LUX, and the Combating of the Lamppost Effect

Matthew Szydagis, APS DPF Meeting at Fermilab, July 31, 2017

A Big Hole in Our Knowledge

SURE. SCIENTISTS COME

THEORIES, BUT

UP WITH GREAT, WILD

SCIENTIFIC

NAMES ?

What is this **dark matter**?

http://cdn.phys.org/ newman/gfx/news/ hires/2015/ thedarksideo.png

QUARK, QUARK ! THEN THEY GIVE SO WHAT DO THEY CALL IT? DON'T YOU GO "DARK MATTER"! DUHH! FIND ME SOME THEM DULL, UNIMAGINATIVE I TELL YOU, THERE'S A SCIENTISTS? FORTUNE TO BE MADE NAMES HERE ! SCIENTIFIC NAMES \$ 90 BACK-Dark matter Electron Reco GROUND (gammas) 25% also signal?) Nuclear Recoi SIGNAL? Atomic matter

Dark energy 69%

Neutrinos

0.1% Photons 0.01% Black holes 0.005%

WIMPs? (Weakly Interacting Massive Particles) Not this

I LIKE TO

SAY "QUARK ?

QUARK, QUARK

FOR EXAMPLE, SCIENTISTS

MYSTERIOUS, INVISIBLE MASS,

THINK SPACE IS FULL OF

INSTEAD OF

MAKING AN IDIOT

OF YOURSELF, WHY

Above credit: X-ray: NASA/CXC/CfA/ M. Markevitch et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U. Arizona/ D. Clowe et al.; Optical image: NASA / STScI; Magellan / U. Arizona / D. Clowe et al.; Right: NASA/ ESA/ M. Bradac et al.

Large Underground Xenon

- 2-phase xenon detector deployed (was recently decommissioned) underground in SD with 122 photo-multiplier tubes
- * Why element Xe?
 - Dense (good self-shielding)
 - Gets excited and scintillates, and can get ionized easily
- Why deep underground?
 Cosmic rays -> bad
- Why PMTs not low BG Si?
 PMT: 1-photon, large area
 SiPM unavailable in past

How It Functions

S2/S1 ratio gives particle ID, and S2-S1 drift time gives depth

- Two scintillation pulses,
 S1 and S2 (vacuum-UV)
 - ***** S1 in liquid + S2 in gas
 - S1 O(10-100) ns-wide exponential, S2 O(1 microsec.) Gaussian
 - S1 is direct photon counting, but S2 secondary photons from ionization e⁻'s
- * Why 2 (forms of light)?
 - Better position and energy reconstruction
 - * Particle identification
 - * Reuse the same PMTs

Position Reconstruction

- Even a single drift electron from an ionization is visible using the S2!
- X-Y position is reconstructed at
 2-20 mm accuracy using top PMTs
 * Depends on S2 size, and on radius
 - ★ Detector was 50x50cm dia x depth
- Possible to reconstruct positions of neutron elastic scatters from D-D gun, and isotropic internal sources
 - Neutrons like dark matter WIMP signal in theory, therefore used for the calibrations
 - ★ CH₃T, ^{83m}Kr, ¹²⁷Xe calibrate the BGs
- Many more technical publications forthcoming (and physics results!)

Calibration: NR With D-D Gun

- Lowest absolute calibration of light yield (180 V/cm)
 - * 1.1 keVnr
 - Previous 3 keVnr (from Plante et al., 2011) 0 field
- Lowest absolute, direct calibration of charge yield (180 V/cm)
 - * 0.6 keVnr
 - Previous was actually only 4 keVnr! (from Manzur et al., 2010)
- Air-filled conduit in water shield is neutron guide

Calibrations: ER, Old and New

Efficiencies (Trigger, ER & NR)

The trigger thresholds are of course well below the analysis thresholds

Wall Position: 2 Examples

E-Field Modeling

SI WIMP Search Final Results

(in S2/S1 space; limit on next slide)

Phys. Rev. Lett. 116, 161301 (2016), re-analysis of Phys. Rev. Lett. 112, 091303 (2014) Phys. Rev. Lett. 118, 021303 (2017)

Spin-dependent Limits

Phys. Rev. Lett. 118, 251302 (2017)

- Left plot is neutron coupling vs. mass, while right is proton interaction strength vs. neutron, at a fixed example mass near the strictest point in the limit curve (50 GeV)
- Xe is even Z, but some isotopes are odd-N, allowing for SD interactions to be probed, especially WIMP-neutron: LHC dark matter limits exceeded at high mass

No WIMPs, So Trying Axions

First Run Only

Solar Axions

Galactic ALPs

Phys. Rev. Lett. 118, 261301 (2017)

Conclusions

- The LUX spin-independent WIMP limit led the field for 3 years (2013-2016). Only now are the larger XeTPCs catching up (XENON1T, Panda-X) [©] arXiv:1705.06655, arXiv:1707.07921
- LUX ultimately delivered *4* times better sensitivity in 427 live-days than projected 300 live-day sensitivity for design in the original LUX proposal
 This is nearly unheard of, especially in direct WIMP dark matter searches!
- * Spin-dependent limit still best in world for neutrons
- * Strictest constraints on axions and axion-like particles in terms of coupling to electrons
- * Pushing on combining PSD from S1 with S2/S1 discrimination, to use effectively for first time in LXeTPC (Effective Field Theory analysis soon)
- * LUX yields, efficiencies, and fields well calibrated, simulated, and understood, for all runs

- * LUX is not done yet: lot more papers to come out of data!
 - * There is a great deal more science yet to come. Be on the look out

Hopefully we are looking for dark matter in ALL the right places !

Thank You! Questions??

arned by his concierge of the arrival of the comet", illust

Cnarivari, 22 September 1858

SD Proton, and Different Example Mass for a_p v. a_n

Nod to XENON1T's First

Primordial BHs as DM???

FIG. 3: Constraints on f(M) for a variety of evaporation (magenta), dynamical (red), lensing (cyan), large-scale structure (green) and accretion (orange) effects associated with PBHs. The effects are extragalactic γ -rays from evaporation (EG) [11], femtolensing of γ -ray bursts (F) [187], white-dwarf explosions (WD) [188], neutron-star capture (NS) [36], Kepler microlensing of stars (K) [189], MACHO/EROS/OGLE microlensing of stars (ML) [27] [190] and quasar microlensing (broken line) (ML) [191], survival of a star cluster in Eridanus II (E) [192], wide-binary disruption (WB) [37], dynamical friction on halo objects (DF) [33], millilensing of quasars (mLQ) [32], generation of large-scale structure through Poisson fluctuations (LSS) [14], and accretion effects (WMAP, FIRAS) [15]. Only the strongest constraint is usually included in each mass range, but the accretion limits are shown with broken lines since they are are highly model-dependent. Where a constraint depends on some extra parameter which is not well-known, we use a typical value. Most constraints cut off at high M due to the incredulity limit. See the original references for more accurate forms of these constraints.

Pathologies

