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Diabetes mellitus and heart failure have a bidirectional relationship and can affect one
another. Ventricular dysfunction that occurs in the absence of coronary atherosclerosis
and hypertension in patients with diabetes mellitus is termed diabetic cardiomyopathy.
Lipotoxicity, increased oxidative stress and mitochondrial dysfunction are a few of the
mechanisms implicated in diabetic cardiomyopathy. Patients with diabetes mellitus
undergo cardiac structural changes leading to heart failure. The novel glucose-lowering
medication that is now preferred for diabetic patients with heart failure is the SGLT-2
(sodium-glucose cotransporter 2) inhibitor. Emerging targeted therapies are showing
beneficial effects but require further evaluation. We review the literature describing the
pathophysiology of diabetic cardiomyopathy, cardiac structural changes, along with the

novel glucose-lowering therapies and targeted therapies for diabetic cardiomyopathy.

INTRODUCTION

Diabetes mellitus (DM) is an independent risk factor for
heart failure and there exists a bidirectional relationship
between DM and heart failure (HF). The prevalence of heart
failure in patients with DM is 4 times higher than in the
general population.! According to the Framingham Heart
Study, cardiovascular disease (CVD) attributable to DM has
increased over the past 50 years. Amongst other risk factors,
only DM demonstrated an increase in the population attrib-
utable risk (PAR) for heart failure over the 2 time periods
(1952 to 1974 and 1975 to 1998).2 The pathophysiology of
heart failure preserved ejection fraction (HFpEF) is closely
related to DM and approximately 40% of HFpEF patients
have DM.3 Heart failure with reduced ejection fraction
(HFrEF) is often associated with DM progression. HFrEF has
a strong association with type 1 diabetes mellitus (T1DM).*

DM can cause various structural and functional changes
in the myocardium. These changes are characterized by ab-
normal cardiac structure and function in the absence of
other cardiac risk factors and was first reported in a post-
mortem study from diabetic patients who developed heart
failure symptoms without evidence of coronary artery or
valve disease. In 2013, the American College of Cardiology
Foundation, the American Heart Association (ACC/AHA),
and the European Society of Cardiology (ESC) in collabo-
ration with the European Association for the Study of Dia-
betes (EASD) defined diabetic cardiomyopathy as a clinical
condition of ventricular dysfunction that occurs in the ab-
sence of coronary atherosclerosis and hypertension in pa-
tients with diabetes mellitus.>¢ In the early stages, some
structural and functional changes occur, some of which are
left ventricular (LV) hypertrophy, fibrosis, and cell signaling
disruption.” These changes evolve into HF and further into
HFrEF. The goal of this review is to summarize current

knowledge about diabetic cardiomyopathy, its current
pathophysiology and novel treatments.

METHODS

The research design of this study was a short narrative re-
view. We conducted a literature search on diabetic car-
diomyopathy and existing novel treatment from databases
consisting of PubMed and Google Scholar. We found 465 lit-
erature search results with “diabetic cardiomyopathy” as
a keyword and 36 literature search results with its “novel
treatment”. We limited our research for literature written
in the English language and for which the access to full
text was available. The selection of the literature results re-
viewed in the manuscript was performed qualitatively by
authors. Screening for duplicates was done automatically
using citation manager software, Mendeley.

RESULTS
DIABETES MELLITUS AND HEART FAILURE

There is a strong association between DM and HF. There
are 2 forms of heart failure described in DM: HFrEF (LVEF
< 40%) and HFpEF (LVEF 41-49%). The prevalence of DM
among patients with HFpEF is around 45%. A large cohort
study of 1.9 million people with DM found that the most
common CVD events were heart failure (14.1%) and pe-
ripheral arterial disease (PAD) (16.2%).8 Based on a popu-
lation-based study in Reykjavik, impaired glucose regula-
tion in diabetes mellitus is also associated with a risk of
congestive heart failure. The prevalence of glucose abnor-
malities and heart failure increased with age. This study
supports the suggestion that glucometabolic abnormalities
confer risk for heart failure progression.? While in T1DM,
a cohort study found that a 1% increase in HbA1C (hemo-
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Figure 1. Pathophysiologic mechanisms of diabetic cardiomyopathy

globin A1C) was associated with a 30% increased risk of de-
veloping HF, the risk of heart failure increased with several
factors, such as age, duration of diabetes, and other fac-
tors.10

Patients with HF can also have an increased risk for new-
onset DM. In a cohort study, HF severity was associated
with a greater likelihood of developing DM.1! Another study
reported that patients with a history of HF have a 2-fold
increased risk of developing diabetes mellitus within 3-4
years independent of age, gender, and other comorbidities
(e.g. hypertension). They suggest that HF may cause further
worsening of DM status.!2

