipationless limit. Also, both p.d.f.’s are essentially Gaussian, 
implying there are no large deviations in A,. In particular, the result for p = CO = 0.01 
implies that hard turbulence does not occur near the dissipationless limit of the 1-D CGL 
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Figure.13. Plots of the probability density functions for p = CO = 0.25 (-) and p =CO = 0.01 
(. . .) when q = 0.05. We plot log P(A,  = s) and the parabola - 2 . 8 7 ~ ~  - 2.54 (- - -). 

Remark. Including points near the boundaries does not change the above results. The 
logarithm of the p.d.f. for p = CO = 0.01, q = 0.05, computed using all spatial points, is 
fit almost exactly by a parabola of the form -us2 + b. This confirms the finding of soft 
turbulence. 
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The results presented in section 3 confirm the general prediction of soft turbulence made 
by Bartuccelli et al in [l]. We now examine their results in greater detail and make some 
quantitative comparisons with our numerical results for p =CO = 0.01. 

Bartuccelli et al have studied the following form of the complex Ginzburg-Landau 
equation: 

(9) 

is the d-dimensional Laplacian with d = 1,2  or 3. They assume arbitrary initial 

The connection between equation (2) and equation (9) for d = 1 is given by the 

-= aA(x’ t ,  (1 + iu)V2A(x, t )  + RA& t )  - (1 + ip)IA(z, t)l*A(z, t )  
a t  

where 
conditions and periodic boundary conditions on [0, lId and take R to be large. 

parameter. relations 

and the variable relations 

where ’ denotes the variable in equation (9). 

Remark 1. The above relations imply that the L2 norms obey IlA‘ll; - RllAll:, while 
Bartuccelli et al give the uniform bound (IlA’ll;) < R. We have found that (IlAll;) varies 
only slightly with q ,  p and CO. which is consistent with the above analytical result. Further, 
although we have not measured the asymptotic maximum of [[All$ our observations suggest 
it does not deviate substantially from the mean. 

Remark 2. For a quintic nonlinearity and fixed, small-dissipation values of p and U, Luce 
and Doering [26] found that both limsup,,, IlA’ll; and limsup,,, IlA’ll& scaled as RIr2. 
This suggests that the behaviour of these quantities is related to the rescaling one obtains 
for (9) in the quintic case, A’ = A = R’l4A. 

It can be seen that the condition for modulational instability, 0 < pco < 1, is equivalent 
to pu < -1, implying the regions of interest are in the second and fourth quadrants of 
the p-U plane. The dissipatKonless limit for (9) is defined as IvI, + 00 with up < 0. 
Since p and co have been assumed to be positive, U and p will be taken to be positive 
and negative, respectively, giving a direct correspondence between the dissipationless limits 
p = co 4 0 and -p = U t m. We note that q = 0.05, p = CO = 0.01 corresponds to 
R N 15,791. 

It is known that in 1-D the NLS equation has an infinite number of conserved quantities, 
whereas in 2-D and 3-D blow-up singularities can occur in finite time (see [a, 311). In 
111, the relationship between the CGL and NLS equations was used as the main basis for 
deriving bounds on various quantities related to (2) throughout the p-U plane. We now 
discuss our numerical results for three of these quantities: the dimension of the inertial 
manifold di.,,,., the attractor dimension dam, and the Lyapunov functional Fz. First, however, 
we deal with the important issue of the relation of our numerics to the global dynamics of 
(2). 

For p = co = 0.25 and small q ,  the numerical studies of Keefe 1221 and Sirovich et al 
[lo] found only a single attractor for periodic, Neumann, or Dirichlet boundary conditions. 
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Thus, there is reason to believe that the single attractor found in the present study for each 
set of parameters in the range p = CO < 0.6, q < 0.1 is the only one for (2). This idea 
is further supported by recent results [ l l ,  231 which indicate that for periodic boundary 
conditions and small 4 there is a single global attractor for p = CO 20.8. In addition, 
when 4 is small (which corresponds to a long domain-see section 5) one expects that the 
results will not depend on the boundary conditions and, in particular, that numerics done 
for Dirichlet boundary conditions will be relevant to estimates derived assuming periodic 
boundary conditions. Evidence for this is the fact that for all three boundary conditions 
studied in 1221 and [lo], the attractor dimension showed the same behaviour (Ax - ljq) for 
sufficiently small q. We therefore conclude that our numerical results for various quantities, 
such as di.m. and datt, should be relevant to the global bounds obtained by Bartuccelli et al. 
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4.1. Estimates of the dimension of the inertinl manifold 

A quantity of interest in exploring the behaviour of (2) near the dissipationless limit is the 
dimension of the inertial manifold, i.e., the theoretical number of basis functions needed to 
describe solutions. As discussed in [l] this number, denoted di.m,, is generally expected to 
be much greater than the attractor dimension dau. Here we seek to determine the dependence 
of di.,,,, on the parameters in (2), particularly on q for p = CO << 1. 

