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Diabetes mellitus and heart failure have a bidirectional relationship and can affect one 
another. Ventricular dysfunction that occurs in the absence of coronary atherosclerosis 
and hypertension in patients with diabetes mellitus is termed diabetic cardiomyopathy. 
Lipotoxicity, increased oxidative stress and mitochondrial dysfunction are a few of the 
mechanisms implicated in diabetic cardiomyopathy. Patients with diabetes mellitus 
undergo cardiac structural changes leading to heart failure. The novel glucose-lowering 
medication that is now preferred for diabetic patients with heart failure is the SGLT-2 
(sodium-glucose cotransporter 2) inhibitor. Emerging targeted therapies are showing 
beneficial effects but require further evaluation. We review the literature describing the 
pathophysiology of diabetic cardiomyopathy, cardiac structural changes, along with the 
novel glucose-lowering therapies and targeted therapies for diabetic cardiomyopathy. 

INTRODUCTION 

Diabetes mellitus (DM) is an independent risk factor for 
heart failure and there exists a bidirectional relationship 
between DM and heart failure (HF). The prevalence of heart 
failure in patients with DM is 4 times higher than in the 
general population.1 According to the Framingham Heart 
Study, cardiovascular disease (CVD) attributable to DM has 
increased over the past 50 years. Amongst other risk factors, 
only DM demonstrated an increase in the population attrib
utable risk (PAR) for heart failure over the 2 time periods 
(1952 to 1974 and 1975 to 1998).2 The pathophysiology of 
heart failure preserved ejection fraction (HFpEF) is closely 
related to DM and approximately 40% of HFpEF patients 
have DM.3 Heart failure with reduced ejection fraction 
(HFrEF) is often associated with DM progression. HFrEF has 
a strong association with type 1 diabetes mellitus (T1DM).4 

DM can cause various structural and functional changes 
in the myocardium. These changes are characterized by ab
normal cardiac structure and function in the absence of 
other cardiac risk factors and was first reported in a post
mortem study from diabetic patients who developed heart 
failure symptoms without evidence of coronary artery or 
valve disease. In 2013, the American College of Cardiology 
Foundation, the American Heart Association (ACC/AHA), 
and the European Society of Cardiology (ESC) in collabo
ration with the European Association for the Study of Dia
betes (EASD) defined diabetic cardiomyopathy as a clinical 
condition of ventricular dysfunction that occurs in the ab
sence of coronary atherosclerosis and hypertension in pa
tients with diabetes mellitus.5,6 In the early stages, some 
structural and functional changes occur, some of which are 
left ventricular (LV) hypertrophy, fibrosis, and cell signaling 
disruption.7 These changes evolve into HF and further into 
HFrEF. The goal of this review is to summarize current 

knowledge about diabetic cardiomyopathy, its current 
pathophysiology and novel treatments. 

METHODS 

The research design of this study was a short narrative re
view. We conducted a literature search on diabetic car
diomyopathy and existing novel treatment from databases 
consisting of PubMed and Google Scholar. We found 465 lit
erature search results with “diabetic cardiomyopathy” as 
a keyword and 36 literature search results with its “novel 
treatment”. We limited our research for literature written 
in the English language and for which the access to full 
text was available. The selection of the literature results re
viewed in the manuscript was performed qualitatively by 
authors. Screening for duplicates was done automatically 
using citation manager software, Mendeley. 

RESULTS 
DIABETES MELLITUS AND HEART FAILURE 

There is a strong association between DM and HF. There 
are 2 forms of heart failure described in DM: HFrEF (LVEF 
< 40%) and HFpEF (LVEF 41-49%). The prevalence of DM 
among patients with HFpEF is around 45%. A large cohort 
study of 1.9 million people with DM found that the most 
common CVD events were heart failure (14.1%) and pe
ripheral arterial disease (PAD) (16.2%).8 Based on a popu
lation-based study in Reykjavik, impaired glucose regula
tion in diabetes mellitus is also associated with a risk of 
congestive heart failure. The prevalence of glucose abnor
malities and heart failure increased with age. This study 
supports the suggestion that glucometabolic abnormalities 
confer risk for heart failure progression.9 While in T1DM, 
a cohort study found that a 1% increase in HbA1C (hemo
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Figure 1. Pathophysiologic mechanisms of diabetic cardiomyopathy 

globin A1C) was associated with a 30% increased risk of de
veloping HF, the risk of heart failure increased with several 
factors, such as age, duration of diabetes, and other fac
tors.10 

Patients with HF can also have an increased risk for new-
onset DM. In a cohort study, HF severity was associated 
with a greater likelihood of developing DM.11 Another study 
reported that patients with a history of HF have a 2-fold 
increased risk of developing diabetes mellitus within 3-4 
years independent of age, gender, and other comorbidities 
(e.g. hypertension). They suggest that HF may cause further 
worsening of DM status.12 

