SUB-GEV AND OTHER RARE EVENT SEARCHES WITH THE LUX DETECTOR

Lucie Tvrznikova on behalf of LUX collaboration Ph.D. Candidate, Yale University Research Assistant, LBNL Visiting Student Researcher, UC Berkeley

April APS in Columbus, OH. 14th of April, 2018

LUX detector is searching for dark matter

LUX collaboration

LUX = Large Underground Xenon Experiment

LUX detector operated 4850' (1478m) underground

Two phase TPC maps detector volume

LUX is a two phase TPC

Using xenon

- Spin-dependent & independent WIMP detection capabilities
- High atomic mass (A=131 g/mol)
- No intrinsic DM search backgrounds
- Scalable to multi-ton size

with full 3D position reconstruction

- *xy* reconstructed from S2 light pattern
- z given by time difference between S1 and S2

and S2/S1 discrimination

Ability to reject backgrounds

2018-04-14

Distinguish between 2 types of particle recoil

2018-04-14

LUX data improved experimental boundaries

LUX is more sensitive to lower energies of electron recoils

20|8-04-|4

LUX can detect sub-GeV DM via bremsstrahlung

Elastic scattering

- Nuclear recoil signal
- Assumed in the standard WIMP search
- LUX searches for $m_{DM} \gtrsim 5 \text{GeV}$

Bremsstrahlung

- Nuclear interaction, but electron recoil signal
- Emission of a photon from a polarized xenon atom
- Gain access to low energy NR interactions by looking for this ER signature since ER signal is much easier to detect at low energies!
- \Rightarrow LUX can gain sensitivity to $m_{DM} \sim MeV$

Bremsstrahlung allows detection of NR previously below threshold

Example of a signal expected in LUX from $m_{\chi} = 0.5 \text{ GeV}$

Final WS2013 data after cuts (95 live days)

LUX limit calculated using profile likelihood ratio

Conclusion

- Bremsstrahlung signal allows LUX to search for sub-GeV DM
- LUX sensitivity extends down to DM with masses of 0.3 GeV, providing the most stringent limit for LXe detectors for light DM
- Learn more about LUX & LZ at the April APS:
 - Session J09, Sunday 1:30pm
 - Signal yields in liquid xenon with LUX (V Velan)
 - Charge and light yields of liquid xenon using ¹⁴C and tritium beta decay sources in LUX (J Balajthy)
 - Xenon circulation and liquid-level stability in LZ (D Temples)
 - Development of the LZ high voltage grids (R Linehan)
 - Status of LZ cathode high voltage research and design project (J Watson)
 - Recent results from the LZ System Test platform at SLAC (K Stifter)
 - Session J10, Sunday & Monday 1:30pm
 - Measurement of the Davis Cavern gamma-ray background at the Sanford Underground Research Facility (S Shaw)
 - Simulations of external backgrounds at SURF for the LUX and LZ experiments (D Woodward)
 - The active veto system for LUX and underground muon signals (D Tiedt)
 - The LZ liquid scintillator screener detector (S Haselschwardt)
 - Radiogenic backgrounds in the LUX xenon and detector components (K Mallory)

LUX collected data from 2013-2016

2018-04-14

Expected scattering rates in xenon for $\sigma = 10^{-35} \text{ cm}^2$

Photon emission rates in xenon were first calculated by C. Kouvaris & J. Pradler PRL 118, 031803 (2017)

2018-04-14

Expected signal for m = 0.5 GeV DM from LibNEST

Lucie Tvrznikova

Expected signal spectra simulated by NEST at $\sigma = 10^{-35} \text{ cm}^2$

Lucie Tvrznikova

Only a fraction of events have both SI & S2 signals

Distribution of events

Tritium and DD calibrate detector response

^{83m}Kr monitors detector performance

- Krypton-83m is injected regularly into the detector to characterize detector response and monitor stability
- Mixes homogenously with LXe
- Used for:
 - Overall stability monitoring
 - Position reconstruction
 - Electron lifetime
 - S1 & S2 position corrections
 - Electric field modeling
- Decays by emitting 2 internal conversion electrons
 - 32.2 keV followed by 9.4 keV ($T_{1/2} = 154$ ns)
 - Monoenergetic for our standard analysis
- T_{1/2} = 1.83 h

