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*The LUX detector - two phase
Liquid/Gas xenon time projection
chamber

o Direct dark matter detection ’\

oHow LUX detector works
eThe LUX calibrations

eKrypton (3*™Kr);

e Neutron recoils: D-D

e Electron recoils: 3H

*332 live-days second science run " \
(2014-2016) results 1 |

o LUX backgrounds > i
o Main dark matter search analysis - 3 e \

1 oSpin independent |
/ oSpin dependent (NEW!) w

» :

mage: LUX inside the water tank (September 2012)
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Cold Dark Matter Particle Candidates 1

oWIMPs (weakly interactive

massive particles): o :

107 .
o Stable and neutral in most scenarios; :g::: j
o Solves the Gauge Hierarchy Problem ol onh :
o WIMP Miracle (density from freeze o g £]
| E
out) 1w’ £
o Physics beyond the standard model: £ o nedtrinos Km;:l‘ﬂ%g; g
= 10"} oton 4
o Super-symmetry - neutralino B | btar?on_) %
° ° 10'“ LP g‘
o Axions (solution to the strong CP w0 =
. . . 10"} . R ;
problem - Peccei-Quinn solution) = .} axion  f axino -

107 F SuperWIMPs :

oAnd many, many others... i [tuzzy coM lﬂ?v...n&

. graviton
osuperWIMPs, light gravitinos, ol 'I ‘ |
branons, Sterile Neutrinos, Kaluza- 16”10 107 107107 10107107 10" 10° 10° 16° 10° 10" 10° 10° 10° 10"
mass (GeV)

Klein bosons ...



Dark Matter Detection

eLUX is a Direct Detection exp.

o Galactic WIMPs scatter with nucleus of
the target

o Spin independent (M) - proport. to A2
o Spin dependent interaction (2’ and %")
o Other effective field interactions...

o Axions are detected through
axioelectric effect

e Challenges

o Isothermal model: expect recoil <10

keV requiring detectors with a very low
threshold.

o Challenge backgrounds

o Go underground, passive and active
veto, careful selection of materials
with very low background,
discriminate nuclear recoils from
electron recoils

\\I\ll’ mntmn \\l\ll’ ])mtnn

)

e Good for most EFT interactions
o High atomic mass (A=131)

o Odd-neutron isotopes (1?°Xe, 131Xe)
enhance spin-dependent sensitivity
studies

eHHigh density (2.9 g/cm?)
eHigh light yield

Qo intrinsic backgrounds

ﬂVhy Xenon as a Target Nucle@

_




Lig. Xenon Time Projecting Chamber ©

*Energy depositions produce light and
charge

o Prompt scintillation (S1)

o Proportional scintillation (52): Measurement of
the electrons extracted from the liquid to the gas

¢ 3D Position Reconstruction

o Depth obtained from the time difference
between S1 and S2 - called here drift time

o XY reconstructed from the S2 light pattern

*Ratio of charge to light (S2/S1) is a Particle
discriminator against backgrounds (>99%):

o Nuclear Recoil (NR): WIMPs and neutrons : 'l ' 51
interact with nuclei - short, dense tracks

Drift time
indicates depth

o Electronic Recoil (ER): axions, ys and e- interact
with the electrons - longer, less dense tracks = lontzallon leckons

. . VNV UV scintillation photons (~175 nm) P
*TPCs are scalable with improvement of
performance



The LUX Experiment

*370 kg Liquid Xenon
Detector (59 cm height,
49 cm diameter)

o 250 kg in the active
region (with field)

Construction materials

chosen for low radioactivity
(Ti, Cu, PTFE)

dh ur'\\

Active region defined by PTFE
reflectors (high reﬂect1v1ty

122 ultra low-
background PMTs (61
on top, 61 on bottom)

observe both S1 and S2 >97%) - high light collection)



