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Liquified Noble Gases: Basic Properties

Dense and homogeneous
Do not attach electrons, heavier noble gases give high electron mobility
Easy to purify (especially lighter noble gases)
Inert, not flammable, very good dielectrics
Bright scinftillators

Liquid Boiling point Electron Scintillation  Scintillation Long-lived Triplet molecule
density  at 1 bar mobility ~ wavelength yield radioactive lifetime
(g/cc) (K) (cm?/Vs) (nm) (photons/MeV) isotopes (us)

LHe 0.145 4.2 low 80 19,000 none 13,000,000

LNe 1.2 27.1 low 78 30,000 none 15

LAr 1.4 87.3 400 125 40,000 Fnr, 42ar 1.6

LKr 2.4 120 1200 150 25,000 8lkr, 8xr 0.09

LXe 3.0 165 2200 175 42,000 136 0.03



The Noble Liquid Revolution

Noble liquids are relatively inexpensive, easy to obtain, and dense.

Easily purified
- low reactivity
- impurities freeze out
- low surface binding
- purification easiest for lighter noble liquids

lonization electrons may be drifted through the heavier noble liquids
Very high scintillation yields

- noble liquids do not absorb their own scintillation

- 30,000 to 40,000 photons/MeV

- modest quenching factors for nuclear recoils

Easy construction of large, homogeneous detectors



Direct WIMP Detection with Liquid Xenon

Goal: observe recoils
between a WIMP and a
target nucleus

Equation for WIMP
interaction cross section
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Recoil energy deposited in
three channels:

Scintillation (photons)
lonization (charge)

Heat (phonons)
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Self-shielding

Strategies for Electronic Recoil Background
Reduction in Scintillation Experiments

Rate

Require < 1 event in signal band during WIMP search

LXe: Self-shielding, lonization/Scintillation ratio best

LAr: Pulse shape, lonization/Scintillation ratio best

LNe: Pulse shape, Self-shielding best radius
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Liquid xenon density = 3 g/cm3,

To cause a background event,

gamma rays and neutrons must penetrate
Into the fiducial volume, scatter once, and
then escape without scattering again.

Gamma ray, neutron backgrounds
drop exponentially with detector size.

Self-shielding in liquid Xe TPC
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Limit Scalar Cross-section cm” [60 GeV WIMP]

Historical Trend

Dark Matter Searches: Past, Present & Future
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Lots of Noble Liquid Experiments

| won’t talk about:

e MiniCLEAN, DEAP, CLEAN — K. Palladino talk.

* LUX-R. Gaitskell talk, projected sensitivity 2 x 10%¢ cm? by 2015.
 XENONIT —R. Lang talk, projected sensitivity 2 x 104’ cm? by 2017.

 PandaX -—S. Stephenson talk, projected stage Il sensitivity ~ 3 x 104’cm?.

| will talk about:

 DarkSide —two phase argon
 ArDM —two phase argon
 XMASS —single phase xenon

e LZ-two phase Xe

* Liquid Helium-4 for light WIMPs



DarkSide-50

A two-phase Argon detector.
Funded by NSF, DOE, INFN.

Uses both pulse shape and S2/S1 discrimination
to reduce electron recoil backgrounds.

Underground Ar, with 3°Ar reduced by factor >

100. Collected 125 of 150 kg needed, production
at 0.5 kg/day.

Located in Gran Sasso
Projected sensitivity 2 x 104 cm?.
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3D model of full detector




DarkSide-G2

* 5ton underground two-phase argon detector

* To be installed inside liquid scintillator neutron
veto and water Cerenkov muon veto already
built for DarkSide-50

 Sensitivity reach 10* cm?



DarkSide — G2

279 ea. 3"PMTs provide
48% cathold coverage
two places, top & bottom

Fused Silica Plate
w/ Gas Pocket

Teflon Reflector p |- R A R
Cu Field Cage
Teflon Insulator

Notes

1. Total LAr: 5T
2. Active LAr:  3.3T
3. Fiducial LAr: 2.8T
4, 3"PMTs: 558 ea.

Fused Silica Plate

Outer Shell

Inner Shell



ArDM

Slide from A. Rubbia

Fully PMT-based readout ~
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Canfranc Underground Laboratory (LSC)

* Location: Somport tunnel in the Pyrenees

850 m below ,El Tobazo": L LSC W{

« 2450 meters water equivalent watorio Subtemdnes de Confran -
of shielding from cosmic rays R ;‘ {
< pflux=2-107 yl(cm?-s) e T
* Low background environment _ * A Y.

- nflux=3.8-10- n/(cm?-s) ' -

* The cryogenic system and the control system of ArDM have been installed at LSC in
February 2012.

* A neutron shield (50 cm thick PE blocks) reduces the expected neutron events, originating
from the rock, in the region of interest to 0.08 n/day.




XMASS 1.5

(Slide from Y. Suzuki)

XMASS 1.5
e Total mass: 5 tons

* Fiducial mass: 1 ton € 100kg

* Backgrounds
— No dirty aluminum
— No GORETEX
— Less surface ?1°Pb

* |dentify surface BG

* = PMT w/ round shape
windows




Sensitivity of XMASS1.5

(Slide from Y. Suzuki)
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LZ Dark Matter Detector

e LZ = LUX + ZEPLIN
* Currently in development phase
- NSF, DOE, and SDSTA funding
* Two-component veto system
- 75-cm thick Gd-doped LAB
scintillator shield
-Instrumented LXe “skin”
- Effective for both neutrons and
gammas
 20-fold scale-up from LUX mass
* Ultralow background Ti cryostat
* Low background R11410 PMT readout
* Thermosyphon cryogenics
* Fits in existing Davis cavern water shield
* DOE project organization, with LBL lead lab
* Projected sensitivity ~ 2 x 108 cm?