2018-04-14

LUX collaboration

Berkeley Lab / UC Berkeley

Graduate Student

KKELET LAD	
Bob Jacobsen	PI, Professor
Nurdock Gilcrease	Senior Scientist
Kevin Lesko	Senior Scientist
Nichael Witherell	Lab Director
Peter Sorensen	Divisional Fellow
Simon Fiorucci	Project Scientist
Evan Pease	Postdoc
Daniel Hogan	Graduate Student
Kelsey Oliver-Mallory	Graduate Student

Kate Kamdin Brown University

e o	,
Richard Gaitskell	PI, Professor
Junhui Liao	Postdoc
Samuel Chan	Graduate Student
Dongqing Huang	Graduate Student
Casey Rhyne	Graduate Student
Will Taylor	Graduate Student
James Verbus	Ex-Postdoc

Alexander Murphy	PI, Professor
Paolo Beltrame	Ex-Research Fellow
Maria F. Marzioni	Graduate Student
Tom Davison	Graduate Student

Lawrence Livermore National Laboratory

Wing To

Adam Bernstein	PI, RED group leader
Kareem Kazkaz	Physicist
Jingke Xu	Postdoc
Brian Lenardo	Graduate Student
💱 Stanislaus State	

PI, Assistant Professor

Imperial College London

Henri

Henrique Araujo	PI, Professor
Tim Sumner	Professor
Alastair Currie	Ex-Postdoc
Adam Bailey	Ex-Graduate Student
Khadeeja Yazdani	Ex-Graduate Student
Nellie Marangou	Graduate Student

NATIONAL ACCELERATOR LABORATORY

Dan Akerib	PI, Professor
Thomas Shutt	PI, Professor
Tomasz Biesiadzinski	Research Associate
Christina Ignarra	Research Associate
Alden Fan	Research Associate
Wei Ji	Graduate Student
TJ Whitis	Graduate Student

Isabel Lopes	PI, Professor
José Pinto de Cunha	Assistant Professor
Vladimir Solovov	Senior Researcher
Alexandre Lindote	Postdoc
Francisco Neves	Auxiliary Research
Claudio Silva	Research Fellow
Paulo Bras	Graduate Student

2 PennState

Carmen Carmona

Emily Grace

Douglas Tiedt

PI, Assistant Professor Postdoc

PI, Professor

Graduate Student

SDSTA / Sanford Lab

David Taylor Senior Engineer Research Scientist Markus Horn

UNIVERSITY AT ALBANY State University of New York

Matthew Szydagis	PI, Assistant Profes
Cecilia Levy	Postdoc
lack Genovesi	Research Assistant

TEXAS A&M ĀĪÑ U N IVERSITY

Pl. Professor Graduate Student

PI, Professor

Project Scientist

Ex-Graduate Student

Ex-Graduate Student

Graduate Student

Senior Machinist

PI, Assistant Professor

Graduate Student

Postdoc

lessor

Berkeley

Robert Webb

Paul Terman

PI, Professor Daniel Mckinsey Ethan Bernard Project Scientist Elizabeth Boulton Graduate Student Postdoc Junsong Lin Graduate Student Brian Tennyson Graduate Student Lucie Tvrznikova Vetri Velan Graduate Student

DAV UNIVERSITY OF CALIFORNIA

Mani Tripathi Aaron Manalaysay James Morad Sergey Uvarov Jacob Cutter

W WISCONSIN

Kimberly Palladino Shaun Alsum Rachel Mannino

UC SANTA BARBARA

Tarry Nelson	PI, Protessor
Sally Shaw	Postdoc
Scott Haselschwardt	Graduate Student
Curt Nehrkorn	Graduate Student
Welih Solmaz	Graduate Student
Dean White	Engineer
Susanne Kyre	Engineer
UCL University	College Londor
Chamkaur Ghag	PI, Professor
Jim Dobson	Postdoc
Umit Utku	Graduate Student
MARYLAND	
Carter Hall	PI, Professor
Jon Balajthy	Graduate Student
JMassAmherst	
Scott Hertel	PI, Assistant Professor
Christopher Nedlik	Graduate Student
ROCHESTER	
Frank Wolfs	PI, Professor
Wojtek Skulski	Senior Scientist
Eryk Druszkiewicz	Electrical Engineer
Dev Aashish Khaitan	Graduate Student
Mongkol Moongweluwan	Graduate Student

Elena Korolkova	
David Woodward	
Peter Rossiter	

College London
PI, Professor
Postdoc
Graduate Student

udent

udent tudent

Reader, Particle Physics
Research Associate
Research Associate
Graduate Student

Limits from C. McCabe

 C. McCabe published a paper inferring LUX sensitivity to the sub-GeV signal and calculated limits for LUX & LZ