Wavenumber spectra provide a measure of the number of significant Fourier modes 
contained in solutions of (2). An examination of the spectra for q = 0.1 and q = 0.05 
when p = CO suggests this number is proportional to kr, which was shown to reach the 
limiting value kL = I fq  for p = CO < 0.01. From figure 8 it can be seen that when 
q = 0.05 we have kl Y ,  10 for p = CO = 0.25 and k1 N 20 for p = CO = 0.01. Using kI to 
estimate the number of Fourier modes needed to describe solutions, however, neglects all 
the dissipative-range modes. Another estimate can be obtained by looking at the number of 
Fourier modes required to capture a certain percentage of the total, time-averaged energy, 
defined as 

Using 99% as the cutoff implies that, when q = 0.05, we need 27 Fourier modes for 
p = CO = 0.25 and 29 for p = CO = 0.01. Using so few modes may not give acceptable 
results, but these estimates give a better idea than does k1 of the overall change in the 
distribution of energy in the wavenumber spectrum as the dissipationless limit is approached. 

The above discussion suggests that the ‘Fourier dimension’ of the problem may not 
increase very much as the dissipationless limit is approached. In order to examine this idea, 
two different types of measures of the Fourier dimension, dF, were computed. The first 
is the number of modes required to get a certain amount of drop-off in the wavenumber 
spectrum from its peak value. The second type of measure used was the one discussed 
above, i.e., the number of modes required to capture a certain percentage of the energy of 
the system. 

Of interest is the q-dependence of dF near the dissipationless limit. Figure 14 shows the 
results of several estimates of the Fourier dimension obtained from the wavenumber spectra 
for p = CO = 0.01. It was found that over the range of q studied, the Fourier dimension of 
(2) near the dissipationless l i t  increases linearly with I/q. The data in table 1 shows that 
for the two most stringent measures used we have qdF rr constant over the range studied. If 
the de’s calculated above are taken to be estimates of the dimension of the inertial manifold, 
then there is a lack of agreement with the predictions in [l] for the 1-D dissipationless limit. 
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Figure 14. Various estimates of the Fourier dimension for p = CO = 0.01. We plot, as functions 
of Ijq, the number of Fourier modes required to obtain a dropoff in the wavenumber spectrum 
of lo-' (...U,. .) and lo-' (-m-), and the number required to capture all but (- -0- -), 
IO-' (- -x-  -) and (- -0- -) percent of the time-averaged energy of the system. 

Table 1. Estimates of the Fourier dimension. &, obtained using the IO-' drop-off and IO-'% 
energy mor criteria for the ease p =CO = 0.01. 

IO-* drop-off lod% energy error 

4 dF 4dF q2df 4~ qdF q2dF 

0.1 65 6.5 0.6500 45 4.5 0.4500 
0.05 139 6.95 0.3475 94 4.7 0.2350 
0.025 271 6.775 0.1694 187 4.675 0.1169 
0.015 453 6.795 0.1019 310 4.65 0.0698 

For p = CO these bounds imply that di.,. < cq-*, which is seen to be an overestimate of 
the results in table 1. 

Next we examine the behaviour of the Fourier dimension for p = CO J. 0. An analysis 
of wavenumber spectra computed for q = 0.05 and 0.6 < p = CO < shows that 
dF increases only slightly as p = CO is decreased and becomes nearly constant in the 
dissipationless limit. While 8.j decreases by a factor of more than twenty, dF only increases 
by approximately 50%. Thus, the idea that the dissipation length scale determines the 
number of Fourier modes required to accurately describe the physics of the problem does 
not strictly apply to (2). and we conclude that the occurrence of small length scales is 
limited more by their production than by dissipation. 

