Addendum: COVID-19 Mathematical Modeling for Cornell’s
Fall Semester

PhD Students: J. Massey Cashore, Ning Duan, Alyf Janmohamed, Jiayue Wan, Yujia Zhang
Faculty: Shane Henderson, David Shmoys, Peter Frazier*

July 17, 2020

Overview:

This document contains additional analyses performed after the release of the June 15 main mod-
eling report (Cornell COVID-19 Modeling Team, 2020). It is a companion to our posted responses
to questions on the Frazier Modeling portion of the University Faculty website (Cornell University
Faculty, 2020) for public comments on the C-TRO report. It explores the following questions:

e Alternative methods for estimating contacts per day based on the literature,
expanding on the discussion in the response found on the University Faculty C-TRO website.
This alternative methodology finds support for the value (8.3 contacts / day) used in the June
15 report, but also includes a more pessimistic methodology that results in 10.8 contacts /
day, and an extremely pessimistic methodology resulting in 17.3 contacts / day. We see 10.8
contacts / day as entirely plausible while viewing 17.3 as an unlikely value that is nevertheless
useful for assessing robustness.

e Responding to higher-than-anticipated contacts per day and transmission rate
through increased test frequency. Achieving the same health outcomes as the June 15
modeling report (which assumed 8.3 contacts / day and testing once every 5 days on average)
under an increased contact rate of 10.8 contacts per day would require testing once every 3
days, and an increase to 17.3 would require testing once every 2 days.

Work continues (outside the modeling team) to build unprecedented test capacity at Cornell.
In concert with this effort, more modeling work is in progress to identify a test capacity and
protocol that will provide robustness to extremely high contact rates but be easier to imple-
ment than screening everyone on campus once every 2 days. This work leverages opportunities
to improve test efficiency. Major opportunities include screening different sub-populations
at different frequencies, using adaptive screening in which a sub-population’s average test
frequency is elevated when cases are found, and moving toward a better-performing and
easier-to-implement deterministic test schedule and away from the easier-to-model random
test schedule assumed here and in the June 15 modeling report. We also see other small
opportunities to improve efficiency such as reserving Fridays to screen groups with higher
weekend contact rates.
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e The effect of non-compliance on the residential instruction setting. We study non-
compliance with a given fraction of test requests, say 20%, distributed evenly across the
population. The resulting modeled outcomes are the same as those with full compliance with
a decreased test frequency. For example, 80% compliance with a test protocol that tests
25% of the population every day is equivalent to full compliance testing .25%.8=20% of the
population daily. This assumes, as does the June 15 modeling report, that testing is random.

e The effect of offering optional testing in the virtual instruction setting, and a
sensitivity analysis to the size of the unmonitored student population and con-
tact rates in this setting. Increased testing and reduced contact rate reduce the fraction
of unmonitored students with negative health outcomes and have the largest benefit, while
reducing population size changes the absolute number affected but has little effect on the
fraction over reasonable population size ranges.

e The impact of varying these parameters and assumptions on whether the resi-
dential fall semester is safer than one with virtual instruction.

While we find settings where virtual instruction has fewer infections and hospitalizations!
than residential instruction, these settings arise from parameter choices that seem less likely
given the capability to do frequent asymptomatic screening.

The most likely settings where virtual instruction has better health outcomes than residential
instruction are ones where virtual instruction outcomes are much better than expected, either
because of lower-than-expected contact rates (equivalently, lower-than-expected transmission
probability) or higher-than-expected compliance with optional asymptomatic screening or
optional behavioral modifications by unmonitored students. Such surprisingly good contact
rates, transmission and compliance are likely to also provide better-than-expected outcomes
in the residential semester. On the other hand, we continue to see as most likely those settings
where (1) virtual instruction results in a large fraction of unmonitored students being infected
and (2) asymptomatic screening prevents this from occurring under residential instruction.
Thus, we continue to view residential instruction as less risky than virtual instruction.

We emphasize that the health benefits of residential instruction are predicated on building
the capability to do extremely frequent asymptomatic screening if needed. Under pessimistic
contact rates, the frequency required could be as fast as once every 2 days.

In reading these additional analyses, we ask that readers recall the warnings from the exec-
utive summary of the June 15 report, which remain valid despite the additional work that has
gone into this addendum: In all of our modeling results, modifying modeling parameters by only a
modest amount from nominal values can result in substantially different numbers of infections and
hospitalizations. ...In addition to uncertainty about parameters, our model cannot fully capture
the intricacies of the real world. Thus, while the results from our analysis do represent our best
estimate of what may happen, uncertainty remains about what the future will bring.

The analyses we report in this addendum focus on questions that were a strong focus of public
comments. We also describe other questions that we believe could significantly influence results
but that were not raised in public comments. We are continuing to analyze these questions while

LAs we explain in our posted response to public comments on the University Faculty C-TRO website (Cornell
University Faculty, 2020), while we do not model fatalities explicitly, this should not be understood as implying
fatalities will not occur. A discussion of fatalities resulting from hospitalizations can be found in that posted
response.



balancing time with other modeling work that must happen to execute operational plans effectively
as students return.
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1 Estimating Contacts Per Day From the Literature

The June 15 report assumed that infectious individuals have an average of 8.3 close contacts per
day within the Cornell community, averaging across faculty, staff and students. One of the major
themes in comments on the June 15 report was that the true number of close contacts per day
could be substantially higher, with many comments focusing on undergraduates.

