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• AFFF Release Scenarios
• (Fluoro)Surfactant Properties and 

Behavior
• Interfacial Processes Impacting PFAS 

Transport
• In Situ PFAS Sequestration

Presentation Overview



Former Loring AFB, Limestone, ME

PFAS Release Scenario-AFFF Use and Training



AFFF-impacted Sites at Robins AFB (Georgia)

Surface soil, aquifer 
material and 

groundwater from 5 
locations representing a 

range of AFFF spill 
scenarios at Robins Air 

Force Base



• Evaluate PFAS concentration and microbial 
communities as a function of soil properties

• Prepare microcosms to investigate precursor 
transformation rates and byproduct formation

Depth (ft) PFBS PFOA PFOS

1 0 - 0.5 265.8 ± 490.2 34.5 ± 39.7 2705 ± 2149

2 17 - 18 5.2 0.66 4.4

3 19 - 20 0.66 0.66 2.4

4 26 - 27 37 17 44

5 15 - 25 3.4 ± 1.4 1.6 ± 0.2 22.7 ± 5.5

6 25 - 35 2.4 1.8 8.6

2017 samples (μg/kg for soil, μg/L for water)

Assess PFAS Concentration and Microbial Community 
Profiles

Area 15-Spray Test Area (2019)

Fire Station 
near Runway

Soil core
5.0– 35.0 ft 

(divided into 16 
intervals based 
on soil texture)

5

1Surface soil
0.5 – 5.0 ft

2
3

4
6



Water Table

Capillary Fringe

Unsaturated Zone

Lower Confining Layer

Groundwater Flow

Dissolved Contaminant Plumes

Water
Residual 
LNAPL

PFAS Release Scenario-Mixed Contaminants

DNAPL LNAPL



(Fluoro)Surfactant 
Properties and Behavior



Surface Active Agents (Surfactants)

• Amphiphilic (polar and nonpolar moieties): Hydrophilic 
“head” group + Hydrophobic “tail” group

• Strong tendency to accumulate at interfaces (air-water, 
NAPL-water) 

• Individual molecules (monomers) self assemble to form 
micelles as the aqueous phase concentration is 
increased

• Classification is based on the polar head group: 
Anionic, Cationic, Nonionic, Amphoteric, Zwitterionic 

General Properties and Nomenclature: 



Hydrophilic “head” group

• Low Volatility
• Recalcitrant
• Foam/Emulsion Formation

Hydrophobic/lipophilic “tail”

C-F bond: ~ 450 kJ/mole

PFOA

PFAS Classified as “Fluorosurfactants” 



Polyoxyethylene (20) Sorbitan Monooleate:
(Tween 80, Polysorbate 20, Witconol 2722)

Dodecyl Alcohol Ethoxylate:
(Witconol SN-120, Brij 35)

MW = 1310 g/mole
CMC = 35-45 mg/L

MW = 583 g/mole
CMC = 50-65 mg/L

C12H25(CH2CH2O)OH

CH(CH2CH2O)zOHHO(CH2CH2O)wCH

(OCH2CH2)xOH

CH2 CH CH(OCH2CH2O)yOC(CH2)7CH

O O

CH(CH2)7CH3

Examples of Nonionic Surfactants



Examples of Anionic Surfactants

Sodium dodecyl sulfate (SDS): 

Sodium dihexylsuflosuccinate (SDHSS, Aersol MA-100):

C12H25OSO3
-Na+ MW = 288 g/mole

CMC = 2,100 mg/L

MW = 388 g/mole
CMC = 5,360 mg/L

CH2

CH

SO3
-Na+

O

O

O

C

C

O

CH2(CH2)4CH3

CH2(CH2)4CH3

Perfluorooctanesulfonic acid (PFOS) 
CMC = 4,000-5,000 mg/L

C8F17SO3
-K+

C8HF17SO3 MW = 500 g/mole

MW = 538 g/mole
…but the solubility is 

< 1000 mg/L???