Remark. Since d;,m, is defined as the number of basis functions needed to completely 
describe the behaviour on the attractor, one expects that dF underestimates the actual value 
of dt.m,. However, since our simulations were well-resolved and very small energy-error 
criteria were used to compute dF, we expect that d;.,,,, cx dF. Therefore, dF should accurately 
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represent the behaviour of dj.m. with respect to changes in the parameters’in (2): 
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Another estimate of the number of functions needed to describe solutions of (2) can 
be obtained by the Karhunen-Lobve procedure [14, 21, 32-37]. Given an N-dimensional 
dynamical system, 

this technique involves calculating the (Hermitian) correlation matrix (aja;), where 
(.) denotes an ensemble average, and finding its (orthogonal) eigenvectors and (real) 
eigenvalues. The eigenvalues give a measure of how much energy, on average, is in 
each eigenmode. This procedure was carried out for various q when p = CO = 0.01, using 
time averages taken over several thousand time units. To simplify the computations while 
still retaining an accurate description of the system, the number of Fourier modes used 
in the correlation mamx (3) was chosen to be proportional to l/q, based on the Fourier 
dimension estimates discussed above. (It should be noted that the ‘method of snapshots’ 
136, 371, not used here, allows the use of data vectors of arbitrary length.) 

With the measures used for the Fourier dimension in mind, we look at the number of KL 
eigenmodes required to capture a certain percentage of the (fi-mode) energy of the system 
and the number required to get a specified drop-off in the eigenvalue spectrum. The results 
for the q-dependence of dm when p = CO = 0.01 are shown in table 2. Like dF, dKL was 

Table 2. Estimates ofthe Kxhunen-L&ve dimension, d a .  using the 
energy capture criteria for Lhe case p = CO = 0.01. 

drop-off and 99.99% 

10-5 drop-off 99.99% energy caphlre 

0.1 63 38 3.8 0.3800 28 2.8 0.2800 
0.05 79 76 3.8 0.1900 56 2.8 0.1400 
0.025 159 153 3.825 0.0956 114 2.85 0.0713 
0.015 267 228 3.42 0.0513 177 2.655 0.0398 

found to increase linearly with l/q, further evidence that &,, - l /q  near the dissipationless 
limit in I-D. We note that, when 4 = 0.05, the number of KL eigenmodes needed to capture 
99.99% of the energy for p = CO = 0.01 (56) was only nine percent greater than the number 
needed for p = CO = 0.25 (51). This is essentially the same behaviour found for dF. 

4.2. Lyapunov dimension calculations 

We are interested in the behaviour near the dissipationless limit of the attractor dimension, 
dut. To study this, Lyapunov exponents were calculated and attractor dimension estimates 
were obtained using the,Kaplan-York formula [38]. This gives the approximate value for 
the attractor dimension 

(14) 
CE, hi dat Y d, = M - - 

AM+I 

where M is the smallest integer such that the sum of the largest M+ 1 Lyapunov exponents, 
E%’ hj,  is negative. The number dA is known as the Lyapunov dimension. 
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For (2). the M largest Lyapunov exponents were calculated by numerically following 
M + 1 nearby initial conditions and measuring the change in the enclosed M-dimensional 
volume in Fourier phase space. This same technique has been used by Keefe to 
study both the CGL equation [18, 221 and plane Poiseuille flow [39]. We calculated 
the Lyapunov exponents by the standard procedure [4&42] of applying GramSchmidt 
reorthonormalization to the displacement vectors at suitably separated times and averaging 
over a large number (- lo3) of correlation times in order to capture the overall 
behaviour. Since the non-variational approach was used, the time between samples (i.e. 
renormalizations) was chosen to give only a small change in the fastest growing displacement 
vector, so that the local features of the attractor would be captured. For all calculations, the 
nth initial displacement from the reference trajectory took the form of an 0(10@) increase 
in the amplitude of the nth sine mode. 

As noted previously, for Dirichlet, Neumann, and periodic boundary conditions it has 
been demonstrated for p = CO = 0.25 that d,  - l/q when q is sufficiently small [lo, 
221. It was predicted in [I] that this generally expected behaviour 143, 441 should continue 
near the dissipationless limit. Confirmation of this can he seen in our Lyapunov dimension 
results for p = CO = 0.01, shown in table 3. 

Table 3. Results of Lyapunov exponent calculations for the case. p = cg = 0.01. Shown for 
each q are the largest exponent A,, the Lyapunov dimension di 2 daw and its product with y. 
and the number of positive exponents N+. 

0.1 0.0241 18.05 1.805 10 8 
0.05 0.0262 36.98 1.849 20 18 
0.025 0.0315 77.89 , 1.947 40 39 

Although only three data points were obtained, the factor of four between the smallest 
and largest values of q examined indicates that there is very little deviation from the expected 
linea behaviour. In addition, as found for the case p = CO = 0.25 by Sirovich et ul, an 
extrapolation of our attractor dimension estimates to relatively small l/q gives q N 1 when 
dm = 0, in agreement with the occurrence of the bifurcation h m  homogeneous equilibrium 
at q = 1 when p = CO. 