The correlation between HF and DM is unclear, but there
are possible explanations. Patients with HF have decreased
cardiac output hence oxygen, insulin, and glucose distrib-
ution to peripheral tissue are also decreased. Due to im-
paired blood flow, adrenaline and noradrenaline levels are
increased. The increased adrenaline and noradrenaline are
suggested to increase insulin resistance and decrease in-
sulin production in the pancreas.!3 Cortisol and cate-
cholamine hormones are also increased thus increasing the
blood glucose level. Activation of the sympathetic systems
stimulates gluconeogenesis and glycogenolysis. The in-
creasing level of catecholamines can also cause insulin re-
sistance.14

PATHOPHYSIOLOGY OF DIABETIC CARDIOMYOPATHY

Various mechanisms are thought to be responsible for heart
failure associated with diabetes mellitus and it is not lim-
ited to diabetic cardiomyopathy. Abnormal extracellular
matrix, lipotoxicity to the myocardium, increase in oxida-
tive stress and inflammation, and mitochondrial dysfunc-
tion are some of the mechanisms causing heart failure. In-
creased levels of glucose residues and metabolites
upregulate the production of advanced glycation end prod-
ucts (AGEs), which can affect cardiomyocytes and endothe-
lial cells.!> Figure 1 outlines some of the mechanisms
thought to contribute to diabetic cardiomyopathy.

FREE FATTY ACID ACCUMULATION

Free fatty acids are increased due to diabetes mellitus and
obesity accumulating in the adipose tissue mainly as
triglycerides. Fatty acid intake and [-oxidation are in-
creased to maintain sufficient levels of ATP production but
overtime [B-oxidation cannot adequately metabolize all in-
coming fatty acids resulting in the accumulation of free
fatty acid (FFA).l6 Ectopic fat that accumulates in organs
other than the adipocytes of visceral fat and subcutaneous
fat causes the dysfunction of cells and organs, such as the
liver, pancreatic [ cells, the skeletal muscle, and my-
ocardium, through the deterioration of mitochondrial func-
tion. This condition is called lipotoxicity.1?

Fat accumulation is present in the heart and in the my-
ocardium. Pericardial fat is divided into two types, pericar-
dial fat located on the outside and epicardial fat located on
the inside. High epicardial fat mass has been reported to
be an independent predictor of the development of coro-
nary artery disease.!” The myocardial FFA build-up leads to
decreased myocardial energy production, reduced myocyte
contractility, and lipoapoptosis.18

ALTERED CALCIUM SIGNALING

Calcium (Ca?*) has a vital role in myocardial contraction.
During an action potential, membrane depolarization-in-
duced an initial Ca2* signal so there is a CaZ* influx to acti-
vate the Ca2* channel and finally activate myofibrils to con-
tract. In type 1 diabetes, there is a reduced Ca%* influx due
to reduced expression of sarcolemmal L type Ca%* channels
(LTCC) where Ca* ions pass through.!? The intracellular
[Ca2*] is decreased as well as the systolic rate of [Ca2*] rise
and decay.

In type 2 diabetes mellitus (T2DM), similar to T1DM,
there is also a diminished LTCC density and CaZ* current
Ucw density.29-23 Some studies also reported a depressed
ryanodine receptor (RyR), a CaZ* release channel.24-26 RyR
activity can also be regulated during acute hyperglycemia.
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Hyperglycemia leads to O-Glc-NAcylation of proteins such
as CaMKII which plays a key role in the regulation of ex-
citation-contraction coupling. A recent study showed that
a sudden increase of glucose or O-linked N-acetylglu-
cosamine is directly responsible for CaMKII-dependent di-
astolic sarcoplasmic reticulum (SR) Ca%* leak from the RyRs
leading to consequent SR CaZ* load depletion which is con-
sistent with the increase of SR Ca%* leak observed in differ-
ent early stage of diabetes.2”

INCREASED OXIDATIVE STRESS

Chronic hyperglycemia leads to the generation of oxidative
stress in pancreatic B-cells.28 Hyperglycemia promotes the
overproduction of reactive oxygen species by the mitochon-
drial electron transport chain and exacerbates the forma-
tion of AGE.2%:30 High glucose levels are metabolized into
sorbitol through the polyol pathway with NADPH (nicoti-
namide adenine dinucleotide phosphate) and NAD* (nicoti-
namide adenine dinucleotide). Increased activity of polyol
pathway causing an elevation in NADH/NAD" ratio that
leads to overproduction of reactive oxygen species (ROS).31
AGEs have a dominant presence in the diabetic heart, and it
is possible that AGE also has a role in the pathogenesis of
diabetic cardiomyopathy. AGE receptor (RAGE) is a member
of the immunoglobulin superfamily of cell surface mole-
cules and the binding of ligands to RAGE stimulates various
signaling pathways.32 The AGE-RAGE interaction stimu-
lates NADPH oxidase-1 which contributes to reactive oxy-
gen species production in diabetes.33 All this leads to car-
diac fibrosis and hypertrophy.34 Hyperglycemia, oxidative
stress, and the hexosamine biosynthetic pathway that pro-
vide substrate for proteoglycan synthesis and for O-linked
glycosylation of certain proteins are associated with car-
diomyocyte apoptosis.35

