Processes Influencing PFAS Transport

Instructor: Kurt Pennell, PhD, PE, BCEE

Chemical and Environmental Engineering School of Engineering Brown University, Providence RI, USA kurt_pennell@brown.edu

Managing Per- and Polyfluoroalkyl Substances (PFAS) at Your Site: Key Technical and Regulatory Issues 1:30-2:15 pm

Thursday, September 12, 2019

Presentation Overview

- AFFF Release Scenarios
- (Fluoro)Surfactant Properties and Behavior
- Interfacial Processes Impacting PFAS
 Transport
- In Situ PFAS Sequestration

PFAS Release Scenario-AFFF Use and Training

and and

Former Loring AFB, Limestone, ME

AFFF-impacted Sites at Robins AFB (Georgia)

Assess PFAS Concentration and Microbial Community Profiles

	Depth (ft)	PFBS	PFOA	PFOS
1	0 - 0.5	265.8 ± 490.2	34.5 ± 39.7	2705 ± 2149
2	17 - 18	5.2	0.66	4.4
3	19 - 20	0.66	0.66	2.4
4	26 - 27	37	17	44
5	15 - 25	3.4 ± 1.4	1.6 ± 0.2	22.7 ± 5.5
6	25 - 35	2.4	1.8	8.6

2017 samples (µg/kg for soil, µg/L for water)

- Evaluate PFAS concentration and microbial communities as a function of soil properties
- Prepare microcosms to investigate precursor transformation rates and byproduct formation

PFAS Release Scenario-Mixed Contaminants

Lower Confining Layer

(Fluoro)Surfactant Properties and Behavior

<u>Surface Active Agents</u> (Surfactants)

General Properties and Nomenclature:

- Amphiphilic (polar and nonpolar moieties): Hydrophilic "head" group + Hydrophobic "tail" group
- Strong tendency to accumulate at interfaces (air-water, NAPL-water)
- Individual molecules (monomers) self assemble to form micelles as the aqueous phase concentration is increased
- Classification is based on the polar head group: Anionic, Cationic, Nonionic, Amphoteric, Zwitterionic

PFAS Classified as "Fluorosurfactants"

Hydrophilic "head" group Hydrophobic/lipophilic "tail"

- Low Volatility
- Recalcitrant
- Foam/Emulsion Formation

Examples of Nonionic Surfactants

Polyoxyethylene (20) Sorbitan Monooleate: (Tween 80, Polysorbate 20, Witconol 2722)

Dodecyl Alcohol Ethoxylate: (Witconol SN-120, Brij 35) $C_{12}H_{25}(CH_2CH_2O)OH$

MW = 583 g/mole CMC = 50-65 mg/L

Examples of Anionic Surfactants

Sodium dodecyl sulfate (SDS): C₁₂H₂₅OSO₃-Na⁺

MW = 288 g/mole CMC = 2,100 mg/L

Sodium dihexylsuflosuccinate (SDHSS, Aersol MA-100): $O = O = O = O = CH_2(CH_2)_4CH_3$ $CH = O = CH_2(CH_2)_4CH_3$ $CH = O = CH_2(CH_2)_4CH_3$ $SO_3 = Na^+ O = O$

Perfluorooctanesulfonic acid (PFOS)

$$C_8HF_{17}SO_3$$
 MW = 500 g/mole
 $C_8F_{17}SO_3^-K^+$ MW = 538 g/mole

CMC = 4,000-5,000 mg/L

...but the solubility is < 1000 mg/L???

Critical Micelle Concentration (CMC)

From dataphysics-instruments.com

log surfactant concentration

- At concentrations above the CMC, the number of monomers remains constant, while the number of micelles continues to increase
- The surface tension remains constant above CMC because the air-water interface is saturated

Micellar Solubilization of Organic Compounds

Surfactant Phase Behavior: NAPL-Water Interfacial Tension (IFT) and Emulsions

Winsor Type I

Winsor Type III

Winsor Type II

Vertical Displacement (Mobilization) of PCE Flushed with 4% Aerosol AY/OT (IFT = 0.09 dyne/cm)

Determining Risk of NAPL Mobilization Total Trapping Number (N_T)

Total Trapping Number (N_T)

Vertical: $N_T = |N_{Ca} + N_B|$ Horizontal: $N_T = \sqrt{N_{Ca} + N_B}$

μ = dynamic viscosity
Θ = contact angle
k = intrinsic permeability
k_{rw} = relative permeability to water