Critical Micelle Concentration (CMC)

From dataphysics-instruments.com

• At concentrations above the CMC, the number of 
monomers remains constant, while the number of 
micelles continues to increase 

• The surface tension remains constant above CMC 
because the air-water interface is saturated
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Organic

Surfactant
Monomer

Solubilized Organic
Micelle Containing

Micellar Solubilization of Organic Compounds

𝑊𝑊𝑊𝑊𝑊𝑊 =
𝐶𝐶𝐶𝐶 − 𝐶𝐶𝐶𝐶, 𝑐𝑐𝑐𝑐𝑐𝑐

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑐𝑐𝑐𝑐𝑐𝑐

Aqueous Solubility

Weight Solubilization Ratio (WSR)



Winsor Type I

LNAPL

2 Phase3 Phase
Increasing Temp (Nonionic Surfactants) or Salinity (Ionic Surfactants)

(Middle Phase Microemulsion)
3-Phase Region

IF
T 

at
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rfa

ce

IFTNAPL/W

Surfactant Phase Behavior:
NAPL-Water Interfacial Tension (IFT) and Emulsions

Winsor Type III Winsor Type II

2 Phase

IFTNAPL/W

IFTNAPL/W

IFTMP/W IFTNAPL/MP

Excess NAPL (oil)

NAPL in water 
emulsion

Water in NAPL 
(oil) emulsion

Excess Water

Middle-Phase 
microemulsion



Vertical Displacement (Mobilization) of PCE
Flushed with 4% Aerosol AY/OT (IFT = 0.09 dyne/cm)



Water

Soil 
Particle

Entrapped
NAPL

Determining Risk of NAPL Mobilization
Total Trapping Number (NT)

Gravitational 
(Buoyancy) 

Force

Advective 
(Viscous) 

Force

Capillary 
Force

Angle of flow



Total Trapping Number (NT) 

𝑁𝑁𝐵𝐵 =
Δ𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑟𝑟𝑟𝑟
𝜎𝜎𝑜𝑜𝑟𝑟 cos𝜃𝜃𝑁𝑁𝐶𝐶𝐶𝐶 =

𝑞𝑞𝑞𝑞
𝜎𝜎𝑜𝑜𝑟𝑟 cos𝜃𝜃

𝑁𝑁𝑇𝑇 = 𝑁𝑁𝐶𝐶𝐶𝐶2 + 2𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝐵𝐵 sin𝛼𝛼 + 𝑁𝑁𝐵𝐵2

𝑁𝑁𝑇𝑇 = |𝑁𝑁𝐶𝐶𝐶𝐶 + |𝑁𝑁𝐵𝐵Vertical:

Capillary Number: Bond Number:

𝑁𝑁𝑇𝑇 = 𝑁𝑁𝐶𝐶𝐶𝐶 + 𝑁𝑁𝐵𝐵Horizontal:

µ = dynamic viscosity
Θ = contact angle
k = intrinsic permeability
krw = relative permeability to water

ρ = density of fluid
g = gravity constant
q = Darcy velocity
σow = interfacial tension (oil-water)

(viscous forces) (gravity forces)
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PCE Desaturation Curves for Ottawa Sands

Water
IFT=47.8 dyne/cm

4% W2722
IFT=5.0 dyne/cm

4% Aerosol MA/OT
IFT=0.58 dyne/cm

4% Aerosol AY/OT
IFT=0.09 dyne/cm

Critical Nt Range



F-70 Ottawa Sand

20-30 mesh Ottawa Sand

Uncontrolled 
downward flow of 

PCE-DNAPL

Surfactant plume 
containing solubilized 

PCE

Risk of Uncontrolled DNAPL Mobilization



Questions related to PFAS Transport

• How much PFAS accumulates at the air-water interface in 
unsaturated soils?

• How does PFAS impact soil water retention characteristics 
and water drainage during infiltration events? 

• How does PFAS interact with NAPLs, and do these 
interactions result in enhanced N APL solubility or 
mobilization? 