MITOCHONDRIAL DYSFUNCTION

The heart is an organ that greatly depends on mitochondria
as this organelle makes up to 1/3 of cardiac volume and
produces adenosine triphosphate (ATP) from the oxidation
of fatty acid and glucose.3¢ In a diabetic state where the
insulin production or action is reduced, the mitochondria
will use fatty acid as a source to make ATP instead of glu-
cose which can also increase ROS.37 Dysfunctional calcium
handling, where there is an excessive calcium influx or re-
duced calcium efflux can trigger the opening of mitochon-
drial permeability transition pore (mPTP), leading to mito-
chondrial dysfunction.38

Increased oxidative stress and mitochondrial dysfunc-
tion can cause cells, protein, and nucleic acid destructions
that lead to cell apoptosis. The heart consumes large
amounts of ATP therefore it has a rather low ATP reserve.
In the pathological condition, however, fatty acids only pro-
vide 50-70% energy needed by the human heart.3 Mito-
chondria can switch the source of ATP production depend-
ing on the availability of the nutrients. Insulin also plays a
role in this selection of energy sources.40 High consumption
of ATP depletes the ATP reservoir, and low ATP production
may lead to decreased cardiac function.4!

STRUCTURAL CHANGES

Being in a chronic hyperglycemic state may alter the struc-
ture and function in the myocardium. In the patient with
DM, there seems to be an increase in LV mass, and based
on a study, a 1% rise in HbA1C level contributes to a 3.0
gr increase in LV mass, although further studies need to be
done to assess the duration of elevated HbA1C that may
contribute to the increased of LV mass.42 LV hypertrophy in
patients with DM is mainly eccentric although both forms of
hypertrophy can be present.*3 As the disease progresses, re-
modeling can also shift from eccentric to concentric.44 An-
other hallmark of diabetic cardiomyopathy is left ventric-
ular diastolic dysfunction.4546 The initial characteristic of
diastolic dysfunction in patients with DM are prolonged and
delayed LV filling and LV relaxation.4”

On a cellular level, an extracellular matrix (ECM) remod-
eling leads to myocardial fibrosis, usually in the later stage
of the disease. In the early stage, myocytes appear to be hy-
pertrophic rather than fibrotic.48 Collagen deposits can also
be seen as a result of apoptotic myocyte death and impaired
collagen degradation from glycosylation of lysine residues
on collagen.4?

DIAGNOSIS

There are two stages of diabetic cardiomyopathy; the early
stage is characterized by left ventricular concentric hyper-
trophy, increased myocardial stiffness, increase in atrial fill-
ing pressure, and impaired diastolic function; while the late
stage is characterized by an increase in cardiac fibrosis, fur-
ther impairment in diastolic function, and appearance of
systolic dysfunction. There are no distinct criteria nor bio-
chemical markers or physical characteristics for diagnosing
diabetic cardiomyopathy. The pathological changes during
the disease progress are often asymptomatic, so the only
way to detect any changes regarding the disease is through
further examination. Tissue doppler imaging and strain rate
imaging may be used to assess LV dysfunction during stress
testing. The ratio of the medial mitral annulus (e') with
early passive transmitral inflow velocity (E) has been shown
to be a reliable index of left ventricular filling pressure and
is a useful prognostic biomarker in diabetic patients.>0
Although it is often said that patients with diabetic car-
diomyopathy usually have diastolic dysfunction, examina-
tion using strain imaging and cardiac magnetic resonance
(CMR) has detected a subtle presence of systolic dysfunc-
tion and reduced longitudinal contractility without discrete
diastolic dysfunction.51 Magnetic resonance (MR) spec-
troscopy is a novel diagnostic tool that can identify my-
ocardial metabolic changes, such as quantifying myocardial
triglyceride content. Assessment of interstitial fibrosis and
steatosis by using delayed gadolinium enhancement cardiac
MRI is possible but it is still undergoing investigation.>2