Typical LUX Pulses

F S1 - Prompt scintillation \

*Sharp rise with a exponential decay
o Pulse FWHM: ~100 ns

*~60-90% of light in bottom PMTs
o Ratio depends on the depth of the event

C hreshold of 2 detected photons j
r S2 - Electroluminescence W

e Near-gaussian pulse shape
o pulse width depends on the depth (z)
*~57/43% (top/bot.) light in PMTs

¢ ~25 phd per extracted electron

I All PMTs

Nki'g\fll sum

Chreshold of 200 phd (WIMP-Search)j

1.5 s
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eSanford Underground Research

Facility Lead, South Dakota, USA.
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- Neutrino Experiment 1970-1994 1
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fé * Y flux reduced x107 compared to
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Timeline 2006-2016 11

Two main scientific runs
First Science Run (FSR): 2013/04-2013/09, 95 live-days
Second Science Run (SSR): 2014/09-2016/09, 332 live-days

2008: LUX 2013 (Apr): 2014 (Jan): 2016 (May ):
funded  First Science Run Gri]d 53531; f;?/:esgigs-
(DOE"‘NSF) (FSR) starts Condltlonlng 2014 (Se ): 2016 (Sep):
Second Science Run 1 LUX
ecommission

(SSR) Starts

2006: 2012 (Jul): 2013 (Now): 2015 (Dec): 2016 (Jul):
LUX collab. LUX moves  First Science Run 3-month run SSR results released
formed wunderground  results reported reanalysis posted 332 live-days
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PRL, 116, 161302 2016 [ KL, 118,021303, 2017


http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.021303

Krypton Calibrations 12

Krypton data 83mKr

*83mKr injected in the gas system and (Drift Time 4 - 8 ps)

decaying uniformly inside the detector

Second Science Run

o 83mKy emits two gamma rays Ey 1 = 32.2 keV
(T12=1.83 h) and Ey > = 9.4 keV (T1/2 = 154 ns)

o 1 to 2 times a week -
207
e 83mKy used to
.- . 15}
o Develop S1 and S2 position corrections: both
S1 and S2 pulses depend on the location of the 10/
event due to geometrical light collection and 5
electronegative impurities. E
o Map variations of the electric field in the “
detector
.o . -10}
o Develop and test the position reconstruction:
krypton data is used to get the light response 13
functions (LRFs)of the PMTs. These functions -201
are found by iteratively fitting the distribution 5l

of S2 signal for each PMT.

25 <20 <15 -10 -5 O 5 10 15 20 25
y (cm)

The large difference between the drift field (180 V/cm) and the extraction field (2.8 kV/cm in
liquid) causes the the drift field lines to be compressed as they pass through the gate plane;
any electrons leaving the drift volume appear only in narrow strips between each pair of gate
wires.



ER Calibrations

13

e Tritium iIs an ideal source for determination of the detector’s electron recoil

band and low energy threshold
o E(max) - 18.6 keV, <E> - 5.9 keV

o B decay with T¢1/2) = 12.6 a - Long Lifetime

eTritiated methane was injected in the

system and removed by the getter.

*ER calibrations performed every three months

5000 | s Data

—Tritium Beta
S 4000 By |
(/]
ab .
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o’ . '.(
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|_> Phys. Rev. D 93, 072009 (2016)
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NR Calibrations 14

e Deuterium-Deuterium neutron Generator installed R
outside LUX water tank - Ionization

eThe 2.45 MeV emitted neutrons are collimated to ' —
the level of ~1 degree

Q) (¢ / keV)

*Two analysis are performed
o Double-scatters - ionization yield Qy (0.7 to 74 keVn)

o Single-scatters - scintillation yield Ly and NR band
calibration (1.1 to 74 keVy,)

*NR calibrations every three months and at
different depths.