Some of this concern seems to derive from a misunderstanding of what constitutes a close contact.
As reflected by the CDC’s definition of close contacts (CDC, 2020), interactions that are brief or
at a distance, such as between two people exchanging a brief hello as they walk past each other
in a corridor or between two students seated 30 feet far apart in a lecture hall, are substantially
less dangerous than interactions that are prolonged and at a proximity allowing for droplet-based
transmission (6 feet or less). The danger of these interactions decreases further when participants
wear masks and buildings are well-ventilated.

It is also worth clarifying two other points. First, the number 8.3 does not include close con-
tacts with the outside community. Table 8 in the main report shows that the additional number of
contacts per day with those outside of the Cornell community is assumed to be 0.5 for students (ag-
gregating across off-campus/on-campus and undergraduate / graduate) and 5.8 for faculty and staff.
Second, the value 8.3 represents an average across the entire Cornell community, of which roughly
44% are undergraduates, 26% are graduate / professional students, and 29% are faculty/staff. To
illustrate, the following would be consistent with the numbers assumed in the main report: 12
within-Cornell + 0.3 outside-Cornell close contacts per day for undergraduates, 9 within-Cornell +
0.9 outside-Cornell for graduate students, and 2 within-Cornell 4+ 5.8 outside-Cornell for faculty /
staff.

Nevertheless there remains a significant possibility that the average number of within-Cornell
close contacts per day may be substantially larger than 8.3. While this uncertainty about contacts
per day reflects uncertainty about all parameters used in the modeling analysis, as reflected in the
executive summary of that document, we pay special attention to this particular parameter because
it attracted more attention than other parameters, and we agree that it plays an important role. In
this section we explore alternate estimation methodologies based on the scientific literature, focusing



on Wallinga et al. (2006); Mossong et al. (2008); Edmunds et al. (1997, 2006); Leung et al. (2017) as
most meaningful for informing our estimates, but also leveraging the 17 papers providing empirical
estimates of contact rates as surveyed by Leung et al. (2017) and discussing Weeden and Cornwell
(2020). Then in the next section we discuss our ability to respond to higher-than-anticipated contact
rates with additional testing.

Overview of Estimation Methodology We see two opportunities to better leverage the sci-
entific literature to estimate contacts per day.

First, we can directly use the numbers provided in that literature. In the literature we survey in
detail below (Wallinga et al., 2006; Mossong et al., 2008; Edmunds et al., 1997, 2006; Leung et al.,
2017) we find respectively 8.4, 13.4, 16.8, 22.8, and 8.1 contacts per day. A review of 17 sources in
Leung et al. (2017) finds a median number of contacts per day of 13.9. Unfortunately, however, the
literature measures contacts in ways that are easier for participants to report on surveys but that
do not necessarily correspond to the significant probability of transmission that we assume in our
model. For example, one common way that the literature defines a “contact” is as a conversation
between two individuals. If a conversation is less than 15 minutes in length, then it would not
meet the CDC definition of a close contact. Moreover, if the two individuals are wearing masks
that reduce droplets and aerosols emitted while speaking, the risks decline further. Pointing in the
other direction, being in close contact with one’s spouse for many hours would be considered to be a
single contact in the methodologies used by several papers in the literature, despite the fact that the
risk of transmission is significantly greater than other kinds of CDC-defined close contact. Thus, it
seems clear that the contacts reported in the literature should be adjusted to account for the level
of risk associated with the particular definition of contact that is used. As the literature is based
on data from before COVID-19, contacts should also be adjusted for social distancing measures.
While we could attempt to make these adjustments manually, this seems difficult to do well. We
view this first approach as inferior to the second estimation methodology we discuss now.

A second and potentially more accurate opportunity presents itself. Several papers in the
literature (described in detail below) study how contacts per day changes with the age of the
individual. Indeed, there is substantial variation, with adolescents and young adults having more
contacts per day than older individuals. Quantification of this variation can be used to adjust the
methodology used in the June 15 report to estimate contacts per day.

To estimate contacts per day, the June 15 report first made an assumption about Ry among the
Cornell population. It assumed that the university population would have an Ry of 2.5 based on
the following logic: the CDC recommends the use of Ry = 2.5 for modeling pre-social-distancing
pre-mask disease transmission; because Cornell has a large fraction of young people, its Ry in the
absence of social distancing and masks should be larger than the general population; Cornell’s plan
to institute social distancing and masks will reduce its Ry; in the absence of other information, the
June 15 report then assumed these two effects would cancel each other out, and the Ry in the fall
would be 2.5 in the absence of asymptomatic screening. This value of Ry, the assumed probability
of transmission per contact, and the number of infectious days per infectious case then results in
8.3 contacts per day.

The concern expressed by commentators with this methodology is that students (1) may have
dramatically more contacts than the general population and (2) may fail to comply with social
distancing and masks. As a result, the increase in Ry due to our young population may outweigh
the reduction in Ry due to social distancing and masks.

By using estimates from the literature quantifying the elevation in contact rates between young



people and the general population, we can significantly reduce uncertainty about this first point.
We can additionally base our assumptions about the impact of social distancing and masks on
Ry in the general population based on observations for what has happened in Tompkins County
after these were instituted, and make conservative assumptions about compliance with behavioral
modifications among the student population.

In the detailed literature review below, Wallinga et al. (2006); Mossong et al. (2008); Edmunds
et al. (1997); Leung et al. (2017) all provide estimates for the difference in contacts per day among
university-student-aged individuals and the general population. Across different choices for the age
range and survey method used, the estimates enumerated below give values of 27%, 15%, 31%,
1.5%, 13%, 31%, -10%, 10%, and 4% more contacts among these young individuals.