S2/S1 Discrimination in LXe

Neutrinos produces an electron recoil ZEPLIN-IIl saw 99.99% discrimination
background of 1.2e-5 events/keVee/kg/day at 3.9 kV/cm

0.6
In LZ, 99.5% baseline assumption predicts

3.6 events from pp solar neutrino electron
scattering in 1000 days. 0.2

Also, have two-neutrino double beta decay (E
of Xe-136 (though subdominant to 2
pp solar neutrinos for WIMP recoil energies) &-°

Reduce these backgrounds through
higher field, to reject these electron recoils _
via S2/S1 ratio? B

0 5 10 15 20 25 30 35 40
energy (S1 channel), keVee



Discrimination vs. Electric Field

500 kV on the LZ cathode should allow ZEPLIN-III levels of discrimination (~ 99.99%)
ZEPLIN-III is an existence proof that such fields can be reached without a cathode

electroluminescence problem.

The log10(S2/S1) ER
and NR bands are
getting thinner with
field AND pulling away
from each other, even
in the Thomas-Imel
regime (low energies)
where they are
essentially parallel
curves

As field increases, the
number of electrons
pulled out increases,
but it increases MORE
for ER than for NR,
which changes slowly
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Two-phase Xe beyond XENON1T and LZ

Option 1: Keep scaling bigger

Optimize cost per kg, since readout cost scales with surface area.
Neutron and gamma ray backgrounds will drop further with self-shielding.

Favorable for 136Xe neutrinoless double beta decay, where main background is
2.5 MeV gamma rays?

But main dark matter background is neutrinos, which cannot be shielded.

Option 2: Many modules (7-10 tonnes each)

Dark matter background dominated by neutrinos, so why keep scaling up?

Solar neutrino and 2nuBB backgrounds minimized with higher drift fields, so if

cathode voltage is limitation then smaller detectors may have smaller neutrino
backgrounds.

Cost savings from not having to keep redesigning — just build more modules.

Different modules could have different isotope compositions (high Xe isotope

masses 134 and 136 for OnuBB and spin-independent dark matter, while low
129 and 131 masses used for spin-dependent dark matter, solar neutrinos).



Ultimate limits from neutrino-nucleus coherent scattering
(L. Strigari, New J. Phys. 11 (2009) 105011)
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Superfluid helium as a detector material

Used to produce, store, and detect ultracold neutrons. Detection based on
scintillation light (S1)

Measurement of neutron lifetime: P.R. Huffman et al, Nature 403, 62-64
(2000).

Search for the neutron electric dipole moment: R. Golub and S.K.
Lamoreaux, Phys. Rep. 237, 1-62 (1994).

Proposed for measurement of pp solar neutrino flux using roton detection
(HERON): R.E. Lanou, H.J. Maris, and G.M. Seidel, Phys. Rev. Lett. 58, 2498
(1987).

Proposed for WIMP detection with superfluid He-3 at 100 microK (MACHe3): F.
Mayet et al, Phys. Lett. B 538, 257C265 (2002)



Light WIMP Detector Kinematic Figure of Merit

It is more difficult for heavy targets to be sensitive to light WIMPs,
since for typical energy thresholds they are only sensitive to a small
part of the WIMP velocity distribution. The lower limit of the WIMP-
target reduced mass at which a detector can be sensitive is given by

rIimit = 1/Vesc * Sqrt{EtMT/z}

where v, _ is the Galactic escape velocity of 544 km/s, E, is the energy
threshold, and M; is the mass of the target nucleus. In the limit of
small dark matter mass, the reduced mass is the mass of the dark
matter particle.

So for reaching sensitivity to small dark matter masses, the kinematic
figure of merit is the product of the energy threshold and the target
mass, which should be minimized.



Light WIMP Detector Concept
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How to detect the charge signhal?

Many options:

Proportional scintillation and PMTs (like in 2-phase Xe, Ar detectors)

Gas Electron Multipliers (GEMs) or Thick GEMS, detect light
produced in avalanche.

Micromegas, detect avalanche light.

Thin wires in liguid helium. This should generate
electroluminescence at fields ~1-10 MV/cm near wire, and is known
to happen in LAr and LXe.

Roton emission by drifting electrons (should be very effective at low
helium temperature, analogous to Luke phonons in CDMS).

Charge will drift at ~ 1 cm/ms velocities. Slower than LAr/LXe, but pileup
manageable for low background rates.
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Predicted nuclear recoil discrimination and signal strengths in liquid helium
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Concept for a Light WIMP Detector at ~ 100 mK

Bolometer
array

Guard rings

S2
C—» ./(. e o %.
Uil Gl VY Roton beam

—

—

Electrons o°§° l E

Il
$1.23

Liquid helium
(100 mK)

(Top electrode)
+ HV
O

O
- HV
(Bottom grid)



Projected Sensitivity for Liquid Helium
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The Noble Liquid Revolution

Noble liquids are relatively inexpensive, easy to obtain, and dense.

Easily purified
- low reactivity
- impurities freeze out
- low surface binding
- purification easiest for lighter noble liquids

lonization electrons may be drifted through the heavier noble liquids
Very high scintillation yields

- noble liquids do not absorb their own scintillation

- 30,000 to 40,000 photons/MeV

- modest quenching factors for nuclear recoils

Easy construction of large, homogeneous detectors



Limit Scalar Cross-section cm” [60 GeV WIMP]

Historical Trend

Dark Matter Searches: Past, Present & Future
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Vive la Revolution!