- ρ = density of fluid
- g = gravity constant
- q = Darcy velocity
- σ_{ow} = interfacial tension (oil-water)

PCE Desaturation Curves for Ottawa Sands

Risk of Uncontrolled DNAPL Mobilization

F-70 Ottawa Sand

20-30 mesh Ottawa Sand

Surfactant plume containing solubilized PCE

> Uncontrolled downward flow of PCE-DNAPL

Questions related to PFAS Transport

- How much PFAS accumulates at the air-water interface in unsaturated soils?
- How does PFAS impact soil water retention characteristics and water drainage during infiltration events?
- How does PFAS interact with NAPLs, and do these interactions result in enhanced N APL solubility or mobilization?
- Can we modify existing mathematical models to describe PFAS fate and transport in complex systems?
- How do we account for mixtures of many surfactants, including PFAS?

Interfacial Processes Impacting PFAS Transport

Interfacial Tension Measurements

Sigma T700 Tensiometer

Resolution of 0.01 mN/m

Note: $mN/m = dyne/cm = g/s^2$

Surface Tension by Wilhelmy Plate

Ramé-Hart Goniometer

Interfacial Tension by Pendant Drop

Preparation of Solutions for IFT Measurements

- Stock solutions ranged from 50 to 10,000 mg/L
 - PFOA or KPFOS solids using analytical balance
 - Sonicating for 30 min and heating overnight at 40 °C
- Concentrations from 0.1 to 50 mg/L prepared by serial dilution
- Concentrations verified by LC-MS/MS
- To simulate principal aquifers in US, aqueous solutions contained MgSO₄, NaHCO₃, KCI, and CaCl₂
 - Low Dissolved Solids (LDS) ~40 mg/L (high purity drinking water) ~9 mM
 - Mid Dissolved Solids (MDS) ~400 mg/L (secondary drinking water standard) ~90 mM
 - High Dissolved Solids (HDS) ~1,700 mg/L (unpleasant drinking water) ~380 mM

PFOA and PFOS working solutions from 0.1 to 10,000 mg/L in 100-mL HDPE bottles

Air-Water Interfacial Tension (Surface Tension) PFOA (Effect of Salts)

 To simulate principal aquifers in US Background solution contains MgSO₄, NaHCO₃, KCI, and CaCl₂

- Dissolved salts resulted in lower surface tension for PFOA
 - Low Dissolved Solids (LDS) ca. 40 mg/L (high purity drinking water)
 - Mid Dissolved Solids (MDS) ca. 400 mg/L (secondary drinking water standard)
 - High Dissolved Solids (HDS) ca. 1,700 mg/L (unpleasant drinking water)

Air-Water Interfacial Tension (Surface Tension) PFOS (Effect of Salts)

- Low Dissolved Solids (LDS) ca. 40 mg/L (high purity drinking water)
- Mid Dissolved Solids (MDS) ca. 400 mg/L (secondary drinking water standard)
- High Dissolved Solids (HDS) ca. 1,700 mg/L (unpleasant drinking water)

Gibb's Equation → Surface Excess

Interfacial tension is a measure of surface concentration or surface "excess" (Γ) [Langmuir, 1917]

$$\Gamma = -\frac{C}{RT} \left(\frac{\partial \gamma}{\partial C} \right)_T \longrightarrow \gamma = \gamma_0 \left[1 - a * ln \left(\frac{C}{b} + 1 \right) \right] \longrightarrow \Gamma = \frac{a \gamma_0}{RT} \frac{C}{C + b}$$

Gibb's Equation

Szyszkowski Equation

Langmuir/Szyszkowski Eq.

- Γ = surface excess
- \mathbf{y} = surface tension
- C = aqueous conc.
- R = gas constant
- T = temperature (°K)

- "a" and "b" are nonlinear fitting parameters
- This equation allows you to fit the entire surface tension vs.
 PFAS concentration curve

Langmuir/Szyszkowski Equation

$$\Gamma = -\frac{C}{RT} \left(\frac{\partial \gamma}{\partial C} \right)_T \longrightarrow \gamma = \gamma_0 \left[1 - aLn \left(\frac{C}{b} + 1 \right) \right] \longrightarrow \Gamma = \frac{a\gamma_0}{RT} \frac{C}{C + b}$$

Gibb's Eq. Szyszkowski Eq. Fit Langmuir/Szyszkowski Eq

Surface Excess Calculations Equation Development

Surface Excess Calculations Comparison of Different Approaches

PFOS Phase Distribution in Unsaturated Soils

Nonlinear: Langmuir/Szyszkowski Equation)

