

Upward view through the LUX TPC

Searching for dark matter with LUX and LZ

Peter Sorensen on behalf of the LUX Collaboration and the LZ Collaboration

LUX is dead; long live LUX!

- 6 Oct, 2016: LUX comes up for air after 3+ years in the water shield
- * 13 Jan, 2017: WIMP search results from total 95+332 live day exposure published in PRL
- LUX is presently the most sensitive direct detection experiment and a rich physics program is on-going

LUX by the numbers

- * Central detector:
 - 0.5 m diameter x 0.5 m height dodecagon
 - 370 kg liquid xenon TPC, 250 kg active target mass, ~100 kg fiducial target mass
 - 122 Photomultiplier tubes, Hamamatsu R8778
- 2 ultra low background titanium cryostats
- * 1 ultra pure water shield
- pioneering in-situ calibration program including ^{83m}Kr, ³H and DD neutron

Searching for dark matter with LUX and LZ

3

Background minimization

* Internal

- We count and then build with lowbackground materials (Cu, Ti)
- Fiducialization takes advantage of xenon's self-shielding

* Intrinsic

 Dedicated purification system for Kr removal (⁸⁵Kr beta decay) from Xe via chromatographic separation.

* External

- * 70,000-gallon water tank with active PMT veto system for muon tagging
- Overburden for reduction of cosmic backgrounds

liquid Xe self-shielding from LUX2013 data

LUX 332 live day exposure (salted)

filled: bulk event open: outer 1cm of bulk

black: recorded events blue: sprinkled salt

blue bands: background distribution 10% -90% red bands: signal distribution 10%-90% green curves: keV energy

5

LUX 332 live day exposure (salt-free!)

salt is now removed

red events removed by postunsalting cut

6

LUX 332 + 95 live days results

- LUX 2013 results reported on 95 live days
- LUX 2014-2016 results
 reported on 332 live days
- Total of 33,500 kg-days (~0.1 tonne-year)
- Limits calculated using 5 dimensional unbinned PLR (r, φ, dt, S1, S2)
- in between these search campaigns: calibrations and conditioning

Signal detection efficiency

- * S2 efficiency (red)
- * S1 efficiency (green)
- * combined S1+S2 (blue)
- total after analysis cuts (black)
- range (dashed) is extrema of 16 detectors

Electrode conditioning

- * Standard technique for electron drift detectors
- Consists of maintaining electrode at a voltage just at/above discharge threshold
- * Performed after 95 live day result, in cold gas xenon
- Modest success increased electron emission efficiency from ~50% to about 75%
- * Unintended consequence -negative charge build-up on PTFE

Electrode conditioning affect on e-trajectories

Mitigation: 16 detectors

Searching for dark matter with LUX and LZ

DD neutron calibration

arXiv:1608.05381

Searching for dark matter with LUX and LZ

LUX detector physics results

- Too many publications to cover here (and more in the works)
- * Partial list below

"Signal yields, energy resolution, and recombination fluctuations in liquid xenon" Phys. Rev. D **95**, 012008 (2017), arXiv:1610.02076

"Low-energy (0.7-74 keV) nuclear recoil calibration of the LUX dark matter experiment using D-D neutron scattering kinematics" (2016), submitted to PRC, arXiv:1608.05381

"Chromatographic separation of radioactive noble gases from xenon" (2016), submitted to Astropart. Phys., arXiv:1605.03844

"First spin-dependent WIMP-nucleon cross section limits from the LUX experiment" (2016), Phys. Rev. Lett. 116, 161302, arXiv:1602.03489

"Tritium calibration of the LUX dark matter experiment" (2016), Phys. Rev. D 93, 072009, arXiv:12512:03133

"Radiogenic and muon-induced backgrounds in the LUX dark matter detector" (2014) - Astropart. Phys. 62 33-46 (2015) - arXiv:1403.1299

Tritium beta spectrum in LUX

LUX => LZ

- As a benchmark, sensitivity to 50 GeV WIMPs over 4 decades
- LZ design goal
 approaches 1e-48 cm²
- Note factor ~x20 in mass results in factor ~x100 in sensitivity
- Due to self shielding Xe and additional background reduction

LZ sensitivity

- LZ projected WIMP sensitivity
- This and other plots
 from the forthcoming
 LZ Technical Design
 Report (TDR)
- Expected to appear on arXiv in March

LZ instrument

Projected NR-like signal distribution

Total of 6.8 signal-like background events in complete exposure Rn is dominant component followed by v-e solar neutrino scattering, and atmospheric v-A scattering

ROI + Single scatter

ROI + Single scatter + vetoes

⁸B neutrino-nucleus scattering

- Background can be profiled due to distinctive shape
- Multiple calibration sources:
 DD neutron scattering, novel
 D-reflector neutron scattering,
 photoneutron scattering

LUX and LZ Collaborations

- * LUX:
 - ~20 institutions and~100 scientists
 - * <u>luxdarkmatter.org</u>
- * LZ:
 - ~30 institutions and
 ~200 scientists /
 engineers
 - * <u>lzdarkmatter.org</u>

Searching for dark matter with LUX and LZ

Summary

- LUX had an extremely productive 4-year run and is still producing new physics results
- The LZ Collaboration is working to ensure a successful follow-on experiment is deployed on or ahead of schedule (presently 2020)

Extra Slides Follow

Post-unsalting cuts for new pathologies

- Cuts with high signal acceptance were defined on DD and CH₃T calibration data (shown below)
- * Flat signal acceptance of 98.5% with both cuts applied.

Density map: CH₃T calibration data

- **x** : WS2014-16 data passing S1 cuts
- O: WS2014-16 data cut by S1 Max. PMT Area cut
- **x** : WS2014-16 data cut by S1 Prompt Fraction cut

Wall-surface backgrounds

- * Understood as radon plate-out on PTFE during exposure to air in construction
- Survives as ²¹⁰Pb and its daughters (²¹⁰Bi, ²¹⁰Po)
- Recoils occur short (~mm) distances from the wall
- Observed wall width due to finite position resolution
- Two-part solution in negotiating this background:
 - a fiducial volume cut 3 cm inwards from the measured wall position
 - a model for the number and position of events originating from the wall-surface backgrounds