• Can we modify existing mathematical models to describe 
PFAS fate and transport in complex systems? 

• How do we account for mixtures of many surfactants, 
including PFAS?  



Interfacial Processes 
Impacting PFAS 

Transport



Interfacial Tension Measurements
SERDP Projects ER18-1149 and ER-2714
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Ramé-Hart GoniometerSigma T700 Tensiometer

Interfacial Tension by 
Pendant Drop

Resolution of 
0.01 mN/m

Surface Tension by 
Wilhelmy Plate

Note: mN/m = dyne/cm = g/s2



Preparation of Solutions for IFT Measurements

• Stock solutions ranged from 50 to 10,000 
mg/L

• PFOA or KPFOS solids using 
analytical balance

• Sonicating for 30 min and heating 
overnight at 40 oC

• Concentrations from 0.1 to 50 mg/L 
prepared by serial dilution

• Concentrations verified by LC-MS/MS
• To simulate principal aquifers in US, 

aqueous solutions contained MgSO4, 
NaHCO3, KCl, and CaCl2

• Low Dissolved Solids (LDS) ~40 mg/L 
(high purity drinking water) ~9 mM

• Mid Dissolved Solids (MDS) ~400 mg/L 
(secondary drinking water standard) ~90 
mM

• High Dissolved Solids (HDS) ~1,700 
mg/L (unpleasant drinking water) ~380 mM

PFOA and PFOS working solutions 
from 0.1 to 10,000 mg/L in 100-mL 

HDPE bottles
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• To simulate principal aquifers in US Background solution contains MgSO4, 
NaHCO3, KCl, and CaCl2

• Dissolved salts resulted in lower surface tension for PFOA
• Low Dissolved Solids (LDS) ca. 40 mg/L (high purity drinking water)
• Mid Dissolved Solids (MDS) ca. 400 mg/L (secondary drinking water standard)
• High Dissolved Solids (HDS) ca. 1,700 mg/L (unpleasant drinking water)

PFOA (mg/L)
0.001 0.01 0.1 1 10 100 1000 10000

Su
rfa

ce
 T

en
si

on
 (m

N
/m

)

10

20

30

40

50

60

70

80

MilliQ
LDS
MDS
HDS

Air-Water Interfacial Tension (Surface Tension)
PFOA (Effect of Salts)

PFOA

Costanza et al., 2019, ES&T Letters

surface tension 
decreases with 
increasing salt



PFOS (mg/L)
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Similar effect, but 
more pronounced 
with PFOS

Minimal effect 
above 400 mg/L 
TDS

• Low Dissolved Solids (LDS) ca. 40 mg/L (high purity drinking water)
• Mid Dissolved Solids (MDS) ca. 400 mg/L (secondary drinking water standard)
• High Dissolved Solids (HDS) ca. 1,700 mg/L (unpleasant drinking water)



𝛾𝛾 = 𝛾𝛾0 1 − 𝑎𝑎 ∗ 𝑙𝑙𝑙𝑙
𝐶𝐶
𝑏𝑏

+ 1 Γ =
𝑎𝑎𝛾𝛾0
𝑊𝑊𝑅𝑅

𝐶𝐶
𝐶𝐶 + 𝑏𝑏

Szyszkowski Equation Langmuir/Szyszkowski Eq.

Γ = −
𝐶𝐶
𝑊𝑊𝑅𝑅

𝜕𝜕𝛾𝛾
𝜕𝜕𝐶𝐶 𝑇𝑇

Gibb’s Equation

Interfacial tension is a measure of surface concentration or 
surface “excess” (Γ) [Langmuir, 1917]

Gibb’s Equation  Surface Excess

Γ = surface excess
ɣ = surface tension
C = aqueous conc.
R = gas constant
T = temperature (oK)

• “a” and “b” are nonlinear fitting 
parameters

• This equation allows you to fit 
the entire surface tension vs. 
PFAS concentration curve



Langmuir/Szyszkowski Equation
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𝛾𝛾 = 𝛾𝛾0 1 − 𝑎𝑎𝑎𝑎𝑙𝑙
𝐶𝐶
𝑏𝑏

+ 1 Γ =
𝑎𝑎𝛾𝛾0
𝑊𝑊𝑅𝑅

𝐶𝐶
𝐶𝐶 + 𝑏𝑏

Szyszkowski Eq. Fit Langmuir/Szyszkowski Eq.