NOVEL GLUCOSE-LOWERING DRUGS FOR HEART
FAILURE

As mentioned above, DM is associated with poor prognosis
and longer hospitalization for HF. Thus, lowering the
glycemic index has become a goal in heart failure treatment.
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New classes of antihyperglycemic drugs such as glucagon-
like peptide-1 (GLP-1) analog and sodium-glucose cotrans-
porter 2 inhibitors (SGLT2i) have been shown to reduce car-
diovascular mortality and improve glycemic control.53,54
However, the treatment of T2DM patients with HF using
GLP-1 analogs remains controversial. Several studies in DM
patients have found that GLP-1 analogs did not affect any
major adverse cardiovascular event (MACE).>5:56 Other tri-
als showed that GLP-1 analogs have a significantly lower
cardiovascular mortality rate, nonfatal myocardial infarc-
tion, or nonfatal stroke, improve lipotoxicity, and also pro-
tects cardiac function in T2DM patients.5”=5% On the other
hand, there are also studies that concluded the liraglutide
(a GLP-1 analog) worsened the cardiac outcomes and signif-
icantly increase MACE.60,61

The EMPA-REG OUTCOME trial (The Empagliflozin Car-
diovascular Outcome Event Trial in Type 2 Diabetes melli-
tus Patients—Removing Excess Glucose) showed that T2DM
patients who received empagliflozin, a selective SGLT2i,
have a lower rate cardiovascular mortality, hospitalization
for heart failure, nonfatal myocardial infarction, or nonfatal
stroke.%2 Canagliflozin, another SGLT2i drug, also showed
a significantly reduced risk of mortality due to cardiovas-
cular causes, nonfatal myocardial infarction, or nonfatal
stroke but had a greater risk of amputation.®3 SGLT2i also
have blood pressure (BP) lowering properties but are not
as effective as other antihypertensive drugs such as an-
giotensin-converting enzyme (ACE) inhibitors.®4 It is found
that empagliflozin was associated with reduced systolic and
diastolic blood pressure compared with placebo (who re-
ceived an additional glucose-lowering medicine and also
antihypertensive medicine, including diuretics).®? On the
other hand, there was no significant difference in systolic
and diastolic blood pressure in the use of Canagliflozin
compared to placebo.®3 SGLT2i worked proportionally with
the ambient glucose concentration, hence it may have a
greater effect on individuals with poor glycemic control.
However, the effect of SGLT2i on blood pressure doesn’t
seem to be consistent with the blood glucose level, lowering
systolic 4-6 mmHg and diastolic 1-2mmHg.64

The incretin-based drugs such as dipeptidyl peptidase-4
(DPP-4) inhibitors have no beneficial effect on HF but were
shown to reduce the occurrence of hepatic steatosis.6%:66
Other trials have shown that DPP-4 inhibitor was not su-
perior to placebo.®7-69 The ESC-EASD 2019 guideline only
recommends DPP-4 inhibitors when HbA1C targets are not
reached after using SGLT2i, metformin, and/or GLP-1 re-
ceptor agonists.”0 The DPP-4 inhibitor that is not recom-
mended for patients with or with risk of HF is saxagliptin as
it can increase the risk for hospitalization for HF (HHF) and
also increase the HF incidence in T2DM patients.”!

NOVEL TARGETED THERAPIES FOR DIABETIC
CARDIOMYOPATHY

MicroRNA (miRNA) is reported to have a role in the patho-
physiology of diabetic cardiomyopathy, such as increase
ROS production and promote cardiomyocyte apopto-
sis.72=75 Anti-miRNA and miRNA mimics are actively stud-
ied and developed to treat cardiomyopathy.”6~78 Antioxi-
dant therapies can be used for prevention and intervention
for diabetic cardiomyopathy.”9-85 Phenolic acids are bene-
ficial for mitochondrial dysfunction as the protective agent
of the heart against mitochondrial dysfunction and are ob-
tained from plants such as nuts and fruits and thus can be
added to the diets.86 Bile Acids are synthesized by choles-
terol, bind and activate Farnesoid X Receptor (FXR) that
leads to reduction of inflammation and have a regulatory
effect on autophagy and mitochondrial function and can
also suppress oxidative stress that showing a potential ther-
apeutic effect.87 However further studies are still ongoing.

CONCLUSION

There is a strong association between diabetes mellitus and
heart failure incidence. Patients with heart failure have in-
creased risk for new-onset DM. The proposed mechanisms
underlying the pathophysiology of diabetic cardiomyopathy
include lipotoxicity related to free fattty acid accumulation,
altered calcium signaling, increased oxidative stress due to
chronic hyperglycemia leading to mitochondrial dysfunc-
tion and alteration of structure and function in the my-
ocardium. SGLT2i and novel targeted therapies for diabetic
cardiomyopathy are promising treatments but require fur-
ther investigation. It is important for clinicians to be aware
of diabetic cardiomyopathy in order to improve cardiovas-
cular outcomes in diabetes mellitus.
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