To examine the effect of p and CO on dam. Lyapunov exponents and attractor dimension 
estimates were calculated for several values of p = CO when q = 0.05. These results are 
given in table 4. It can be seen that daw increases as p = CO is decreased. However, 

Table 4. Results of Lyapunov exponent calculations for q = 0.05 and p = CO. Shown are 
the largest exponent hi, the Lyapunov dimension d i  2 d,, and its product with c:”, and the 
number of positive exponents N+. 

0.6 0.1494 22.19 17.19 12 
0.25 0.0972 25.33 12.67 15 
0.01 0.0263 36.98 3.698 18 

while p = CO decreases by a factor of 60, dut only increases by approximately 67%. ‘Thus 
changing p = CO has a moderate effect on the attractor dimension, although, as seen above, 
it does not affect the form of the q-bound on datt. 
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In [l], it is stated that for all f i  and U the bound on the attractor dimension for the 1-D 
COL equation is proportional to R'lZ. The numerical results in [lo] for p = CO = 0.25 
and those presented here for p = CO = 0.01 (which is taken to represent the dissipationless 
limit) have confirmed this for -.LA = U, since in this case R'/z = q-'. From the relations 
connecting the parameters in (2) and (9), it can be seen that in general R'lZ = 2 x k ~ .  
Thus, the physical interpretation of the R I P  bound on the attractor dimension is that the 
number of energy-bearing (Le., integral-range Fourier) modes determines the dimension of 
the attractor. 

The inertial manifold predictions given in [I] imply that the number of basis functions 
needed to fully describe the problem is bounded in proportion to a higher power of kL than is 
the attractor dimension. This would mean that the attractor is very complicated even when 
it has a fairly low Lyapunov dimension, an idea which disagrees with our numerical results. 
For p = CO = 0.01, we found that the number of Fourier modes and the number of KL 
eigenmodes needed to maintain a fixed degree of accuracy were both directly proportional 
to l lq ,  the same behaviour found for the attractor dimension. 

4.3. A Lyapunovfunctional 

One of the key quantities in the analysis of Barmccelli et a1 is the set 

These Fn's are important because they are the Lyapunov functionals for the I-D NLS 
equation (8). Bartuccelli et a1 obtain different timeasymptotic R-bounds on F. for the 
cases p ,  CO - 1 and p ,  CO << 1. Here we will compare their predictions for 

with numerical results for p = C O  = 0.01. The bounds in [l] imply that 

l i i ~ ~ p  Fz < cq-' p = c o - l  (17) 
1" 

lim sup Fz < c4-4 p =CO << 1. (18) 
I-m 

For p = CO = 0.01 and four values of q. the maximum of Fz obtained from a long time 
series, denoted FT', was taken as the experimental value for lim Fz. Table 5 
contains the results of these calculations. It can be seen that as q decreases F F  increases 

Tsble 5. Numerical results For the Lyapunov functional F2 for p = CO = 0.01 

0.1 6.19 0.196 0.110 0.062 
0.05 19.5 0.218 0.103 0.049 
0.025 68.7 0.272 0.108 0.043 
0.015 173 0.318 0.111 0.039 

less slowly than q-' and slightly faster than q-3/2. The quantity F F  was found to be 
approximately proportional to q"I4. This result for p = CO = 0.01 implies that near the 
dissipationless limit the asymptotic bounds on FZ given by Barmccelli et a1 are too large. 
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The fact that for p = CO < 1 FZ was found to increase less slowly than q-' suggests 
that the bounds they give on F2 for relatively large dissipation are also high. Finally, this 
overestimate for FZ near the dissipationless limit suggests an overestimate of the asymptotic 
bounds on all the F.'s near the 1-D dissipationless limit, and hence a possible overestimate 
of the bounds on other related quantities (such as di.,,,. and [IAIlL). Our results for FZ 
support the above numerical results which suggested the calculations in [l] overestimated 
dim.. 

Remark. For p.co <( 1, Bartuccelli et a1 give an asymptotic bound which implies 
liisup,,, l lA[[L < CA. Although we did not make systematic measurements of [lAllm, 
our results indicated that it depends only weakly on q (for p = CO = 0.01) and p = CO (for 
q = 0.05), and that it never exceeds the approximate value 1.8. 

5. Universal behaviour for p = fo << I 

We now discuss some aspects of universality which have been observed in solutions of (2) 
for q < 0.1. As stated previously, for p = CO = 0.25 the averaged wavenumber spectrum 
of (2) takes a universal form as a function of qk. Our results for p = CO = 0.01 showed that 
dF - q-' ,  suggesting universal behaviour in this case also. This universality is confirmed 
by the plots in figure 15 of log [(IfkIz)/q] versus qk.  