L (ph/keV)

Yy

2 0.1t

é
i
Efficiency

Efficiency

e y )
s |
|
- 01t )
1 A, |
o i I
U - - - - - J |
o 0 nn 0 :n 20 W 0,00 S

i
|_> https://arxiv.org/abs/1608. 05381

Nuclear recoil energy (keV)



https://arxiv.org/abs/1608.05381

log [S2 (phd)]

2.6

24

2.2

LLUX 2014/2016 Detector’s Response 15

- ER Band Mean .
- NR Band Mean i

- = == ER Band 80% contours
- = = NR Band 80% contours

10

20

S1 (phd)

30 40 50

phd stands for detected photons



log [S2 (phd)]

LLUX 2014/2016 Detector’s Response
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log [S2 (phd)]

LUX Salting

4 T : T ' : ' : T : T
g 7 9.8 keVee
L 75 . : T —— = J— — - :
. — - 7 — — — — f— -
3 8 i 6.3 . - == = \—'t ’\:\ ——\_\_ -
. = =
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36 z= 7 -
< o =
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0 - g N S
29 - N

-
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NS

34
A common approach is to blind oneself to

32 events in the signal regions but it often
' blinds us to rare backgrounds and
pathologies

33 keVnr
27

1
stead of traditional blinding, we
employ a technique where fake

24 15 signal events (“salt”) are injected
} into data stream. NOT SIM!!
2.2 . . . I . . . . I . . . . I .
0 10 20 30 40

S1 (phd)




S2 Quality Cuts and Etticiency

e After single-scatter event selection (1 S1 + 1 S2),
fiducializing, and cutting out periods of detector
instability, few pathologies remain. These
pathologies are targeted applying cuts to the S2:

o Position reconstruction y? cut analysis the PMT hit
pattern. It removes single-electron pile-up, additional
multiple scatters (x,y separated) and PMT after-
pulsing.

0 S2 waveform cuts to remove misclassified gas events
and merged S2s from multiple scatters (z separated).
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Estimation of Backgrounds 7

Expected number
below NR median

Background source

External Gamma Rays 1.51+£0.19 Bulk volume, but leakage

Il i
Internal Betas 1.20+0.06 at all energies

Low-energy, but confined to

2381 |ate chain wall back. 8.7£3.5 the edge of our fiducial volume

Accidental S1-S2 0.34+0.10 In the bulk volume, low-

Solar 8B neutrinos 0.15+0.02 energy, in the NR band

*These figures are figure of merit only. In our analysis we use a likelihood
analysis.
o + ~ 0.3 single scatter neutrons, e.g. from (&, n), not included in PLR



LLUX Likelihood Analysis 20

* A profile-likelihood test (PRL) was
implemented to compare the models with
the observed data

¢5 un-binned PLR dimensions
oz/drift time, r, ¢, ST and log10(S2)
*1 binned PLR dimension:
o Event date

40F

* Detector’s response (S1,52) modeled with =
NEST (Noble Element Simulation

Technique) with input from our situ 3
calibration data o
: 43 . . e
oSee M. Szydagis 2013 JINST 8 C10003 0 R 0 = = itine )
*Data in the upper-half of the ER band § 20
were compared to the model (plot at 1§§

right) to assess goodness of fit. B e S e —

phi (radian)

* Good agreement with background-only

model, p-value >0.6 for each projection. —}— Observed data

Background only model
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33 keVnr

LLUX 2014/2016 Detector’s Response
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log [S2 (phd)]

3.8

3.6

34

3.2

3

2.8

2.6

24
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15

Open circles: High radius events
1 ! ! ! ! 1 ! !

WIMP search data from 332 live days

33 keVnr

~ Black Dots: Second Science Run Data (Salt Ind“ded)

20 30
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log [S2 (phd)]

4
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WIMP search data - Salt Identlﬁed
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log . 0[SZ (phd)]

WIMP-search data - Patho

logical Events 24

4

r:l .. .I

phe / sample

3.8
3.6
34
3.2

3
2.8r
2.6 red dots: 2 populatioﬁs of

rare pathological events were

4L /" identified contributing 3 sub-

) NR-band events C
29 i3i 1\91

0 10 20 T
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S1 (phd



Post-Unsalting Quality Cuts 25

e Two additional cuts on the S1 pulse were implemented.