Γ = −
𝐶𝐶
𝑊𝑊𝑅𝑅

𝜕𝜕𝛾𝛾
𝜕𝜕𝐶𝐶 𝑇𝑇

Gibb’s Eq.

PFOA PFOS



Surface Excess Calculations
Equation Development

𝐾𝐾𝑖𝑖 = Natural Log Partition Coefficient
(mg/m2)

Γ = −
1
𝑊𝑊𝑅𝑅

𝜕𝜕𝛾𝛾
𝜕𝜕𝑙𝑙𝑙𝑙𝐶𝐶 𝑇𝑇

𝐾𝐾𝑖𝑖 =
1
𝑊𝑊𝑅𝑅

𝜕𝜕𝛾𝛾
𝜕𝜕lnC

Γ = 𝐾𝐾𝑖𝑖
𝐶𝐶𝑟𝑟
𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟

Γ = 𝐾𝐾𝑖𝑖𝐶𝐶𝑟𝑟Γ = −
𝐶𝐶
𝑊𝑊𝑅𝑅

𝜕𝜕𝛾𝛾
𝜕𝜕𝐶𝐶 𝑇𝑇

𝐾𝐾𝑖𝑖 =
1
𝑊𝑊𝑅𝑅

𝜕𝜕𝛾𝛾
𝜕𝜕C

Linear

Natural Log

Γ =
𝑎𝑎𝛾𝛾0
𝑊𝑊𝑅𝑅

𝐶𝐶
𝐶𝐶 + 𝑏𝑏

Nonlinear
(Langmuir/Szyszkowski)

𝐾𝐾𝑖𝑖 = Linear Partition Coefficient
(L/m2)

requires an arbitrary reference conc.
(e.g., Lyu et al., 2018, Cref= 1 mg/L)



Γ =
𝑎𝑎𝛾𝛾0
𝑊𝑊𝑅𝑅

𝐶𝐶
𝐶𝐶 + 𝑏𝑏

Langmuir/Szyszkowski

Γ = 𝐾𝐾𝑖𝑖𝐶𝐶𝑟𝑟

Linear

Γ = 𝐾𝐾𝑖𝑖
𝐶𝐶𝑟𝑟
𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟

Natural Log

Surface Excess Calculations
Comparison of Different Approaches
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• Cw = 1 mg/L, Sw = 0.26, KD = 1.14 mg/kg, ρb = 1.5 kg/L, Sa = 80 cm-1 sand, 
Sa = 1000 cm-1 silt (Brusseau, 2018)
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PFOS Phase Distribution in Unsaturated Soils

Total PFOS Mass = Mass in Water + Mass on Solids + Mass at Air-Water Interface 

MTotal = VT(CwSw + CwKD ρb + Sa
𝐶𝐶𝛾𝛾0
𝑅𝑅𝑇𝑇

𝐶𝐶
𝐶𝐶+𝑏𝑏

)

Nonlinear: Langmuir/Szyszkowski Equation)
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Surface Tension of “PFOS” Mixture

“PFOS mixture” consists of a sulfonamide and three sulfonates
• Prepared equimolar stock mixtures from solids with total concentrations of 100, 

200, 400, and 600 mg/L 
• Dilutions of stock mixtures in range from 0.1 to 80 mg/L
• Solutions in ultrapure water, and water with low, mid, and high dissolved solids

