"1y

' Ci“ Dark Matter Searches in LUX P
i\‘

P Claudio Pascoal da Silva
(LIP, Universidade de Coimbra) LGX
¢ -on behalf of the LUX Collaboration
COSPA-2016

INVESTIGADOR
FCT



For internal Reviewers 2

*The presentation is for COSPA-2016
o 13th International Symposium on Cosmology and Particle Astrophysics

*The talk will be next Monday 28th of November at 14:00 and is 20 minutes
long
o It will actually be on Sunday 27th at 8PM MST or Monday 28th 3AM (Lisbon time)
o https://indico.cern.ch/event/491882/timetable/

eRelied heavily on the presentations from Aaron, Matthew and Evan (thanks
to them!)



https://indico.cern.ch/event/491882/timetable/

OUTLINE

*The LUX detector - two phase Xe
detector

o Direct dark matter detection

o How LUX detector works (Liquid Xenon

time projection chamber) |
: gill
4 eThe LUX calibrations (Krypton, DD | g
and Tritium)

*332 live-days second science run
results "
o LUX backgrounds
o Main WIMP search analysis B

o LUX WIMP search limits £
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Dark Matter Detection

¢ Cold Dark Matter Candidates

o WIMP’s (weakly interactive massive particles):
o Neutral in most scenarios
o Requires physics beyond the standard model
o Axions (solution to the strong CP violation problem)
o... others
eLUX is a Direct Detection experiment

o We look for scattering of galactic WIMPs with the
nucleus of the target material.

o Spin dependent interaction
o Spin independent interaction ¢ o A°
o Other...

o Isothermal model: expect recoil <10 keV requiring
detectors with a very low threshold.

See talk from Manfred Lindner 9:30 AM tomorrow



Why a Liquid Xenon Time Projecting Chamber? 6

e Xenon has a high atomic mass (A=131), high density (2.9 g/cm?) and no
intrinsic backgrounds.

eLiquid Xenon TPCs are scalable to
multi-ton size.

*Energy depositions produce light and
charge- two detectable channels:

o Prompt scintillation (S1)

o Proportional scintillation (S2): Measurement of the
electrons extracted from the liquid to the gas

e 3D Position Reconstruction

o Depth obtained from the time difference
between S1 and S2 - called here drift time

o XY reconstructed from the S2 light pattern

Drift time

Particle indicates depth

1

— ionization electrons

e Ratio of charge to light gives is used as a N W sciilalon phoons (-1751m) ey ssmsn
discriminator against backgrounds (>99%):

o NR Recoil: WIMPs and neutrons interact with nuclei - short, dense tracks
o ER Recoil: axions, ys and e- interact with the atomic electrons - longer, less dense tracks

e Odd-neutron isotopes ('°Xe, 131Xe, 47.6% natural abun.) enable spin-
dependent sensitivity studies.



The LUX Experiment

*370 kg Liquid Xenon
Detector (59 cm
height, 49 cm
diameter)

0 250 kg in the active

region (with field) Construction aterialé

chosen for low radioactivity
(Ti, Cu, PTFE)

122 ultra low-background PMTs
(61 on top, 61 on bottom)
observe both S1 and S2

Active region defined by PTFE
reflectors (high reflectivity
>97%) - high light collection)



Typical LUX Pulses

F S1 - Prompt scintillation \

¢ ~60-90% of light in bottom PMTs

o Ratio depends on the depth of the event
e Sharp rise with a exponential decay

o Pulse FWHM: ~100 ns

0 S1 area: 1-50 phd for WIMP search

@reshold of 2 detected photons J
r S2 - Electroluminescence w

e ~25 phd per extracted electron
*~57/43% (top/bot.) light in PMTs
e Near-gaussian pulse shape

o pulse width depends on the depth

* Threshold of 150-200 phd (WIMP-
Qearch) j
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“J1 “\ L UX Timeline 20062016 10
Two main WIMP search runs

A U First Science Run (FSR): 2013/04-2013/09, 95 live-days
2 /.// | Second Science Run (SSR): 2014/09-2016/09, 332 live-days