Total PFOS Mass = Mass in Water + Mass on Solids + Mass at Air-Water Interface

$$M_{\text{Total}} = V_{\text{T}}(C_{\text{w}}S_{\text{w}} + C_{\text{w}}K_{\text{D}} \rho_{\text{b}} + S_{\text{a}} \frac{a\gamma_{0}}{RT} \frac{c}{c+b})$$

• $C_w = 1 \text{ mg/L}$, $S_w = 0.26$, $K_D = 1.14 \text{ mg/kg}$, $\rho_b = 1.5 \text{ kg/L}$, $S_a = 80 \text{ cm}^{-1} \text{ sand}$, $S_a = 1000 \text{ cm}^{-1} \text{ silt}$ (Brusseau, 2018)

Surface Tension of "PFOS" Mixture

"PFOS mixture" consists of a sulfonamide and three sulfonates

- Prepared equimolar stock mixtures from solids with total concentrations of 100, 200, 400, and 600 mg/L
- Dilutions of stock mixtures in range from 0.1 to 80 mg/L
- Solutions in ultrapure water, and water with low, mid, and high dissolved solids

Effect of PFAS Mixtures on Surface Tension Measurements

"PFOS mixture" contained a sulfonamide and three sulfonates in ca. 400 mg/L TDS

- PFBS, PFHxS, PFOS and FOSA (0.3:0.3:0.2:0.2 mole fractions)
- PFBS and PFHxS surface tension of 70 mN/m at 100 mg/L (not surface active)
- FOSA surface tension lowest at equivalent concentration
- PFOS mixture exhibited "ideal" surface tension behavior from 0.2 to 20 µmol/L, non-ideal at increasing concentrations

NAPL-Water Interfacial Tension

Drop of NAPL suspended in solutions containing PFAS with ca. 1700 mg/L TDS Confirmed oleophobic nature of the perfluorocarbon chain (Moody and Field, 2000)

- Significant reduction in interfacial tension only observed for concentrated solutions (>100 mg/L)
- IFTs less than 5 mN/m (dyne/cm) typically needed for NAPL mobilization

AFFF Phase Behavior JP4 Jet Fuel

4 mL : 4 mL

AFFF Phase Behavior JP4 Jet Fuel (Oil Red O)

Comparison AFFF Phase Behavior JP4 Jet Fuel

- 3% active ingredient
- 7 mL JP-4 : 7 mL surfactant solution
- After 24 hr settling

Mathematical Modeling of PFAS Transport in the Unsaturated Zone

Modeling PFAS Adsorption at Air-Water Interface

Objective: Incorporate nonlinear PFAS adsorption at air-water interface using a modified version of Hydrus 1D

Richards Equation:
$$\frac{\partial \theta}{\partial t} = \nabla \cdot (k. \nabla h) + \frac{\partial k}{\partial z} + S$$
 $\frac{\partial}{\partial t} \left(\varphi s_{\alpha} C_{i}^{\alpha} \right) + \nabla \cdot \varphi s_{\alpha} \left(C_{i}^{\alpha} V^{\alpha} - D_{i}^{h^{\alpha}} \nabla C_{i}^{\alpha} \right) = \varphi \sum_{\beta} E_{\alpha \beta_{i}} + R_{i}^{\alpha}$

Langmuir Isotherm:
$$\Gamma^{i} = \frac{a\gamma_{0}}{RT} \frac{C^{i}}{C^{i} + b}$$

Linear Isotherm: $\Gamma^i = K_i C^i$

 $E_{ai}^i = -A_a$

a and *b*: Szyszkowski eq. parameters fitted using batch experimental results

K_i : linear partitioning coefficient

Specific Interfacial Area
$$[L^{-1}]$$
, $A_{ai} = SA\left(0.9031 - 0.9012\frac{\theta}{\theta_s}\right)$
SA: Geometric su rface area $[L^{-1}] = \frac{6(1-\varphi)}{d_{50}}$ (Costanza-Robinson et al., 2008)

 θ_w : water content, θ_s : saturated water content, φ : porosity, s_α : saturation of α – phase

Effect of PFAS Accumulation at Air-Water Interface on Unsaturated Zone Transport

- Pulse injection (1 PV) of PFOA or PFOS (10 mg/L)
- Medium level of total dissolved solids (400 mg/L TDS)
- F-70 Ottawa sand (40-270 mesh)
- Uniform water content, $\theta_w = 0.27$

