

In Situ Sequestration of Per- and Polyfluoroalkyl Substances (PFAS) from Contaminated Groundwater

Kurt Pennell, Ph.D., P.E. Professor, Brown University

Chen Liu (Brown), Yousef Aly, (UMinn), Jennifer Guelfo (Brown), Bonnie Lyon-Marion (Tufts), Natalie Capiro (Tufts), Bill Arnold (UMinn), Jim Hatton (Jacobs), Matt Simcik (UMinn)

Conventional in situ technologies are not well suited for PFAS:

Hydrophilic "head" group Hydrophobic/lipophilic "tail"

- Low Volatility (Thermal)
- Recalcitrant (Bioremediation, ISCO)
- Surfactant (Interfaces/Sorption?)

Potential PFAS Treatment Options

	Technology	Summary of PFAS Treatment				
		PFOA	PFOS	Applicatio	n	
	Chemical Oxidation	YES ^{1,2,3,4}	Partial ⁴	Ex-Situ (Rea In-Situ (?	ctor))	
	Chemical Reduction	YES ^{5,6}	Partial ^{5,6}	Ex-Situ (Rea In-Situ (?	ctor))	
	Electrochemical	YES ^{7,8}	YES ⁷	Ex-Situ (Rea In-Situ (?	ctor))	
	Sorption/Sequestration	YES ^{9,10}	YES ^{9,10}	Ex-Situ (GAC/I In-Situ (Injection/Ba	Resin) arrier Wall)	
	Biological Treatment	NO	NO	Unlikely, PFAS m chlorinated solvent o	ay inhibit degradation	
¹ Liu et al. 201 ² Mitchell et al ³ Vecitis et al. 2 ⁴ Park et al., 20 ⁵ Ochoa-Herre	2, Sep and PurfTech: Heat-activated pe 2013, ES&T Letters: Catalyzed hydrog 2009, Front. Environ. Sci. Engin. China: U 216, Chemosphere: Heat-activated per era et al. 2008, ES&T:Ti(III)-citrate an	ersulfate ⁶ W gen peroxide ⁷ Sc V with TiO ₂ ⁸ Zl sulfate ⁹ Zl d Vit B ₁₂ ¹⁰ Y	⁶ Wang et al., 2017, <i>Chem. Eng. J.</i> , Photocatalytic reactivity ⁷ Schaefer et al., 2015, <i>J. Haz. Mater.</i> :TiRuO ₂ anode ⁸ Zhou et al., 2017, <i>J. Electro. Chem.</i> : PbO ₂ electrode + PVDF ⁹ Zhang et al., 2016, <i>Chemosphere</i> : GAC ¹⁰ Yu et al., 2009, <i>Water Res.</i> : GAC and resin		MERGING CONTAMINANTS S U M M I T	
#ECSUM18 DETECTION // TREATMENT // REGULATIO						

Conventional Pump & Treat PFAS Remediation

Washington County, MN

3M Settles Minnesota Lawsuit for \$850M (Feb 20, 2018) #ECSUM18

Breakthrough times:

- PFBA = 30 days
- PFOA = 286 days
- PFOS = 550 days

DETECTION // TREATMENT // REGULATION

Commercially Available (Proprietary) PFAS Sorbents

RemBind™-Tersus

Activated carbon, aluminum hydroxide, organic matter and other additives, intended for near surface soil mixing

PlumeStop[®] Liquid Activated Carbon[™]–Regenesis

Activated carbon (1-2µm) suspended in water dispersed with organic polymer

- Limited independent verification
- Limited data (e.g., mass balance)
- ✤ In situ delivery issues rarely addressed

Coagulant polymers (cationic surfactants) SERDP Project ER-2425 (Simcik, Arnold, Pennell, Hatton)

Poly-DADMAC (PDM)

Polyamine (PA)

- Accepta 4351
- ~ 28% OC
- Quaternary Amine
- diallyl dimethylamine
- MW ~ 350,000

- Accepta 4350
- ~ 26% OC
- Quaternary Amine
- epichlorohydrine and dimethylamine
- MW ~ 240,000

Batch PFAS Sorption Tests: PDM and PA

40-50 mesh Ottawa Sand

Aly et al., 2018, J. Env. Eng., (in press)

#ECSUM18

DETECTION // TREATMENT // REGULATION

Ш

Schematic Diagram of 1-D Column System

PFAS Column Tests: Control (w/o PDM or PA)

DETECTION // TREATMENT // REGULATION

Pretreated and Side-Port Co-injection: PDM + PFOS

Summary of PFAS Column Results: PDM or PA

			PFAS	Enhancer			
		PFAS Retention	Retention	retention	Retained PFAS/Retained		
		(ng/g sand)	(%)	(ng/g sand)	Enhancer mass ratio		
	PFOA						
-	control	5.97	8.95%	n/a	n/a		
	PDM pre-treatment	8.38	9.50%	21.68	0.11		
	PA pre-treatment	20.10	21.16%	50.83	0.28		
<	PDM side port injection	30.62	49.22%	60.3	0.41		
	PFOS						
	control	4.20	6.23%	n/a	n/a		
	PDM pre-treatment	91.94	34.91%	21.68	4.04		
	PA pre-treatment	43.59	50.0 4%	77.00	0.51		
	PDM side port injection	196.06	83.22%	42.86	4.47		
#	#ECSUM18 DETECTION // TREATMENT // REGULATION						