We use these ideas to create three different revised estimates of contacts per day: two with
varying levels of pessimism, and one that is more balanced and aligned with the approach of the
nominal estimate in the main report.

Pessimistic Estimate of Contacts Per Day Let us pessimistically take an estimate for the
elevation in contact rate among young individuals at the upper end of those values reported in the
literature: 30%. Let us also pessimistically assume that all of the on-campus population is in the
high contact-rate younger age group, and that no one complies with social distancing orders. Let
us also assume that non-Cornell contacts are in addition to the ones used to compute Ry, rather
than (more realistically) being included in this Ry. This would lead us to increase Ry from 2.5 to
a value that is 30% larger, and commensurately increase contacts per day by 30% to 10.8.

Extra-Pessimistic Estimate of Contacts Per Day There is one way in which the above
estimate is not pessimistic: its choice of Ry. While the CDC does call 2.5 its “current best estimate”
of Ry (Centers for Disease Control and Prevention, 2020), significant uncertainty surrounds this
number. They also provide other scenarios in which Ry ranges from 2 to 4. Thus, to be more
conservative, we would take Ry = 4 as our estimate for the general population. Adopting the
methodology above then provides a conservative estimate of 8.3 % (4/2.5) x 1.3 = 17.3 contacts per
day.

Nominal Estimate of Contacts Per Day As an alternative and more balanced estimate, let us
replace pessimistic estimates biased toward inflating contacts per day with ones that are intended
to be unbiased.

First, let us assume that the staff and faculty continue to behave in a manner that would
keep the epidemic under control in the absence of asymptomatic screening and in the absence of
students, even once social distancing restrictions are eased in the fall. One can argue that this is
reasonable because cases have remained under control in Tompkins County even as social distancing
restrictions ease. This would put the Ry in this population low enough that contact tracing would
be able to control the epidemic on its own. Let us assume it is equal to 1.5. Although the
asymptomatic rate varies slightly with the age of those considered, and this affects the mapping
between Ry and contacts per day, this corresponds approximately to a number of contacts per day
of 8.3%1.5/2.5 = 5.0 across both Cornell and non-Cornell contacts. Let us then suppose that 30% of
faculty / staff contacts are with non-Cornell individuals. This brings the number of within-Cornell
close contacts to 3.5.

Second, let us take the median of the estimates from the literature for the elevation in contacts
per day among younger individuals. This is 13%. Thus, in the absence of social distancing and



masks, students would have a number of contacts per day of 8.3 x 1.13 = 9.4. Let us continue to
assume that students do not comply with social distancing or mask requirements, giving them a
number of contacts per day of 9.4 across both Cornell and non-Cornell individuals. As in the main
report, let us continue to assume that students have 0.5 close contacts per day with non-Cornell
individuals, bringing their within-Cornell close contacts to 8.9.

Since 70% (24K) of the Cornell population are students and 30% (10K) are faculty, staff and
academic professionals, the average number of contacts per day is .7 * 8.9 + .3 * 3.5 = 7.3, which
is smaller than the value of 8.3 assumed in the June 15 report.

Detailed Discussion of the Most Relevant Literature To support the above discussion, we
briefly enumerate literature that quantifies contact rates (understanding that not all contacts are
close contacts commensurate with a high level of transmission) and how they vary with age.

e Wallinga et al. (2006) studies the general population in the Netherlands and considers one or
more conversations between two individuals to constitute a contact. Not including those living
in the same household, and averaging across the population age distribution using Table 1
and Appendix Table 1 in Frazier (2020), each person has on average 45 unique conversational
partners per week. Dividing by 7 to normalize to a single day (understanding that two
conversations with the same individual on different days in the week will contribute only 0.5
to a single day), this is 6.4 contacts / day, not including household members. If we assume
a household size of 3, (so each individual has two other members of theirs household), this
would bring us to 8.4. Those aged 13-19 have 57.2 conversational partners per week, 27% more
than the population average, and those aged 20-39 have 51.8, 15% more than the population
average.

e Mossong et al. (2008) studies contacts in the general population in several European countries,
studying both physical contacts (for example, a kiss or a handshake) and nonphysical contacts
(a two-way conversation). The average number of contacts per day across the population is
13.4 (based on Table 1 in that paper as processed in a spreadsheet Frazier (2020)). Those
aged 15-19 had 17.6 contacts per day, a 31% increase, and those aged 20-29 had 13.6 contacts
per day, a 1.5% increase.

e Edmunds et al. (1997) finds an average of 16.8 contacts per day in a convenience sample of
students, staff, faculty, family and friends from two British universities. A contact is defined
to be a two-way conversation. Having several conversations on the same day with the same
individual is considered to be a single contact. Those aged 20-29 are found to have 13% more
contacts than those aged 30 and as computed from Table 1 in that paper in a spreadsheet
Frazier (2020).

e Edmunds et al. (2006) studies students from University of Warwick. Contacts consisted of
conversations and physical contact. Multiple interactions on the same day are viewed as a
single contact. Using data from Table 1 post-processed in a spreadsheet (Frazier, 2020), the
average number of contacts per day is 22.5. Because only students are studied, the paper
does not quantify the relationship between student and non-student contacts.

e Leung et al. (2017) studies contacts in Hong Kong using both online and paper surveys, finding
8.1 contacts per day on average overall. Table 1 and calculations in Frazier (2020) find those
aged 21-40 have 10% and 4% more than the surveyed population in the two survey types.



Supplementary Table S1 in that paper summarizes the mean number of reported contacts in
17 papers, with a median as computed in Frazier (2020) of 13.86.