A more direct form of universality which was found to hold for (2) is that of 
the Lyapunov exponent spectrum, denoted h(n). If h(n) is plotted against qn, fixing 
p = CO = 0.01, then the spectra for various q all lie on nearly the same curve. This is done 
in figure 16. It can be seen that for larger qn this universality holds very accurately. The 
results for smaller qn would likely be better if longer averages had been used in computing 
the Lyapunov exponents. For p = CO = 0.25, Keefe [22] found this same universality for 
both Neumann and periodic boundary conditions. 

We note that, in contrast to the wavenumber spectrum, universality in the Lyapunov 
exponent spectrum requires a rescaling of the index n only. This type of universality is also 
seen in the one-dimensional KuramotoSivashinsky equation [45]. In that problem L, the 
parameter analogous to l / q ,  occurs in the boundary conditions instead of in the equation 
itself, and determines the length of the domain in which the solution evolves. Self-similarity 
leads to a universal form for the Lyapunov exponent spectrum as a function of n/L. In (2) 
length can be rescaled via x' = x / q  in order to eliminate q from the equation and change 
the domain to x' E [O, r/q]. Therefore, the 1-D CGL problem can be viewed as one in 
which q determines the length of the one-dimensional 'box' in which the solution evolves. 
This explains the observed universality in the Lyapunov spectrum and, along with nearly 
constant total energy, also explains the universality in the wavenumber spectrum. 

We now present results indicating the way the Lyapunov exponent spectrum changes near 
the dissipationless limit. Figure 17 shows the spectra for p = CO = 0.25 and p = CO = 0.01 
when q = 0.05. It can be seen that the spectrum gets much flatter as the dissipationless 
limit is approached. This is thought to be related to the fact that both the growth (c( PA)  
and the dissipation (a q'coA,,) are very small for p = CO < 1. 

6. Remarks on observed wavenumber spectra 

The wavenumber scale kL = q - ' m  qualitatively explains the change in the size of the 
integral range as CO (and possibly p )  becomes small. For these wavenumbers (k < k ~ )  the 
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mean square amplitude ('lfk12) is approximately constant, while for very high wavenumbers 
(k >> kL) it decays exponentially. 

Of interest here is the prediction in 1101 that for wavenumbers outside the integral range 

(lhl2) - (qk)-4e-qk. (19) 

For qk - 1 this result describes the transitional region between the constant amplitude 
modes and those which decay exponentially with increasing k.  In [IO] the result (19) was 
confirmed for p = co = 0.25 via numerical simulations. Since p and CO were fixed, the 
derivation of (19) was done without particular consideration for the dependence on these 
parameters. 

Here we note that outside the integral range the wavenumber specwa observed in the 
present study for p = 0.25, CO << 1 are well described by a function of the form 

F(k)  - q-4(k + k ~ ) - ~ e - ~ ~ ~  (20) 

it being assumed that k f ko z 0. Generally (Y - 1, but ko was found to depend on CO and 
is thought to be related to kL. It remains to establish the exact parameter dependence of ko 
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= 0.25 (D) and p = CO = 0.01 

and to fully understand the transitional region between the integral and dissipative ranges 
for p = C O  << 1. 

7. Conclusion 

Our numerical results in sections 2 and 3 showed that hard turbulence does not occur 
in solutions of the 1-D CGL equation subject to Dirichlet boundary conditions when the 
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dissipation becomes very small. This confirmed the general predictions made in [l]. Our 
results in section 4 for p = CO << 1 showed that the attractor dimension continues to scale 
like I /q ,  as expected, and that the inertial manifold for this case is much simpler than was 
suggested in [I]. Finally, in section 5 we showed for p = CO << 1 that the universality found 
in [lo] for the wavenumber spectrum continues to hold, and that the Lyapunov spectrum 
also has a universal form when the index is scaled by l / q .  

The occurrence of small length scales in the I-D CGL equation was found to be limited 
more by their production than by their dissipation. This is clear from the fact that the 
wavenumber spectrum changed very little as the dissipationless limit was approached, even 
when 6d was decreased by a factor of ten. The absence of the large localized fluctuations 
generally associated with hard turbulence could explain both the non-production of small 
length scales and the absence of an inertial range. It is felt that for an inertial range to 
occur in the CGL equation it is necessary to have not only a significant separation between 
integral and dissipative length scales, but also some mechanism for producing an intense 
cascade of energy to high wavenumber modes. As discussed in [I], both of these conditions 
are expected to hold near the dissipationless limit in 2-D due to the existence of solutions 
to the 2-D NLS equation which become infinite in finite time. 

D Goidmm and L Sirovich 
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