To improve performance....combine Powdered Activated Carbon (PAC) with polyDADMAC (PDM)

PDM acts to stabilize PAC in suspension, facilitates delivery
Both PDM and PAC can serve as sorbents (wide range of effectiveness)

1 g/L PAC

1 g/L PAC 1 g/L PAC + 5 g/L PDM

At hrs after Sonication

1 g/L PAC + 5 g/L PDM

DARCO[®] 100 mesh (150 µm) Powdered Activated Carbon (Sigma Aldrich)

Provisional Patent Application: Reg. No. 41,942, Docket No. 70011-067P01v (September, 2017)

#ECSUM18

DETECTION // TREATMENT // REGULATION

PFOA and PFOS Batch Adsorption Studies With Darco[®] PAC (100-mesh)

#ECSUM18

DETECTION // TREATMENT // REGULATION

Injection of PDM+PAC Suspension

after 3.5 PV PAC+PDM

t = 0 PV

after 3.5 PV Background

26.8 mg of PAC retained in column

40-50 mesh Ottawa Sand (d_{50} = 358 um), k_i = 7.37x10⁻¹¹ m², n = 0.37, SSA = 0.0125 m²/g, PV = 22 mL PDM+PAC Suspension: 1,000 mg/L PAC + 5,000 mg/L PDM, viscosity = 1.18 cP Flow rate: 0.12 mL/min; pore-water velocity ~1.0 m/day

#ECSUM18

Flow

Direction

DETECTION // TREATMENT // REGULATION

Images of PDM+PAC Treated Ottawa Sand

20X

DETECTION // TREATMENT // REGULATION

PFOS Column: Control; PDM+PAC treated Ottawa Sand

DETECTION // TREATMENT // REGULATION

#ECSUM18

Retention of PFOS Mass by PDM+PAC Treated Sand

ON

PFOA Column: PDM+PAC treated Ottawa Sand

should be ~ 8.72 mg PFOA, consistent with the observed column retention of ~8.48 mg PFOA

#ECSUM18

DETECTION // TREATMENT // REGULATION

Heterogeneous 2.5-D Flow Cell

Dimensions: 40.0 cm (ht) x 63.2 cm (length) x 1.4 cm (thickness)

DETECTION // TREATMENT // REGULATION

Injection of Iron Nanoparticles in Heterogeneous Domain

Background velocity = 2 m/d, nMag conc. = 2500 mg/L, gum arabic conc. = 1000 mg/L, injected vol. = 100 mL, background = API brine

DETECTION // TREATMENT // REGULATION

20

Configuration of PFAS 2.5D Flow Cell

Tracer Test Before PDM+PAC Injection

Side-port Injection of 1 g/L PAC + 5 g/L PDM

40 mL (0.08 mL/min) with background flow (2.4 mL/min)

80 mL (0.08 mL/min) with no background flow

#ECSUM18

DETECTION // TREATMENT // REGULATION

Tracer Test After PDM+PAC Injection

#ECSUM18

IANT

Collection of PFAS-Impacted Soil & Groundwater Samples Former Loring AFB, Limestone, ME

	AA07MW02			
Compound	Avg (ng/L)	Std. Dev (ng/L)		
PFBA	153.01	11.48		
PFPeA	377.77	8.56		
PFBS	108.36	2.29		
PFHxA	632.10	147.02		
4:2-FTS	27.54	9.57		
PFHpA	147.78	8.08		
PFHxS	1341.42	151.11		
PFOA	396.86	17.47		
6:2-FTS	1145.98	85.72		
PFNA	78.42	29.71		
PFOS	1604.65	145.16		
PFDA	12.20	11.44		
8:2-FTS	98.30	26.13		

#ECSUM18

DETECTION // TREATMENT // REGULATION

Conclusions

- Cationic polymers (PDM or PA) increased PFAS sorption by a factor of 3 to 45 based on batch and column experiments.
- The combination of powdered activated carbon (PAC) and PDM formed a stable suspension that can be delivered in situ to form a reactive zone.
- Column and aquifer cell studies demonstrated the sizable capacity of PDM+PAC-treated sand to retain PFOS and PFOA.

Future Work

- Conduct column and aquifer cell experiments with PFAS mixtures, both laboratory prepared and field groundwater samples (Loring AFB)
- Evaluate the potential release of retained PFAS over time and subject to changing pH and ionic strength.
- Evaluate competitive effects of NOM and other organic contaminants.

#ECSUM18

DETECTION // TREATMENT // REGULATION

Projects ER-2425 and ER-2714

School of Engineering

University of Minnesota

JACOBS

DETECTION // TREATMENT // REGULATION