KPFOS
C8F17SO3K

Perfluorooctane
sulfonamide 

(FOSA)
C8F17SO2NH2

KPFHxS
C6F13SO3K

KPFBS
C4F9SO3K

Nonionic IonicIonic Ionic
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“PFOS mixture” contained a sulfonamide and three sulfonates in ca. 400 mg/L TDS
• PFBS, PFHxS, PFOS and FOSA (0.3:0.3:0.2:0.2 mole fractions)
• PFBS and PFHxS surface tension of 70 mN/m at 100 mg/L (not surface active) 
• FOSA surface tension lowest at equivalent concentration
• PFOS mixture exhibited “ideal” surface tension behavior from 0.2 to 20 µmol/L, 

non-ideal at increasing concentrations

Non-ideal behavior 
of mixture

Effect of PFAS Mixtures on Surface Tension 
Measurements



NAPL-Water Interfacial Tension

Drop of NAPL suspended in solutions containing PFAS with ca. 1700 mg/L TDS
Confirmed oleophobic nature of the perfluorocarbon chain (Moody and Field, 2000)
• Significant reduction in interfacial tension only observed for concentrated solutions 

(>100 mg/L)
• IFTs less than 5 mN/m (dyne/cm) typically needed for NAPL mobilization

Tetrachloroethene (PCE) Dodecane



AFFF Phase Behavior
JP4 Jet Fuel

Aqueous Phase

Macroemulsion

Foam

4 mL : 4 mL



AFFF Phase Behavior
JP4 Jet Fuel (Oil Red O)

Aqueous Phase

Macroemulsion

Foam
Collapsed Foam

JP4-NAPL



Comparison AFFF Phase Behavior
JP4 Jet Fuel

• 3% active ingredient 
• 7 mL JP-4 : 7 mL  

surfactant solution
• After 24 hr settling

3M SDS Tween 80



Mathematical Modeling of 
PFAS Transport in the 

Unsaturated Zone



Modeling PFAS Adsorption at Air-Water Interface
Objective: Incorporate nonlinear PFAS adsorption at air-water interface using 
a modified version of Hydrus 1D 

𝐸𝐸𝐶𝐶𝑖𝑖𝑖𝑖 = −𝐴𝐴𝐶𝐶𝑖𝑖
𝜕𝜕Γ𝑖𝑖

𝜕𝜕𝑡𝑡
Langmuir Isotherm: Γ𝑖𝑖 =

𝑎𝑎𝛾𝛾0
𝑊𝑊𝑅𝑅

𝐶𝐶𝑖𝑖

𝐶𝐶𝑖𝑖 + 𝑏𝑏

Specific Interfacial Area L−1 ,𝐴𝐴𝐶𝐶𝑖𝑖 = SA 0.9031 − 0.9012
𝜃𝜃
𝜃𝜃𝑠𝑠

a and b: Szyszkowski eq. 
parameters fitted using 

batch experimental results

SA: Geometric su rface area L−1 =
6(1 − 𝜑𝜑)
𝑑𝑑50

(Costanza-Robinson et al., 2008)

Richards Equation:
𝜕𝜕θ
𝜕𝜕𝑡𝑡

= 𝛻𝛻 ⋅ 𝜌𝜌.𝛻𝛻ℎ +
𝜕𝜕𝜌𝜌
𝜕𝜕𝑧𝑧

+ 𝑊𝑊

𝜃𝜃𝑟𝑟:𝑤𝑤𝑎𝑎𝑡𝑡𝑤𝑤𝐶𝐶 𝑐𝑐𝐶𝐶𝑙𝑙𝑡𝑡𝑤𝑤𝑙𝑙𝑡𝑡,𝜃𝜃𝑆𝑆: 𝐶𝐶𝑎𝑎𝑡𝑡𝐶𝐶𝐶𝐶𝑎𝑎𝑡𝑡𝑤𝑤𝑑𝑑 𝑤𝑤𝑎𝑎𝑡𝑡𝑤𝑤𝐶𝐶 𝑐𝑐𝐶𝐶𝑙𝑙𝑡𝑡𝑤𝑤𝑙𝑙𝑡𝑡,𝜑𝜑:𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑡𝑡𝑝𝑝, 𝐶𝐶𝛼𝛼: 𝐶𝐶𝑎𝑎𝑡𝑡𝐶𝐶𝐶𝐶𝑎𝑎𝑡𝑡𝑝𝑝𝐶𝐶𝑙𝑙 𝐶𝐶𝐶𝐶 𝛼𝛼 − 𝑝𝑝ℎ𝑎𝑎𝐶𝐶𝑤𝑤