Weeden and Cornwell (2020) studies the interaction network with students based on co-
registration in lectures. Because students will be spaced 6 feet apart in lectures, co-attendance
of a lecture does not constitute close contact. In addition, large lectures will move online,
students will be required to wear masks, surface cleaning measures will be instituted, and
ventilation will be examined and improved. Additionally, even in normal times, the number
of students who attend class is smaller than the number registered. Thus, while some close
contact through class attendance may occur, the number of close contacts will be significantly
smaller than the number of students who were simultaneously registered for the class in the
period studied by Weeden and Cornwell (2020).

Paltiel et al. (2020) studies asymptomatic screening for COVID-19 focused specifically on
college campuses, for a cohort consisting entirely of students. It sets the number of secondary
cases resulting from a positive individual over an 8 hour period to 0.085. This corresponds
to setting (contacts / day) * (probability of transmission) to 3 times this value, or 0.255.
Although Paltiel et al. (2020) does not model contacts separately from transmission rate,
under our assumed transmission rate of 2.6% this corresponds to 0.255 / .026 = 9.8 contacts
per day.

Summary After a detailed review of the literature, we provide 3 alternate estimators of the
number of (close) contacts per day within the Cornell population.

2

e First, we provide a pessimistic estimate of 10.8 obtained by adjusting the CDC-recommended

Ry for the general population for the fact that our population has a large number of young
people. To arrive at this value of 10.8, we made 4 conservative assumptions: (1) the increase
in contacts per day among young people relative to the general population is on the high
end of the values reported in 4 papers (30%); (2) the entire campus population consists of
young students, rather than the 70% that actually holds in reality; (3) within-Cornell contact
rates are not reduced due to interaction outside of Cornell; (4) no one complies with social
distancing or mask regulations, and instead behaves as if COVID-19 did not exist.

Second, we provide an extra-pessimistic estimate of 17.3 obtained by also replacing the CDC’s
best estimate of Ry = 2.5 in the general population by its most pessimistic estimate of Ry = 4.

Third, we provide a nominal estimate of 7.3 that uses the CDC best estimate of Ry = 2.5,
uses the median elevation in contacts among young people from the literature (13%), assumes
that 30% of faculty/staff contacts are outside of Cornell, assumes that 70% of the population
consists of students, assumes that faculty / staff compliance with social distancing and masks is
consistent with a pre-student Ry of 1, and assumes that graduate and undergraduate students
do not comply with social distancing and mask requirements.

Addressing High Contacts Rates with Additional Testing

Although the section above tries to provide additional knowledge, we cannot know contacts per day,
transmission rate, or a variety of other important parameters before students arrive. As discussed
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Figure 1: The fraction of the population that would be infected (left) and hospitalized (right) over
the course of the fall semester under the June 15 report’s residential scenario as a function of the
number of close contacts and the fraction of the population tested per day. The June 15 report
assumed 8.3 close contacts per day and a daily test percentage of 20%. This figure can be used to
assess the ability to respond to higher-than-anticipated contact rates through increased testing.

above, while a more detailed review of the literature seems to support decreasing contacts per
day from the 8.3 assumed in the main report, more pessimistic estimation methodologies support a
larger value and it is certainly possible that contacts per day will be larger in the fall than estimated.

As discussed in comment #2 on the University Faculty C-TRO website, performing regular
asymptomatic screening would allow us to observe that the transmission rate is higher than an-
ticipated and would give us an opportunity to respond, either by reducing contacts, reducing
transmission, or increasing test frequency.

To that end, we conducted an additional set of experiments, shown in Figure 1. These contour
plots show the expected number of infections and hospitalizations under the nominal parameters of
the residential scenario in the June 15 modeling report, as we vary the expected contacts per day
(x-axis) and daily testing frequency (y-axis). As in the main report, we test the entire population
in the same way and test assignments are chosen randomly each day?. The June 15 report assumed
8.3 close contacts per day with a daily test percentage of 20% of the population, corresponding to
testing each person once every 5 days on average. This resulted in roughly 1250 infections and 16
hospitalizations.

We can use these plots to understand whether we can rely on additional testing to respond to
a higher-than-expected number of contacts per day:

o If instead of 8.3 close contacts per day, the value was our extra-pessimistic estimate of
17.3, then we would need to test a little less than 50% of the campus population per day
(testing each person once every 2 days on average) to achieve the same epidemic control as
the nominal June 15 scenario. If this could not be achieved logistically, testing 33% per day
(or testing each person once every 3 days on average) would result in 2-4K infections and
20-30 hospitalizations.

e If the number of close contacts per day was our pessimistic estimate of 10.8, then achieving

2In practice we would test each person according to a deterministic schedule, which is likely to result in better
health outcomes than random testing.



the same epidemic control as the nominal scenario would require testing everyone once every
3 days on average. If test frequency were not increased, this would result in roughly 2K
infections and 20-30 hospitalizations.

e If the number of close contacts per day was our revised nominal estimate of 7.3, then improved
epidemic control would be realized with the proposed 20% daily test frequency (once every 5
days on average).

As discussed in Section 6, we are considering a more targeted test protocol for the fall in which
those groups believed to have more contacts per day would be tested more frequently. This is likely
to achieve comparable epidemic control with a smaller amount of tests. We also envision adjusting
test frequency based on results from tests. For example, if we find that the roughly 7K students
in dorms have a very large amount of transmission, then we could plan to test this population
every other day while testing others much less frequently. Such targeted testing would be easier to
support logistically than increasing test frequency for the entire population.