The correlation between HF and DM is unclear, but there 
are possible explanations. Patients with HF have decreased 
cardiac output hence oxygen, insulin, and glucose distrib
ution to peripheral tissue are also decreased. Due to im
paired blood flow, adrenaline and noradrenaline levels are 
increased. The increased adrenaline and noradrenaline are 
suggested to increase insulin resistance and decrease in
sulin production in the pancreas.13 Cortisol and cate
cholamine hormones are also increased thus increasing the 
blood glucose level. Activation of the sympathetic systems 
stimulates gluconeogenesis and glycogenolysis. The in
creasing level of catecholamines can also cause insulin re
sistance.14 

PATHOPHYSIOLOGY OF DIABETIC CARDIOMYOPATHY 

Various mechanisms are thought to be responsible for heart 
failure associated with diabetes mellitus and it is not lim
ited to diabetic cardiomyopathy. Abnormal extracellular 
matrix, lipotoxicity to the myocardium, increase in oxida
tive stress and inflammation, and mitochondrial dysfunc
tion are some of the mechanisms causing heart failure. In
creased levels of glucose residues and metabolites 
upregulate the production of advanced glycation end prod
ucts (AGEs), which can affect cardiomyocytes and endothe
lial cells.15 Figure 1 outlines some of the mechanisms 
thought to contribute to diabetic cardiomyopathy. 

FREE FATTY ACID ACCUMULATION 

Free fatty acids are increased due to diabetes mellitus and 
obesity accumulating in the adipose tissue mainly as 
triglycerides. Fatty acid intake and β-oxidation are in
creased to maintain sufficient levels of ATP production but 
overtime β-oxidation cannot adequately metabolize all in
coming fatty acids resulting in the accumulation of free 
fatty acid (FFA).16 Ectopic fat that accumulates in organs 
other than the adipocytes of visceral fat and subcutaneous 
fat causes the dysfunction of cells and organs, such as the 
liver, pancreatic β cells, the skeletal muscle, and my
ocardium, through the deterioration of mitochondrial func
tion. This condition is called lipotoxicity.17 

Fat accumulation is present in the heart and in the my
ocardium. Pericardial fat is divided into two types, pericar
dial fat located on the outside and epicardial fat located on 
the inside. High epicardial fat mass has been reported to 
be an independent predictor of the development of coro
nary artery disease.17 The myocardial FFA build-up leads to 
decreased myocardial energy production, reduced myocyte 
contractility, and lipoapoptosis.18 

ALTERED CALCIUM SIGNALING 

Calcium (Ca2+) has a vital role in myocardial contraction. 
During an action potential, membrane depolarization-in
duced an initial Ca2+ signal so there is a Ca2+ influx to acti
vate the Ca2+ channel and finally activate myofibrils to con
tract. In type 1 diabetes, there is a reduced Ca2+ influx due 
to reduced expression of sarcolemmal L type Ca2+ channels 
(LTCC) where Ca2+ ions pass through.19 The intracellular 
[Ca2+] is decreased as well as the systolic rate of [Ca2+] rise 
and decay. 

In type 2 diabetes mellitus (T2DM), similar to T1DM, 
there is also a diminished LTCC density and Ca2+ current 
(ICa) density.20–23 Some studies also reported a depressed 
ryanodine receptor (RyR), a Ca2+ release channel.24–26 RyR 
activity can also be regulated during acute hyperglycemia. 
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Hyperglycemia leads to O-Glc-NAcylation of proteins such 
as CaMKII which plays a key role in the regulation of ex
citation-contraction coupling. A recent study showed that 
a sudden increase of glucose or O-linked N-acetylglu
cosamine is directly responsible for CaMKII-dependent di
astolic sarcoplasmic reticulum (SR) Ca2+ leak from the RyRs 
leading to consequent SR Ca2+ load depletion which is con
sistent with the increase of SR Ca2+ leak observed in differ
ent early stage of diabetes.27 

INCREASED OXIDATIVE STRESS 

Chronic hyperglycemia leads to the generation of oxidative 
stress in pancreatic β-cells.28 Hyperglycemia promotes the 
overproduction of reactive oxygen species by the mitochon
drial electron transport chain and exacerbates the forma
tion of AGE.29,30 High glucose levels are metabolized into 
sorbitol through the polyol pathway with NADPH (nicoti
namide adenine dinucleotide phosphate) and NAD+ (nicoti
namide adenine dinucleotide). Increased activity of polyol 
pathway causing an elevation in NADH/NAD+ ratio that 
leads to overproduction of reactive oxygen species (ROS).31 