Linear Isotherm: Γ𝑖𝑖 = 𝐾𝐾𝑖𝑖𝐶𝐶𝑖𝑖 Ki : linear partitioning coefficient



Effect of PFAS Accumulation at Air-Water Interface on 
Unsaturated Zone Transport
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• Pulse injection (1 PV) of PFOA or PFOS (10 mg/L)
• Medium level of total dissolved solids (400 mg/L TDS) 
• F-70 Ottawa sand (40-270 mesh)
• Uniform water content, 𝜃𝜃w = 0.27

Langmuir/Szyszkowski Isotherm 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋 𝐏𝐏𝐋𝐋𝐋𝐋𝐏𝐏𝐋𝐋𝐏𝐏𝐋𝐋𝐏𝐏𝐋𝐋𝐋𝐋𝐋𝐋𝐏𝐏

More retention 
at air-water 

interface with 
linear isotherm 

assumption
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• Pulse injection (1 PV) of PFOA or PFOS (10 mg/L)
• Medium level of total dissolved solids (400 mg/L TDS) 
• F-70 Ottawa sand (40-270 mesh)
• Uniform water content, 𝜃𝜃w = 0.27

PFAS Vertical Concentration Profiles in 
Unsaturated Soil

PFOA Langmuir/Szyszkowski Isotherm
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Effect of Input Concentration on Unsaturated Zone 
Transport of PFOS

• Pulse injection (1 PV) of PFOS (10 mg/L or 50 mg/L)
• Medium level of total dissolved solids (400 mg/L TDS) 
• F-70 Ottawa sand (40-270 mesh)
• Uniform water content, 𝜃𝜃w = 0.27

Greater proportion 
retained at lower 
concentrations 

(influence of non-
linearity)

PFOS Langmuir/Szyszkowski Isotherm



42

Interfacial Area L−1 ,𝐴𝐴𝐶𝐶𝑖𝑖 = SA 0.9031 − 0.9012
𝜃𝜃𝑟𝑟
𝜃𝜃𝑠𝑠

Effect of Soil Water Content and TDS on PFOS 
Transport 

• Pulse injection (1 PV) of PFOS (10 mg/L)
• F-70 Ottawa sand (40-270 mesh)
• Uniform water content, 𝜃𝜃w = 0.20 or 27

𝜃𝜃w= 0.20 𝜃𝜃w= 0.27Langmuir/Szyszkowski Isotherm



In Situ Sequestration 
of PFAS



Poly-DADMAC (PDM)
• Accepta 4351
• ~ 28% OC
• Quaternary Amine
• diallyl dimethylamine
• MW ~ 350,000

Polyamine (PA)
• Accepta 4350
• ~ 26% OC
• Quaternary Amine
• epichlorohydrine and dimethylamine
• MW ~ 240,000

Coagulant polymers (cationic surfactants) 
SERDP Project ER-2425



DARCO® 100 mesh (150 µm) 
Powdered Activated Carbon (Sigma Aldrich)

 PDM acts to stabilize PAC in suspension, facilitates delivery
 Both PDM and PAC can serve as sorbents (wide range of effectiveness)

1 g/L PAC + 5 g/L PDM1 g/L PAC

Immediately after Sonication 48 hrs after Sonication

Provisional Patent Application: Reg. No. 41,942, Docket No. 70011-067P01v (September, 2017)

1 g/L PAC + 5 g/L PDM1 g/L PAC

To improve performance….combine Powdered 
Activated Carbon (PAC) with polyDADMAC (PDM)