3 Non-Compliance with Asymptomatic Screening

Another common question in public comments was about the sensitivity of estimates for the res-
idential semester to non-compliance with asymptomatic screening. Concern was expressed that
students would not comply with testing, potentially causing reality to be worse than estimated.

Legal Authority and Enforcement in Residential and Virtual Instruction Settings We
first recall the legal and practical basis by which Cornell can enforce compliance with regular
asymptomatic testing in the residential semester, and how it differs from what can be enforced in
the virtual instruction setting. Since comments focused on student compliance, and students are
likely to have more contacts than others, we focus on this aspect of compliance. This is summarized
in Appendix D of the C-TRO report Committee (2020), which writes: “For students, enforcement is
best predicated on building access and/or use of their NetID. ... Cornell has the broadest authority
and ease of enforcement over students living in residence halls. The University has broad authority
but will face enforcement difficulties over students living off campus who want to attend classes in
person or use University facilities. Cornell will have little authority over students living off campus
and taking classes online only.”

While detailed questions should be directed to University Counsel, broad legal authority to
enforce compliance with testing is present in the residential semester by the fact that students will
be granted access to physical property (buildings), both for those living in residence halls and those
living off campus.

The C-TRO report recommends that enforcement should be achieved through “a system of
progressive sanctions that begins with an educational approach, followed by an official warning
that would be shared with a student’s parents or guardian(s) and ultimately, if necessary, a loss
of access to university facilities.” While we certainly hope that almost all students will be willing
to comply without the need to remove access to university facilities, the ability to do this does
represent a powerful mechanism for achieving compliance.

Enforcement is likely to be most effective for those living in residence halls, because RAs will
be able to exercise greater supervision and because restricting access to buildings is a stronger



intervention for those living on campus. Nevertheless, for both on-campus and off-campus students,
loss of access to the university’s electronic facilities (e-mail, canvas) represents a powerful tool.

In contrast, in the virtual instruction setting, legal authority is more limited because Cornell
would not grant physical access to buildings. While detailed legal questions should be directed
to University Counsel, it is the modeling team’s understanding that legal authority based only
on granting access to electronic property (email, other services using one’s netid) is not nearly
as strong. For example, imagine that Coursera (https://www.coursera.org/) included in their
terms of service a requirement that all individuals taking one of their online courses must not gather
in groups of more than 10 and must be tested for SARS-CoV-2 once per week. One can imagine
that it would be difficult to uphold such a requirement as legal if the company were challenged.
While Coursera might argue that the requirement is based on the fact that students are using
their electronic property, they might easily lose such a legal challenge. Although this is not a legal
argument, it serves to illustrate that basing a testing mandate on electronic property alone is not
necessarily strong legal ground.

There is also a practical challenge in enforcing testing in the virtual instruction setting that goes
above the enforcement challenge for residential students living off campus. In the virtual instruction
setting, Cornell would not have the ability to reliably ascertain students’ locations. Moreover, while
we might like to mandate testing for virtual instruction students living in Ithaca, we would not want
to mandate it for those living elsewhere: test access would be provided by Cornell but would not
be widely available at the faster-than-weekly cadence we would like it to be used. Thus, we would
need to simply ask students to tell us where they are, and then mandate that they comply with
testing if they say they are in Ithaca. If a student decided that being tested once every 5 days is too
onerous, they could simply tell us that they never came to Ithaca, or that they left town. Given the
freedom of location afforded to essentially all students in the virtual instruction scenario, it would
be difficult to know if a student is truly not in Ithaca or simply saying this to avoid mandatory
testing.

Thus, in the virtual instruction setting, while it is reasonable to assume that testing could be
made available as a free optional service, it is unlikely that Cornell would be able to mandate testing
in that scenario.

Overview of Non-Compliance Analysis for Residential Instruction In the rest of this
section we study non-compliance with testing in the residential instruction scenario. We then build
on the work we do here to consider offering testing as optional in the virtual instruction scenario
in Section 4 below.

We consider two models for non-compliance.

First, we consider what happens if individuals choose to be non-compliant independently from
test request to test request, i.e., if each time an individual is asked to be tested, they flip a weighted
coin and do not comply if it comes up tails. This first form of non-compliance assumes that the
person simply skips the test entirely if the coin comes up tails, and as such probably leads to worse
outcomes than if the failure to test was simply an oversight and the person was instead tested on a
later day. By adjusting the weight, i.e., the probability of a tails occurring, we can vary the extent
of this type of non-compliance.

Second, we consider what happens if the same individuals fail to comply for multiple tests in a
row. We call this latter behavior persistent non-compliance.

In the residential setting where the administration can pursue disciplinary action against indi-
viduals that miss tests, persistent non-compliance would seem to be less common, and reality may
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be closer to independent non-compliance. If testing is suggested but not required for some faculty
and staff in the residential setting, then we are also likely to see some persistent non-compliance
from these populations. In a virtual instruction setting (for which we consider testing below) with
optional testing, persistent non-compliance would seem to be the better model.

Independent Non-Compliance Independent non-compliance (in which individuals flip a weighted
coin each time they are asked to perform a test) can be modeled in a straightforward way. If we
aim to test a fraction p of the population every day and only a fraction ¢ complies, then this is the
same as testing a fraction pg every day with full compliance.

For example, if we aim to test 20% of the population per day (as we do in the June 15 modeling
report) and we have independent compliance with 80% of test requests, then the fraction of the
population that is actually tested every day is .2 * .8 = 16%. Under the nominal setting of 8.3
contacts per day from the June 15 report, Figure 1 then shows that the number infected rises to
closer to 1500 individuals.