AGEs have a dominant presence in the diabetic heart, and it 
is possible that AGE also has a role in the pathogenesis of 
diabetic cardiomyopathy. AGE receptor (RAGE) is a member 
of the immunoglobulin superfamily of cell surface mole
cules and the binding of ligands to RAGE stimulates various 
signaling pathways.32 The AGE-RAGE interaction stimu
lates NADPH oxidase-1 which contributes to reactive oxy
gen species production in diabetes.33 All this leads to car
diac fibrosis and hypertrophy.34 Hyperglycemia, oxidative 
stress, and the hexosamine biosynthetic pathway that pro
vide substrate for proteoglycan synthesis and for O-linked 
glycosylation of certain proteins are associated with car
diomyocyte apoptosis.35 

MITOCHONDRIAL DYSFUNCTION 

The heart is an organ that greatly depends on mitochondria 
as this organelle makes up to 1/3 of cardiac volume and 
produces adenosine triphosphate (ATP) from the oxidation 
of fatty acid and glucose.36 In a diabetic state where the 
insulin production or action is reduced, the mitochondria 
will use fatty acid as a source to make ATP instead of glu
cose which can also increase ROS.37 Dysfunctional calcium 
handling, where there is an excessive calcium influx or re
duced calcium efflux can trigger the opening of mitochon
drial permeability transition pore (mPTP), leading to mito
chondrial dysfunction.38 

Increased oxidative stress and mitochondrial dysfunc
tion can cause cells, protein, and nucleic acid destructions 
that lead to cell apoptosis. The heart consumes large 
amounts of ATP therefore it has a rather low ATP reserve. 
In the pathological condition, however, fatty acids only pro
vide 50-70% energy needed by the human heart.39 Mito
chondria can switch the source of ATP production depend
ing on the availability of the nutrients. Insulin also plays a 
role in this selection of energy sources.40 High consumption 
of ATP depletes the ATP reservoir, and low ATP production 
may lead to decreased cardiac function.41 

STRUCTURAL CHANGES 

Being in a chronic hyperglycemic state may alter the struc
ture and function in the myocardium. In the patient with 
DM, there seems to be an increase in LV mass, and based 
on a study, a 1% rise in HbA1C level contributes to a 3.0 
gr increase in LV mass, although further studies need to be 
done to assess the duration of elevated HbA1C that may 
contribute to the increased of LV mass.42 LV hypertrophy in 
patients with DM is mainly eccentric although both forms of 
hypertrophy can be present.43 As the disease progresses, re
modeling can also shift from eccentric to concentric.44 An
other hallmark of diabetic cardiomyopathy is left ventric
ular diastolic dysfunction.45,46 The initial characteristic of 
diastolic dysfunction in patients with DM are prolonged and 
delayed LV filling and LV relaxation.47 

On a cellular level, an extracellular matrix (ECM) remod
eling leads to myocardial fibrosis, usually in the later stage 
of the disease. In the early stage, myocytes appear to be hy
pertrophic rather than fibrotic.48 Collagen deposits can also 
be seen as a result of apoptotic myocyte death and impaired 
collagen degradation from glycosylation of lysine residues 
on collagen.49 

DIAGNOSIS 

There are two stages of diabetic cardiomyopathy; the early 
stage is characterized by left ventricular concentric hyper
trophy, increased myocardial stiffness, increase in atrial fill
ing pressure, and impaired diastolic function; while the late 
stage is characterized by an increase in cardiac fibrosis, fur
ther impairment in diastolic function, and appearance of 
systolic dysfunction. There are no distinct criteria nor bio
chemical markers or physical characteristics for diagnosing 
diabetic cardiomyopathy. The pathological changes during 
the disease progress are often asymptomatic, so the only 
way to detect any changes regarding the disease is through 
further examination. Tissue doppler imaging and strain rate 
imaging may be used to assess LV dysfunction during stress 
testing. The ratio of the medial mitral annulus (e′) with 
early passive transmitral inflow velocity (E) has been shown 
to be a reliable index of left ventricular filling pressure and 
is a useful prognostic biomarker in diabetic patients.50 

Although it is often said that patients with diabetic car
diomyopathy usually have diastolic dysfunction, examina
tion using strain imaging and cardiac magnetic resonance 
(CMR) has detected a subtle presence of systolic dysfunc
tion and reduced longitudinal contractility without discrete 
diastolic dysfunction.51 Magnetic resonance (MR) spec
troscopy is a novel diagnostic tool that can identify my
ocardial metabolic changes, such as quantifying myocardial 
triglyceride content. Assessment of interstitial fibrosis and 
steatosis by using delayed gadolinium enhancement cardiac 
MRI is possible but it is still undergoing investigation.52 