 Limited independent verification
 Limited data (e.g., mass balance)
 In situ delivery issues rarely addressed 

Commercially Available (Proprietary) 
PFAS  Sorbents 
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Cs, max= 316 mg/g
b = 0.0673 L/mg

Cs, max= 323 mg/g
b = 0.0413 L/mg

PFOS

PFOA and PFOS Batch Adsorption Studies
With Darco® PAC (100-mesh)

𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶, 𝑐𝑐𝑎𝑎𝑚𝑚

∗ 𝑏𝑏 ∗ 𝐶𝐶𝑤𝑤
, 𝑤𝑤𝑞𝑞

1 + 𝑏𝑏 ∗ 𝐶𝐶𝑤𝑤, 𝑤𝑤𝑞𝑞

Langmuir Isotherm



(1) Non-reactive tracer test (pulse injection), (2) Inject PDM+PAC suspension, 
(3) Inject background electrolyte, (4) Inject PFAS solution (e.g., 100 ug/L PFOS)  

Schematic Diagram of 1-D Column System



t = 0 
PV

after 3.5 PV 
PAC+PDM

after 3.5 PV 
background

40-50 mesh Ottawa Sand (d50 = 358 um), ki = 7.37x10-11 m2, n = 0.37, SSA = 0.0125 m2/g, 
PV = 22 mL
PDM+PAC Suspension: 1,000 mg/L PAC + 5,000 mg/L PDM, viscosity = 1.18 cP
Flow rate: 0.12 mL/min; pore-water velocity  ~1.0 m/day

Flow 
Direction

26.8 mg of 
PAC retained 
in column

Injection of PDM+PAC Suspension 



Images of PDM+PAC Treated Ottawa Sand 
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Effluent with 100 ug/L
PFOS injection
Effluent with 20 mg/L
PFOS injection

100 µg/L PFOS 
(PDM+PAC)

40-50 mesh Ottawa Sand
vp = 1 m/day

Based on the measured Cs,max = 316 mg/g and mass of retained PAC (~27 mg), the capacity of the 
column should be ~ 8.65 mg PFOS, consistent with the observed retention of ~10.04 mg PFOS  

35.26 ug PFOS 
retained

10.00 mg 
PFOS 

retained

For a 100 µg/L injection; ~2 ug PFOS retained/PV, capacity would be reached after ~5,020 PV

Increase to 
20 mg/L PFOS 

(PDM+PAC)

PFOS Column: S-PAC treated 40-50 mesh 
Ottawa Sand



52

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40

C
/C

0

Pore volumes
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100 µg/L 
PFOA 

(PDM+PAC)

40-50 mesh Ottawa Sand
vp = 1 m/day

Based on the measured Cs,max = 323 mg/g and mass of retained PAC (~14.8 mg), the capacity of 
the column should be ~ 4.78 mg PFOS, consistent with the observed retention of ~6.57 mg PFOA  

34.80 ug PFOA 
retained

6.53 mg 
PFOS 

retained

For a 100 µg/L injection; ~2 ug PFOA retained/PV, capacity would be reached after ~3,600 PV

Increase to 
20 mg/L PFOA 

(PDM+PAC)

PFOA Column: S-PAC treated 40-50 mesh 
Ottawa Sand



Configuration of Aquifer Flow Cell

40—50 mesh 
Ottawa sand

F-90 
sand

Soil from 
Tinker 
Air Force 
Base

Downgradient 
Sampling Ports

PFAS 
Injection 

Ports

F-90 
sand

PDM+PAC Injection 
Ports

Tinker AFB 
Soil

PV=1.45L



Tracer Test Before PDM+PAC Injection



80 mL (0.08 mL/min) with no
background flow

Side-port Injection of 1 g/L PAC + 5 g/L PDM

40 mL (0.08 mL/min) with 
background flow (2.4 mL/min)
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Tracer Test After PDM+PAC Injection



Projects ER-2425 and 
ER18-1149
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