An alternate way to understand the effect of non-compliance is to choose the test frequency
that should be requested to achieve the desired frequency of tests actually performed. With a
compliance rate of ¢ = .8, achieving a 20% test frequency requires requesting tests to .2/.8 = 25%
of the population. In other words, to test 1/5 of the population every day, we should ask 1/4 of
the population to be tested.

Continuing with the example of 80% compliance on average across faculty, students and staff,
achieving a test frequency of 50% per day would require requesting 62.5% be tested each day.
Achieving a frequency of 33.3% per day would require requesting 41.7% be tested per day.

While this would suggest that any amount of (independent) non-compliance can be easily com-
batted by increasing the requested test frequency, compliance may actually depend on the requested
test frequency. Compliance may decline if the requested test frequency is too high. Thus, there is
likely a maximum fraction of the population that can be tested each day that is lower than 100%.

It is worth noting that the amount of non-compliance likely depends on sub-populations. For ex-
ample, as discussed above, off-campus students are likely to have lower compliance than on-campus
students. In the additional work detailed in Section 6 we plan to build multi-group simulations
that will allow modeling different rates of compliance in different populations.

Persistent Non-Compliance Persistent non-compliance is more difficult to model in our com-
partmental simulation. To study its effects we instead built an Excel spreadsheet that calculates
the expected number of secondary infections resulting from each primary infection (the Rp), as-
suming asymptomatic screening but no contact tracing. (Unfortunately, contact tracing is diffi-
cult to model in this setting.) This is available at https://drive.google.com/file/d/1bQHXq_
dmgtG-ARQ5uelodyp6fqKNOwy0/view?usp=sharing.

To illustrate the difference between independent and persistent non-compliance, we consider the
desired test frequency and amount of non-compliance considered above, comparing the assumption
of independence above to what happens if it is persistent.

First, an assumed desired test fraction of 20% per day with 20% of the population non-compliant
gives an equivalent test fraction of 20*.8 = 16%, as discussed above. This results in approximately
1.5K infected out of 34K. According to the spreadsheet, this corresponds to an Ry of 1.15 before
contact tracing. This suggests that contact tracing is then sufficient to prevent widespread epidemic
growth, although obtaining more certainty would require building a full-fledged simulation with
persistent contact tracing.
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Second, in contrast, suppose that 20% of individuals are persistently non-compliant and 20%
of the rest are tested every day. Then the Ry for those that test is 1.01, those that do not is
2.42, and the weighted average, taking into account that those who comply are in the majority, is
1.29. This is larger than with independent non-compliance and is the same as the Ry achieved by
testing roughly 13% of the population per day with full compliance. Testing 13% per day with full
compliance is low enough to prevent widespread epidemic growth, but results in a larger number
of infections (approximately 2K) according to Figure 1.

Thus, persistent non-compliance is more problematic than independent non-compliance and
results in a larger Ry even if the amount of non-compliance is the same. This effect is more
dramatic for larger amounts of non-compliance as we discuss below. In the residential setting, we
will rely on strong mandates to significantly reduce the amount of persistent non-compliance.

4 Testing, Population Size, and Contact Rates in the Virtual
Instruction Scenario

Here we provide plots to support exploring two questions in the virtual instruction scenario:
e What is the effect of offering optional testing to the unmonitored student population?
e What is the effect of varying the size of the unmonitored student population?

e What is the effect of varying the number of contacts per day in the unmonitored student
population?

We then discuss the implications of these three sensitivity analysis for the comparison between
residential and virtual instruction.

Optional Testing and Population Size Figure 2 examines what happens if we offer optional
testing to the unmonitored student population, and also the sensitivity to the assumed size of this
population. (The assumed size was 9K in the June 15 report.) It does not include infections and
hospitalizations from the approximately 15K faculty, staff and graduate students who are assumed
to work on campus and be protected by a mandatory asymptomatic screening program. This
population is estimated to have an additional 590 infections and 12-13 hospitalizations.

The figure assumes that the choice to not take the (optional) test is made independently, in the
same way that we model independent non-compliance in the residential instruction setting. The
y-axis is then the realized fraction of the population that is tested every day. For example, if we
ask 20% of the population to be tested every day, but only 50% comply, then this would constitute
a daily test fraction of 10%. If only 30% comply, this is a daily test fraction of 6%.

As discussed above, independent non-compliance may be overly optimistic, especially in the
virtual instruction scenario. Using the spreadsheet linked in the persistent non-compliance section,
testing 20% of the compliant population per day with half of the population being persistently
non-compliant results in an Ry among those that are tested of 0.95, those that are not of 2.4, for an
average of 1.7. This is the same Ry as testing 7% of the population per day with full compliance.

In general, our experience using the persistent non-compliance Excel spreadsheet as described in
that section suggests that it is typically a reasonable approximation to take the daily test fraction
corresponding to independent non-compliance and then adjust it downward by a few percentage
points and read the result from the figure to obtain an estimate for persistent non-compliance.
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Figure 2: Number of infections and hospitalizations in the unmonitored student portion of the vir-
tual instruction population, assuming that testing is performed randomly according to the specified
rate after adjusting for non-compliance. For example, if we ask 20% of the population to be tested
each day and half decide to comply at random, then the effective testing fraction would be 10%.
This graph does not include infections and hospitalizations in the on-campus faculty / staff / gradu-
ate student population, which we expect to include about 590 infections and 12-13 hospitalizations.
Persistent non-compliance from some individuals would generate worse outcomes than are pictured
here and should be studied using the Excel spreadsheet linked in the text.