NOVEL GLUCOSE-LOWERING DRUGS FOR HEART 
FAILURE 

As mentioned above, DM is associated with poor prognosis 
and longer hospitalization for HF. Thus, lowering the 
glycemic index has become a goal in heart failure treatment. 
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New classes of antihyperglycemic drugs such as glucagon-
like peptide-1 (GLP-1) analog and sodium-glucose cotrans
porter 2 inhibitors (SGLT2i) have been shown to reduce car
diovascular mortality and improve glycemic control.53,54 

However, the treatment of T2DM patients with HF using 
GLP-1 analogs remains controversial. Several studies in DM 
patients have found that GLP-1 analogs did not affect any 
major adverse cardiovascular event (MACE).55,56 Other tri
als showed that GLP-1 analogs have a significantly lower 
cardiovascular mortality rate, nonfatal myocardial infarc
tion, or nonfatal stroke, improve lipotoxicity, and also pro
tects cardiac function in T2DM patients.57–59 On the other 
hand, there are also studies that concluded the liraglutide 
(a GLP-1 analog) worsened the cardiac outcomes and signif
icantly increase MACE.60,61 

The EMPA-REG OUTCOME trial (The Empagliflozin Car
diovascular Outcome Event Trial in Type 2 Diabetes melli
tus Patients–Removing Excess Glucose) showed that T2DM 
patients who received empagliflozin, a selective SGLT2i, 
have a lower rate cardiovascular mortality, hospitalization 
for heart failure, nonfatal myocardial infarction, or nonfatal 
stroke.62 Canagliflozin, another SGLT2i drug, also showed 
a significantly reduced risk of mortality due to cardiovas
cular causes, nonfatal myocardial infarction, or nonfatal 
stroke but had a greater risk of amputation.63 SGLT2i also 
have blood pressure (BP) lowering properties but are not 
as effective as other antihypertensive drugs such as an
giotensin-converting enzyme (ACE) inhibitors.64 It is found 
that empagliflozin was associated with reduced systolic and 
diastolic blood pressure compared with placebo (who re
ceived an additional glucose-lowering medicine and also 
antihypertensive medicine, including diuretics).62 On the 
other hand, there was no significant difference in systolic 
and diastolic blood pressure in the use of Canagliflozin 
compared to placebo.63 SGLT2i worked proportionally with 
the ambient glucose concentration, hence it may have a 
greater effect on individuals with poor glycemic control. 
However, the effect of SGLT2i on blood pressure doesn’t 
seem to be consistent with the blood glucose level, lowering 
systolic 4-6 mmHg and diastolic 1-2mmHg.64 

The incretin-based drugs such as dipeptidyl peptidase-4 
(DPP-4) inhibitors have no beneficial effect on HF but were 
shown to reduce the occurrence of hepatic steatosis.65,66 

Other trials have shown that DPP-4 inhibitor was not su
perior to placebo.67–69 The ESC-EASD 2019 guideline only 
recommends DPP-4 inhibitors when HbA1C targets are not 
reached after using SGLT2i, metformin, and/or GLP-1 re
ceptor agonists.70 The DPP-4 inhibitor that is not recom
mended for patients with or with risk of HF is saxagliptin as 
it can increase the risk for hospitalization for HF (HHF) and 
also increase the HF incidence in T2DM patients.71 

NOVEL TARGETED THERAPIES FOR DIABETIC 
CARDIOMYOPATHY 

MicroRNA (miRNA) is reported to have a role in the patho
physiology of diabetic cardiomyopathy, such as increase 
ROS production and promote cardiomyocyte apopto
sis.72–75 Anti-miRNA and miRNA mimics are actively stud
ied and developed to treat cardiomyopathy.76–78 Antioxi
dant therapies can be used for prevention and intervention 
for diabetic cardiomyopathy.79–85 Phenolic acids are bene
ficial for mitochondrial dysfunction as the protective agent 
of the heart against mitochondrial dysfunction and are ob
tained from plants such as nuts and fruits and thus can be 
added to the diets.86 Bile Acids are synthesized by choles
terol, bind and activate Farnesoid X Receptor (FXR) that 
leads to reduction of inflammation and have a regulatory 
effect on autophagy and mitochondrial function and can 
also suppress oxidative stress that showing a potential ther
apeutic effect.87 However further studies are still ongoing. 

CONCLUSION 

There is a strong association between diabetes mellitus and 
heart failure incidence. Patients with heart failure have in
creased risk for new-onset DM. The proposed mechanisms 
underlying the pathophysiology of diabetic cardiomyopathy 
include lipotoxicity related to free fattty acid accumulation, 
altered calcium signaling, increased oxidative stress due to 
chronic hyperglycemia leading to mitochondrial dysfunc
tion and alteration of structure and function in the my
ocardium. SGLT2i and novel targeted therapies for diabetic 
cardiomyopathy are promising treatments but require fur
ther investigation. It is important for clinicians to be aware 
of diabetic cardiomyopathy in order to improve cardiovas
cular outcomes in diabetes mellitus. 
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