2008: LUX 2013 (Apr): 2014 (Jan): 2016. (May):
funded  First Science Run Grid 5%12 I;ilnésgaeds -
e ve-day
(DOE+NSF)  (FSR) Starts  Conditioning 2014 Sep): 2016 (Sep):
Second Science Run LUX
decommission

(SSR) Starts

2006: 2012 (Jul): 2013 (Now): 2015 (Dec): 2016 (Jul):
LUX Collab. LUX moves  First Science Run 3-month run SSR Results Released
Formed wunderground Results Reported reanalysis posted 332 live-days
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Krypton Calibrations 11

. . o Krypton data 33mKr
o83mKr is an internal source. It is injected (Drift Time 4 - 8 us)

in the gas system and decays uniformly
inside the detector
o 83mKy emits two gamma rays E, 1 = 32.2 keV

Second Science Run

(Ti2=1.83 h)and Ey2 = 9.4 keV (T12 =154 ns) >

o 1 to 2 times a week 2071

e 83mKy used to bl

o Develop S1 and S2 position corrections: both 10
S1 and S2 pulses depend on the location of the  _ 5[}
event due to geometrical light collection and 5
electronegative impurities. “ 5[]

o Map variations of the electric field in the 1ol
detector

o Develop and test the position reconstruction: dl
krypton data is used to get the light response 207
functions (LRFs)of the PMTs. These functions | R — A ——
are found by iteratively fitting the distribution 2520 -15-10 -5 0 5 10 15 20 25
of S2 signal for each PMT. y (cm)

The large difference between the drift field (180 V/cm) and the extraction field
(2.8 kV/cm in liquid) causes the the drift field lines to be compressed as they pass
through the gate plane; any electrons leaving the drift volume appear only in
narrow strips between each pair of gate wires.



ER Calibrations

o Tritium is an ideal source for determination
of the detector’s electron recoil band and
low energy threshold

o E(max) - 18.6 keV
o <E> - 5.9 keV

o B decay with T¢1/2) = 12.6 a - Long Lifetime

*Tritiated methane was injected in the gas
system and removed by the getter.

Tritium calibrations performed every three

months during the SSR 000
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NR Calibration 13

e Deuterium-Deuterium neutron Generator
installed outside LUX water tank

eThe 2.45 MeV emitted neutrons are collimated to
the level of ~1 degree

*Two analysis are performed
o Double-scatters - ionization yield Qy (0.7 to 74 keVn)

o Single-scatters - scintillation yield Ly and NR band
calibration (1.1 to 74 keVy,)

e Calibrations every three months and at different
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https://arxiv.org/abs/1608.05381

Estimation of Backgrounds 14

Expected number

Background source below NR median

Bulk volume, but leakage

External Gamma Rays 1.51+£0.19 :l__at all energies

Internal Betas 1.20+0.06
Low-energy, but confined to

2381 late chain wall back. 8.7+3.5 the edge of our fiducial volume
Accidental S1-S2 0.34+0.10 In the bulk volume,

low- energy, in the
Solar 8B neutrinos 0.15+£0.02 NR band

*These figures are figure of merit only. In our analysis we use a likelihood
analysis.

o + ~ 0.3 single scatter neutrons, e.g. from (, n), not included in PLR



LUX Likelihood Analysis 1

e A profile-likelihood test (PRL) was implemented
to compare the models with the observed data

*5 un-binned PLR dimensions
o z/drift time, r, ¢, ST and log10(S2)
¢1 binned PLR dimension:

o Event date

e Data in the upper-half of the ER band were
compared to the model (plot at right) to assess
goodness of fit.

* Good agreement with background-only model,
p-value >0.6 for each projection.

*S1 and S2 are modelled with NEST (Noble 1%‘3’
Element Simulation Technique, NEST, http:// §§§L=E=|\
www.albany.edu/physics/NEST.shtml) and based =~ * 0 & % 2R
on our in situ calibration data ‘

field until we see a match between model and 0

I 1 K - ) 1 2 3
Ca bratlon data. ; 1 : phi (radian)
M. Szydagis 2013 JINST 8 C10003 and J. Mock 2014, JINST 9 T04002

c 250
e NEST is “tuned” to each by varying the applied %E
3


http://www.albany.edu/physics/NEST.shtml

log, [S2 (phd)]