To gauge the number of undergraduate students likely to return, a survey was run in which
roughly 8K undergraduate students responded with 31% saying that they are very likely to return
to Ithaca in a virtual instruction scenario. An additional 22% said that they were “somewhat
likely.” This survey is linked from the University Faculty C-TRO Frazier Modeling webpage (Cornell
University Faculty, 2020). If we include most of those undergraduates who are very likely to come,
some of those who are somewhat likely to come, and note that there are 15K undergraduates,
then it seems reasonably likely that 5K or more unmonitored students would reside in Ithaca.
While recent ICE announcements may reduce the number of international students who can return
to campus, international students represent only 11% of the undergraduate student population
(Cornell Institute for Research and Planning, 2019).

One may also wish to consider the possibility that some graduate / professional students would
return unmonitored to Ithaca, since virtual instruction likely would leave out a significant number
of them from in-person instruction. Prior to the ICE announcement, 53% of these students said
they were very likely to return to Ithaca under virtual instruction. 51% of graduate students and
34% of professional students are international (Cornell Institute for Research and Planning, 2019).

Optional Testing and Contact Rates Figure 3 plots infections and hospitalization versus
contacts per day and test fraction, focusing on two different sizes for the population of unmonitored
students: 9K and 5K. Unlike Figure 2, it includes the 590 infections and 12-13 hospitalizations from
the on-campus population.

There are several effects that should be considered when estimating contacts per day in the
unmonitored student population.

e Arguing for fewer contacts than in the residential scenario, this population will live in an
environment where instruction is virtual and there is no need to leave one’s apartment to
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Figure 3: The fraction of the population that would be infected (left column) and hospitalized
(right column) over the course of the fall semester under the June 15 report’s virtual scenario as a
function of the number of close contacts and the fraction of the population tested per day among
unmonitored virtual instruction undergraduates. The top row assumes 9,000 unmonitored students
returning while the bottom assumes 5,000 returning. We envision that most of the unmonitored
students returning would be undergraduate or professional students. Both rows additionally include
590 infections and 12-13 hospitalizations from 15,000 faculty, staff and graduate students who work
on campus with an average of 8.3 close contacts per day and a daily test percentage of 20%.

attend class.

e Also arguing for fewer contacts, the number of students in Ithaca would be substantially
smaller than in a residential semester, and reduced density typically results in fewer contacts
(Hu et al., 2013; Tarwater and Martin, 2001).

e Arguing for more contacts than in the residential scenario, the unmonitored student popula-
tion will be younger and thus likely to have more contacts Mossong et al. (2008); Wallinga
et al. (2006) than the on-average older population in the residential instruction setting that
included faculty, staff and graduate students.

e Also arguing for more contacts, Cornell will lack legal authority to institute behavioral re-
strictions, such as limits on gathering size and mask-wearing requirements. Limits of these
kinds would need to instead rely on laws in the State of New York and the City of Ithaca,
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and enforcement would fall to local police. Given that existing laws are substantially less
restrictive than the behavioral modifications called out in the C-TRO report, it is likely that
students will feel substantially more free to gather in large groups without masks as compared
with a residential semester.

5 Comparison between Residential and Virtual Instruction

To support comparison between the residential and virtual instruction scenarios, we focus on infec-
tions, since hospitalizations are nearly proportional to infections, and so the conclusions would be
the same if we used that alternate measure. The same would likely be true for fatalities, if we were
to model them.

In comparing these two scenarios, it is useful to first observe in Figures 1 and 3 that infections
and hospitalizations change slowly over a large part of parameter space, with either a small fraction
(say, less than ~ 5%) infected if epidemic control is achieved, or a large fraction (say, more than
50%) if it is not. The region of parameter space that is in between these extremes is relatively small.
Essentially, if asymptomatic screening is frequent enough (after adjusting for non-compliance) rel-
ative to contact rates, then the epidemic is controlled: clusters created by new infectious cases die
out quickly. If, on the other hand, contact rates are too large for the rate of asymptomatic screening
(or asymptomatic screening is non-existent), then clusters grow very quickly and a large fraction of
the population is infected.

For the residential instruction setting pictured in Figure 1, given that the population is 34K
individuals, “small” would correspond to 1700 infections and large to 17K. While these lines are
not pictured, 1700 would fall between the closely spaced 1500 and 2000 lines whereas 17K is not
too far away from the pictured 8K line.

In the virtual instruction setting, to interpret “large” and “small”, keep in mind that 15K faculty,
staff and graduate students are on campus and kept relatively safe using frequent asymptomatic
screening: they are modeled as having a little under 750 infections regardless of what happens
in the unmonitored student population®, based on the full simulation methodology articulated
in the June 15 modeling report, where the infections arise due to experiencing the same rate of
outside infections from Tompkins County experienced in the residential semester. Epidemic control
refers to the infections (and hospitalizations) in the unmonitored student population, which is
either 5K or 9K in Figure 3. Thus, “small” with 5K unmonitored students would correspond to
750+.05*5000=1000 infections, and large would similarly correspond to 3250 infections. With 9K
unmonitored students, small would correspond to 1200 infections and large to 5,250 infections.

We would like to describe in an easy-to-understand way how parameter choices influence whether
the residential semester is safer than virtual instruction, as in the scenarios considered in the June
15 report, or whether the opposite is true. To do this, we first divide parameters based on whether
they effectively control the epidemic in the residential instruction scenario.

