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LUX Intro

● Two-phase liquid xenon 
time-projection chamber (LXe TPC)

● Data taking 2013-2016
● Raw data: waveform per PMT
● Typical reconstructed info 

(for each scatter):
○ S1 (prompt scintillation) total area
○ S2 (ionization signal) total area
○ X, Y position (from S2 PMT hit pattern)
○ Z (from Δt between S1 and S2)
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LUX Machine Learning

● Projects:
○ SS/MS discrimination: data-driven, CNN applied to co-added tritium sum waveforms 
○ S2-only analysis: data-driven, uses parametrized pulse shape info fed to a BDT
○ LIP search: uses BDT to optimize cuts for separating simulated LIP signal from background data
○ Gamma-X: uses BDT to optimize cuts for rejecting a pathological background (gamma-X events)

● Common theme: use information not available in standard RQs / search, 
especially related to pulse shape 
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SS/MS Distinction w/ CNNs

Samuel Chan



Improved S2 Separation with CNNs

● Data processing loses info - pulse shape, hit pattern etc.
● Double scatter classification is imperfect - merged S2s
● Machine learning (ML) can recover info from the raw PMT traces
● One application: convolutional neural network (CNN) image processing technique 

applied to summed waveforms for single vs. double scatter classification
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→ RQs



Pushing the Limits of Z Separation

● S2 widths vary with drift time due to e- cloud 
expansion (plot from Greg Rischbieter,
generated with 32 keV Kr S2 in NEST)

● S2 width at 32 keV in the middle of 
LUX detector is ~0.5 us wide

● Can we distinguish S2s with drift 
separations down to 0.1 us?
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http://nest.physics.ucdavis.edu/


Tritium Data Training and Testing

● Data-driven training: 
○ Single scatters from LUX tritium calibration 

(beta decay, electron recoil) 
○ Double scatters constructed by co-adding 

the same single scatter event (same 
energy and PMT hit pattern) w/ a random 
time difference dT between [0.1, 0.5 us]

● 120k events of each type were divided into 
10 drift time (depth) bins for separate training - 
variation in width < 0.05 us (see previous slide). 

● Fed to a CNN using Keras
● Example CNN output for center drift bin at right
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● TP: true positive ; FP: false positive ; FN: false negative
● Threshold set to separate SS from DS
● Left - DS true positive in different drift time bins
● ROC curve shows how much better the net does compared to random guessing

Tritium Data Accuracies
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S2-only Analysis

Kelsey C Oliver-Mallory



S2-only Background
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● Considering events w/o S1 
lowers threshold, improves 
low-mass WIMP sensitivity

● But, S2-only bkg rate at 
4 e- threshold is >> rate in 
fiducial (with drift time cut)

● Hypothesis: betas from the 
gate and cathode

● Can use events w/ S1 + S2 
to learn about S2-only 
events w/ same S2 area

(data-driven training)

S1 + S2 events in the WIMP search region



Cut Events with Diffusion
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Wide and gaussian

Thin and square



Pulse Shape with Machine Learning
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● Pulse width alone fails due to 
distortion of E-field near wires

● Makes grid events more spiky
● Parameterize pulse shape w/ 

e.g. area fractional timings
● Tritium events for bulk, else 

bkg at gate/cathode -> BDT
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Receiver Operator Characteristic
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GateCathode

Grid events distinguishable from bulk events at few e- level!



Other ML Work

Peter Rossiter, Paul Terman, Nick Carrara



Other projects
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● Lightly-ionizing particles search: 
○ BDT automates and optimizes cuts
○ Improved efficiency over manual cuts

● Gamma-x backgrounds:
○ Pathological background removal using BDT

● Profile likelihood ratio:
○ Collapsing PLR dimensions into 1D using NN
○ Improved speed while preserving correlations 

between variables

BDT output
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Summary / Needs and Challenges

● LUX projects demonstrate improved performance over standard techniques 
in a broad range of domains, primarily using fairly simple ML algorithms

● Common source of new information is timing/pulse shape
● Goal: inclusion of more and lower-level information (deep learning)
● Challenge: getting suitably-large, reliable, and detailed training datasets 

to enable this (both LUX and LZ)
● Techniques for moving away from simulation dependence (generic):

○ Pivoting (sims only; reduce reliance on uncertain quantities)
○ Domain adversarial training (part sims, part unlabelled data)
○ Training using impure or unlabeled data from calibrations (fully data-driven)
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https://arxiv.org/abs/1611.01046
https://iopscience.iop.org/article/10.1088/1748-0221/13/11/P11020
https://link.aps.org/doi/10.1103/PhysRevD.98.011502
http://link.springer.com/10.1007/JHEP10(2017)174
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.014038


Backup Slides
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SS/MS Distinction w/ CNNs

Samuel Chan



Tritium Data Training and Testing

● Nets trained in 10 drift time bins 
● Tested using 2k SS and 2k DS events 

(same construction as training set) 
● Good SS (blue) / DS (orange) separation seen in all bins 
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S2-only Analysis

Kelsey C Oliver-Mallory



S2 spectrum, before re-weighting
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● Perfect opportunity 
to use machine 
learning

● Many parameters 
that quantify the S2 
shape

● Accurate 
training/testing 
datasets



Acceptance/Rejection
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Classification Results

23

30 e-10 e-4 e-

Bulk-like

Grid-like

2 𝜇s



Energy Spectrum of Background Data
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Gamma-X Rejection

Peter Rossiter



Overview of background

● If a particle scatters twice, both above 
and below the cathode an enhanced S1 
signal relative to the S2 signal will be 
observed 

○ Since only the S2 signal from the scatter in 
above the cathode is seen

● The reduced S2/S1 ratio can push events 
out of the ER band into the NR band

26



Analysis Variables
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● S1 area 
● S2 area 
● Z position 
● S1 hit pattern RMS
● Top-bottom asymmetry
● S1 max PMT area

SS
Gamma-X



Gamma-X BDT cut

● Combines several weak predictors into a single strong predictor
● Built to distinguish simulated gamma-X events from bottom PMT array from 

simulated SS events from bottom PMT array
● High degree of separation achieved
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Precision Recall F1-Score

Single Scatter 0.95 0.98 0.97

Gamma-X 0.97 0.92 0.94

Area under ROC curve for test data = 0.9782
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LIP Analysis

Paul Terman



30

Lightly-ionizing Particles

● LIPs are hypothetical particles with fractional charge e*f, f<1
● Cosmogenic - come from hemisphere above detector
● Signature is many hits along a line through the full detector
● Several variables developed for this search, including:

○ 𝝌2 of fit to a line (minimum of 5 scatters)
○ Angle of line from vertical 
○ Track length over distance between first/last scatters
○ Standard deviation of pulse areas
○ ...

● Series of manual cuts considered
● BDT automates and optimizes this process
● Allows addition of further inputs without greatly affecting 

complexity



Fit multiple 
scatters to a line, 
check goodness 
of fit

Sim = simulated 
LIP signal

DOF = Number of fit points - 4
(4 is due to 3D line)

31



● Series of manual cuts considered
● BDT automates and optimizes this process
● Allows addition of further inputs without greatly affecting complexity
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BDT Results
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BDT (green or red) efficiency > manual cuts (cyan)

● Trained using:
○ LIP sims
○ Sample of bkg data

● Manual cuts and 
BDT both tuned for 
0 background 
(training and testing)

● Efficiency of BDT 
noticeably exceeds 
that of manual cuts