PFAS Vertical Concentration Profiles in Unsaturated Soil

- Pulse injection (1 PV) of PFOA or PFOS (10 mg/L)
- Medium level of total dissolved solids (400 mg/L TDS)
- F-70 Ottawa sand (40-270 mesh)
- Uniform water content, $\theta_w = 0.27$

Effect of Input Concentration on Unsaturated Zone Transport of PFOS

- Pulse injection (1 PV) of PFOS (10 mg/L or 50 mg/L)
- Medium level of total dissolved solids (400 mg/L TDS)
- F-70 Ottawa sand (40-270 mesh)
- Uniform water content, $\theta_w = 0.27$

Effect of Soil Water Content and TDS on PFOS Transport

- Pulse injection (1 PV) of PFOS (10 mg/L)
- F-70 Ottawa sand (40-270 mesh)
- Uniform water content, $\theta_w = 0.20$ or 27

In Situ Sequestration of PFAS

Coagulant polymers (cationic surfactants) SERDP Project ER-2425

Poly-DADMAC (PDM)

Polyamine (PA)

- Accepta 4351
- ~ 28% OC
- Quaternary Amine
- diallyl dimethylamine
- MW ~ 350,000

- Accepta 4350
- ~ 26% OC
- Quaternary Amine
- epichlorohydrine and dimethylamine
- MW ~ 240,000

To improve performance....combine Powdered Activated Carbon (PAC) with polyDADMAC (PDM)

- PDM acts to stabilize PAC in suspension, facilitates delivery
- Both PDM and PAC can serve as sorbents (wide range of effectiveness)

DARCO[®] 100 mesh (150 µm) Powdered Activated Carbon (Sigma Aldrich)

Provisional Patent Application: Reg. No. 41,942, Docket No. 70011-067P01v (September, 2017)

Commercially Available (Proprietary) PFAS Sorbents

RemBind[™]-Tersus

Activated carbon, aluminum hydroxide, organic matter and other additives, intended for near surface soil mixing

PlumeStop[®] Liquid Activated Carbon[™]–Regenesis

Activated carbon (1-2µm) suspended in water dispersed with organic polymer

Limited independent verification
Limited data (e.g., mass balance)
In situ delivery issues rarely addressed

PFOA and PFOS Batch Adsorption Studies With Darco[®] PAC (100-mesh)

Schematic Diagram of 1-D Column System

(1) Non-reactive tracer test (pulse injection), (2) Inject PDM+PAC suspension,
(3) Inject background electrolyte, (4) Inject PFAS solution (e.g., 100 ug/L PFOS)

Injection of PDM+PAC Suspension

40-50 mesh Ottawa Sand (d_{50} = 358 um), k_i = 7.37x10⁻¹¹ m², n = 0.37, SSA = 0.0125 m²/g, PV = 22 mL PDM+PAC Suspension: 1,000 mg/L PAC + 5,000 mg/L PDM, viscosity = 1.18 cP Flow rate: 0.12 mL/min; pore-water velocity ~1.0 m/day

Images of PDM+PAC Treated Ottawa Sand

Leica DM IL LED

PFOS Column: S-PAC treated 40-50 mesh Ottawa Sand

Based on the measured $C_{s,max}$ = 316 mg/g and mass of retained PAC (~27 mg), the capacity of the column should be ~ 8.65 mg PFOS, consistent with the observed retention of ~10.04 mg PFOS

For a 100 µg/L injection; ~2 ug PFOS retained/PV, capacity would be reached after ~5,020 PV

PFOA Column: S-PAC treated 40-50 mesh Ottawa Sand

Based on the measured $C_{s,max}$ = 323 mg/g and mass of retained PAC (~14.8 mg), the capacity of the column should be ~ 4.78 mg PFOS, consistent with the observed retention of ~6.57 mg PFOA

For a 100 µg/L injection; ~2 ug PFOA retained/PV, capacity would be reached after ~3,600 PV

Configuration of Aquifer Flow Cell

PV=1.45L

Tracer Test Before PDM+PAC Injection

Side-port Injection of 1 g/L PAC + 5 g/L PDM

40 mL (0.08 mL/min) with background flow (2.4 mL/min)

80 mL (0.08 mL/min) with no background flow

Tracer Test After PDM+PAC Injection

Acknowledgements

Projects ER-2425 and ER18-1149

School of Engineering

UNIVERSITY OF MINNESOTA