*Flat signal acceptance of 98.5% when both cuts are applied to the DD and
Tritium data

1.0 - 25
i KRS s Sy o e Density map: CH;T calibration data

x : WS data passing S1 cuts

O: WS data cut by ST Max. PMT Area cut O

201) x : WS data cut by S1 Prompt Fraction cut

0.9

0.8 = 0O
s &
= .
¢ < _
2 Ot @ 15 . :
o < .. .20
-2-:0‘4; E o O o
: g ' s
& 0. % .
A, U &
(2 2

-
0.4 =

Density map: CHsT calibration data
x : WS data passing S1 cuts

0.3 O: WS data cut by S1 Max. PMT Area cut
x : WS data cut by S1 Prompt Fraction cut
iy 10 20 30 40 50 0 10 20 30 40 50
Raw S1 Area (phd) Raw S1 Area (phd)
R — — T — T
Removes events with S1 that has gas- Removes events with S1 light overly

event-like time structure concentrated in a single PMT



log [S2 (phd)]

WIMP search data from 332 live days
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Pathological events removed
p-value = 40% consistent with
background-only hypothesis

(includes also information onr, z, ¢)
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WIMP-nucleon SI Exclusion - SSR

&

AAAAL
.
=)

WIMP-nucleon cross section ( zb )
=)
WIMP-nucleon cross section ( cm & )

Brazil bands show
10 our 1 and 2 O regions -

:)Ll'l‘ 'S | l'Ll'll 'S 3 lllll'l 'S A llll"l LA LA Al
0.22 zeptobarns L l > . s

3
(at 50 GeV/c?) e 10

leMP

* We observed an improvement of a factor of four for high WIMP masses
compared with the results from the first science run (PRL, 116, 161301
(2016)).



SI Exclusion - FSR+SSR
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0.11 zeptobarns

eBoth LUX Runs Combined
o http://journals.aps.org/prl/abstract/10.1103/PhysRevlLett.118.021303

e LUX now excludes significant portions of the 1-sigma regions for WIMPs
favored by certain supersymmetric models.



http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.021303

Spin-Dependent Neutrons (FSR+SSR) 29
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eBoth runs combined

* We observed an improvement of a factor of six compared with the results
from the first science run (PRL, 116, 161302 (2016)).


https://arxiv.org/abs/1405.0622

Spin-Dependent Protons (FSR+SSR) 30
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* We observed an improvement of a factor of six compared with the results
from the first science run - (PRL, 116, 161302 (2016))



The LUX-ZEPLIN Experiment 31

CTurning on by 2020 with A
1,000 initial live-days plan
¢In the same location of LUX

*10 tons total, 7 tons active,
~5.6 ton fiducial

e Unique triple veto system
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The LUX-ZEPLIN Experiment
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Conclusions 33

*LUX has since 2013 the world-leading result in the dark-matter research.

e LUX had significant improvements in the calibration of xenon detectors -
essential to improve detector’s sensitivity.

e The LUX'’s 332 live-day search, cutting into un-probed parameter space.
Excluding SI WIMPs down to 0.22 zeptobarns (2.2x104® cm?) at 50 GeV/c>.

*When both runs are combined SI1 WIMPs are excluded down to 0.11
zeptobarns at 50 GeV/c2.

e Spin-Dependent results show a cross section of 1.6x10*! cm?(at 35 GeV/c?)
for neutrons (most sensitive constraint to date) and a cross section 5x10-49
cm?(at 35 GeV/c?) for protons.

*Results available on:
o http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.021303

* More analysis forthcoming

o Axion searches/ALP, effective field theory, neutrino less double beta decay, additional
calibrations etc.

*Onwards and downwards: LUX-ZEPLIN (LZ) experiment under construction,
7 tonne active mass (2020).
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Grid Conditioning

e Results from the first science run featured a 48.9% electron extraction efficiency.
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*During the first half 2014 the voltage of the grids was raised for an extended period of time
until significant current is drawn. The main objective was to burn any dust or asperities

present in the grids.

o After the grid conditioning the electron extraction efficiency increased to >70%.