Taking a Look at the Dark Matter Search Data
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log [S2 (phd)]

LLUX 2014/2016 Detectot’s Response
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LUX Blind Analysis 18
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log [S2 (phd)]

LUX Salting

" 9.8keVee

8.7

Instead of traditional blinding, we

24F 15 employ a technique where fake
|/ |\ signal events (“salt”) are injected
3 b into data stream. NOT SIM!!
2 2 | . I A I . . . . I . . . . I . . . .
0) 10 20 30 40 50

S1 (phd)

19



log [S2 (phd)]

WIMP-search data from 332 live days 20

o 15 -
Black Dots: Second Science Run Data (Salt Included)
Open circles: High radius events |

1 | 1 1 1 1 | 1 1 1

20 30 40 50
S1 (phd)
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2.2

WIMP-search data - Salt Identified

| Salt - blue dots -

10 20 30 40 50
S1 (phd)
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log [S2 (phd)]

WIMP-search data - Pathological Events
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S1 Prompt Fraction

Post-Unsalting Quality Cuts 23

e Two additional cuts on the S1 pulse were implemented.

*Flat signal acceptance of 98.5% when both cuts are applied to the DD and
Tritium data

25
Density map: CH3T calibration data
x : WS data passing S1 cuts
©O: WS data cut by ST Max. PMT Area cut O
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log [S2 (phd)]

WIMP-search data from 332 live days

(includes also information o

Pathological events removed
p-value = 40% consistent with
background-only hypothesis

nr,z ¢) ]
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WIMP-nucleon cross section (zb)

FSR Reanalysis - 95 Live Days
Spin Dependent

Spin Independent

m o (GeVie 3
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WIMP-nucleon SI Exclusion - SSR 332 days 26
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* We observed an improvement of a factor of four compared with the results
from the first science run.



WIMP-nucleon SI Exclusion - FSR+SSR 27
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eBoth LUX Runs Combined
o https://arxiv.org/abs/1608.07648

e LUX now excludes significant portions of the 1-sigma regions for WIMPs
favored by certain supersymmetric models.



https://arxiv.org/abs/1608.07648

The LUX-ZEPLIN Experiment 28

K-Turning on by 2020 with

1,000 initial live-days plan
*10 tons total, 7 tons active,

~5.6 ton fiducial
e Unique triple veto
*GOALS: <2 x 1043 cm?,

40 GeV ~100 times better

than LUX
&
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Conclusions 29

*LUX has since 2013 the world-leading result in the dark-matter research.

eThe LUX'’s 332 live-day search, cutting into un-probed parameter space.
Excluding SI WIMPs down to 0.22 zeptobarns (2.2x10-%¢ cm?).

e LUX had significant improvements in the calibration of xenon detectors -
essential to improve detector’s sensitivity.

* When both runs are combined SI WIMPs are excluded down to 0.11
zeptobarns.
e Results available on:
o https://arxiv.org/pdf/1608.07648v2.pdf
* More analysis forthcoming

o Spin-dependent, axion searches/ALP, effective field theory, neutrino less double beta decay,
additional calibrations etc.

e Onwards and downwards: LUX-ZEPLIN (LZ) experiment under construction,
7 tonne active mass (2020).
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First Science Run Reanalysis
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Grid Conditioning

e Results from the first science run featured a 48.9% electron extraction efficiency.

35

*During the first half 2014 the voltage of the grids was raised for an extended period of time
until significant current is drawn. The main objective was to burn any dust or asperities

present in the grids.

o After the grid conditioning the electron extraction efficiency increased to >70%.

*...but upon refilling we observed a large radial component in the drift field.

*Moreover the effect of the radial field is time dependent increasing along the run.

Krypton data
¢ reconstructed
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Modeling the Electric Field 36

* A Fully 3-D model is constructed in the COMSOL S \,,—"-‘ W
Multiphysics® FEM software to compute the " i = —
electric field in the active region of LUX

eThe observed radial field is consistent with a
build up of negative charge (0 to -10 pC/m?) on
the PTFE walls.

* Charges are added to the walls to produce the >
radial field that best produces the observed /
distribution of 33™Kr decays.

Il
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Dealing with the Fields 37

(How to deal with a field that is varying in space and in time?)

e Detector’s volume sliced in M time bins and N z slices

*In each of the MxN segments, we assume a uniform detector model for both ER and
NR response.

¢ 33mKr js used to compute the fiducial volume in each segment

e We found that 4 date bins and 4 z-slices captured the variation with sufficient
calibration statistics. The data bins used were:

o Data-bin 1 (2014.09.09-2014.12.31): 46.8 live-days —» 105.4+5.3 kg fiducial mass
o Data-bin 2 (2015.01.01-2015.03.31): 46.7 live-days —» 107.2+5.4 kg
o Data-bin 3 (2015.04.01-2015.09.30): 91.6 live-days —» 99.2+5.0 kg
o Data-bin 4 (2015.10.01-2016.05.03): 146.9 live-days —» 98.4+4.9 kg

* We effectively have 16 independent detectors

e For each detector S1 and S2 are modelled with NEST (Noble Element Simulation
Technique, NEST, http://www.albany.edu/physics/NEST.shtml)

* NEST is “tuned” to each of the 16 detectors by varying the applied field until we see
a match between model and calibration data.

NEST

l—} M. Szydagis 2013 JINST 8 C10003 and J. Mock 2014, JINST 9 T04002
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Dealing with the Fields
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S2/S1 Position Corrections

*Size of the S1 depends on the

location of the event (due to

geometrical light collection), and

S2 (due electronegative impurities) Anaode

*On the FSR the correction factors
for both S1 and S2 were obtained
by flat fielding a mono-energetic
source 83mKcy.

+ate

e However, a spatially varying E-field
ALSO affects S1 and S2 sizes, but
differently for every particle type
and energy.

Cathode

S1 larger for
events lower in
the detector

S2 larger for
events higher
in the detector

39



S2/S1 Position Corrections

e Our strategy is:

o Disentangle position effects from field
effects;

o Apply a correction to account for
position effects only.

e83mKr has two decays close in
time. The ratio of the first-to-
second S1 pulse area
depends on field alone. This
allows us to measure the
component of variation due
to applied field alone.

Applied Field [V/cm]
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y at surface (cm)
|

Wall-surface backgrounds

2381 late chain plate-out on PTFE surfaces survives as
210Ph and its daughters (mainly 21°Bi and 2'°Po).

*Betas and 2%°Pb recoils travel negligible distance, but they
can be reconstructed some distance from the wall as a
result of position resolution (especially for small S2s).

*These sources can be used to define the position of the
wall in measured coordinates, for the 4 data bins and any
combination of drift-time and ¢.

*The boundary of the fiducial volume is defined at 3 cm
from the observed wall in S2 space and for a drift time
between 50 and 300 ps.

210Po o

" TimeBin1: 10/27/14 - 1/1/15

120ps < Drift < 140us
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Wall Surface Model 42

Fiducial boundary
-
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S2 Gaussian Fit Sigma (samples)

(S2 50% Area Time)/(S2 Gaussian Sigma)

S2 Quality Cuts and Eftticiency 43
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WIMP-nucleon cross section ( zb )

LUX Proposal VS Main Result
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The Water Shield 45

eWater Tank: 6 =8 m, h=6 m
(300 tonnes)

* Cherenkov based active shielding
o Dimensions: 6 = 8 m, h = 6 m (300 tonnes).*
o Muon active veto: 20 PMTs 10"
e Ultra-low Background
oY suppression: x10°

o Neutron sup. (E, >10 MeV ~10-3 and
E. <10 MeV >10").

Flux Attenuation in Water
(Normalized to Number of Incoming Particles)
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Krypton Removal 46

*35Kr - beta decay - intrinsic
background in liquid Xe
0 85Kr: 0.687 MeV B, 10 yr half-life

o Research grade Xenon: ~100 ppb Kr => 104 -
10° reduction needed

* August 2012 - January 2013: Kr
removal at Case Western Reserve
University

o Chromatographic separation system

charcoal

o Kr lighter & less polarisable than Xe. Kr
bonds weaker, travels faster through charcoal
and pure xenon is left behind.

eKr concentration reduced from 130
ppb to 4 ppt, (factor of 30000)

o1 ppt achievable (useful for next-generation |
detectors) o'

Concentration
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