*...but upon refilling we observed a large radial component in the drift field.

*Moreover the effect of the radial field is time dependent increasing along the run.
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Modeling the Electric Field 37
* A Fully 3-D model is constructed in the COMSOL \\.’ e
Multiphysics® FEM software to compute the } |
electric field in the active region of LUX T
,y -

eThe observed radial field is consistent with a =
build up of negative charge (0 to -10 uC/m?) on = '.

the PTFE walls. ) \ :

e Charges are added to the walls to produce the 2P ).

radial field that best produces the observed : s
distribution of 33™Kr decays.

z [em]

E fickd Magnitude [V/em)

0 50 100 150 200 250 300 350
Angle [degrees]




Dealing with the Fields 38

logfS2¢ [phd])

Time Bin 3
AT

Slc [phd)

30

Gray density: CHsT
calibration (ER)

Orange density: DD
calibration (NR)

Solid lines:
NEST model,
ER, NR band mean

Dashed lines:
NEST model,
10-90 percentile.
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S2 /81 Position Corrections

*Size of the S1 depends on the

location of the event (due to

geometrical light collection), and

S2 (due electronegative impurities) Anaode

*On the FSR the correction factors
for both S1 and S2 were obtained
by flat fielding a mono-energetic
source 83mKcy.

+ate

e However, a spatially varying E-field
ALSO affects S1 and S2 sizes, but
differently for every particle type
and energy.

Cathode

S1 larger for
events lower in
the detector

S2 larger for
events higher
in the detector
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S2/S1 Position Corrections

e Our strategy is:

o Disentangle position effects from field
effects;

o Apply a correction to account for
position effects only.

e83mKr has two decays close in
time. The ratio of the first-to-
second S1 pulse area
depends on field alone. This
allows us to measure the
component of variation due
to applied field alone.

Applied Field [V/cm]
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Wall-surtace backgrounds

2381 late chain plate-out on PTFE surfaces survives as
210Ph and its daughters (mainly 21°Bi and 2'°Po).

*Betas and 2%°Pb recoils travel negligible distance, but they
can be reconstructed some distance from the wall as a
result of position resolution (especially for small S2s).

*These sources can be used to define the position of the
wall in measured coordinates, for the 4 data bins and any
combination of drift-time and ¢.

*The boundary of the fiducial volume is defined at 3 cm
from the observed wall in S2 space and for a drift time

between 50 and 300 ps. o
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Fiducial bound
Wall Surface Model iducial boundary ..

1000 ¥ 55 & 1200, 007 phd ' S1E[55,500] phdl

How to predict the number of wall o m
1

events leaking into fiducial volume? 1000}
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o Use the data with S1>50 phd to get systematics. N



LUX Proposal VS Main Result

WIMP-nucleon cross section ( zb )
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The Water Shield 45

eWater Tank: 6 =8 m, h=6 m
(300 tonnes)
* Cherenkov based active shielding
o Dimensions: 8 = 8 m, h = 6 m (300 tonnes).
o Muon active veto: 20 PMTs @310”.
e Ultra-low Background
oY suppression: x10°

o Neutron sup. (E, >10 MeV ~10-3 and
E. <10 MeV >10").

Flux Attenunton in Waler

thickness (m)



Krypton Remowval 46

*35Kr - beta decay - intrinsic
background in liquid Xe
0 85Kr: 0.687 MeV B, 10 yr half-life

o Research grade Xenon: ~100 ppb Kr => 104 -
10° reduction needed

* August 2012 - January 2013: Kr
removal at Case Western Reserve
University

o Chromatographic separation system

o Kr lighter & less polarisable than Xe. Kr
bonds weaker, travels faster through charcoal
and pure xenon is left behind.

eKr concentration reduced from 130
ppb to 4 ppt, (factor of 30000)

o1 ppt achievable (useful for next-generation
detectors)

charcoal

Kr 2 kg Xe
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