Parameter Settings in Which Epidemic Control is Achieved under Residential In-
struction Earlier we argued that epidemic control is likely achieved in the residential instruction
scenario (fewer than 1700 infections). This is because we have the flexibility to increase asymp-
tomatic screening to deal with a range of contact rates that we believe to be wider than those we

3In reality, if a large epidemic broke out among the unmonitored students, this would result in infections imported
to greater Tompkins County and the staff/faculty/graduate student population on campus.

15



are likely to see in practice, even with a reasonable amount of non-compliance.

To outperform the residential instruction scenario, the virtual instruction scenario also needs to
achieve epidemic control, or at least avoid a setting where the number of infections is large (more
than 3250 with 5K in population). This statement remains true even if we reduce the size of the
virtual instruction population from 5K to, say 2K, since a “large” number of infections in this case
would be 1950, which is larger than 1700.

Moreover, the reasons that allow virtual instruction to achieve epidemic control should not si-
multaneously benefit residential instruction. For example, if virtual instruction achieves epidemic
control because of lower-than-anticipated contact rates, this likely also benefits the residential in-
struction setting.

Perhaps the most likely way that virtual instruction could outperform the residential scenario
would be that, simultaneously, (1) contact rates are lower-than-anticipated under virtual instruction
because of reduced density, and (2) we are able to achieve a reasonable amount of testing under
virtual instruction.

For example, with 5K unmonitored students, if (close) contacts per day were only 5 in the
virtual instruction scenario but still 8.3 under residential instruction, and we were able to test 10%
of the population per day with optional testing, then Figure 3 shows we would achieve between 750
and 1000 infections under virtual instruction.

If we set the bar at significantly outperforming the residential instruction scenario, this is much
harder. Achieving fewer than 750 infections in Figure 3 with 5 or more contacts per day would
require testing at least 20% of the population per day, which seems out of reach with optional
testing.

Parameter Settings in Which Epidemic Control is Not Achieved under Residential
Instruction Now we consider scenarios where epidemic control is not achieved under residential
instruction. Above we argue that we can provide robust epidemic control in spite of uncertainty
about contact rates by increasing the rate of asymptomatic testing. Indeed, 17.3 contacts per day
is at the upper limits of what we are likely to see in practice, and this can be controlled by testing a
little less than half of the campus per day. Thus, the most likely path by which a failure to control
the epidemic would occur is one in which we had both substantially more contacts than anticipated
and we were unable to scale up our testing to meet the challenge.

Although unlikely, we consider such a scenario here. In such a scenario where contact rates are
extremely large, we would expect large contact rates to also occur in the virtual instruction setting.
While they might be somewhat smaller (e.g., if reduced density helps, or if high contact rates are
due to residence halls and not social behavior or off-campus living) they are likely to be too large
to allow epidemic control with virtual testing.

While we would then have a large outbreak in both settings, virtual instruction would have
fewer people at risk (20K instead of 34K, if we assume that 5K unmonitored students return) and
so would have a smaller number of infections.

It is worth emphasizing that if this occurred, we would have greater visibility into the situation
in a residential semester and would be able to respond earlier by instituting extremely strong social
distancing measures. In contrast, under virtual instruction, because of the reduced availability of
testing and the danger of statistical bias created by persistent non-compliance, it is entirely possible
that we would not become aware of an epidemic until substantially later.
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Summary of Comparison Between Residential and Virtual Instruction In summary, by
scaling up asymptomatic testing rates, we can achieve epidemic control in a residential semester
across the full range of contact rates we believe we will encounter in the fall. While there are
scenarios in which virtual instruction outperforms a residential semester, these are relatively un-
likely. Moreover, the most likely of these unlikely scenarios have lower-than-anticipated contact
rates where both scenarios perform well and the health benefits of virtual instruction over residen-
tial are only moderate. On the other hand, in a number of reasonably likely scenarios, we achieve
good epidemic control in the residential semester but fail to do so under virtual instruction, with
a significant fraction of the unmonitored student population infected, which would likely threaten
the broader community and the on-campus population. We conclude that the residential semester
is the safer of the two options.

6 Additional Work

Each piece of analysis requires a significant amount of time to complete and communicate. As a
result, we have not completed all analysis that we would like to do. We have prioritized those
analyses that are likely to move our estimates in a pessimistic direction, as a way to make sure that
we are prepared for pessimistic scenarios in the fall, and also prioritized those that were raised in
public comments. Other issues receiving less attention or that would be likely to push our estimates
in an optimistic direction have not been completed.

Here we briefly list some of these not-yet-complete analyses:

e Moving from a “well-mixed assumption” to one with more heterogeneity: on-campus students;
off-campus students; faculty/staff with more frequent student interaction; faculty/staff that
seldom interact with students. The fact that students interact more with students is likely to
contain infections in less vulnerable populations.

e Using a more realistic and likely lower estimate of the rate of outside infections based on the
contact literature.

e Modeling interactions with Tompkins County in a more detailed way. If Ry in Tompkins
County putting aside Cornell is below 1, as we believe it is based on case counts this summer,
then the small number of infections that move from Cornell to greater Tompkins County will
not result in large infection counts.

e Modeling the possibility that Ry in the non-Cornell portion of Tompkins County will be
significantly above 1 in the fall semester. This would create extremely poor health outcomes
for Tompkins County even if Cornell could somehow ensure that all students, faculty and staff
were entirely free of virus. While a recent rise in cases around the country and in Tompkins
County has increased concern about this possibility, we believe the past success of Tompkins
County Health Department and other stakeholders in controlling the local spread of disease
will translate into control of this latest rise in cases.

e Moving to a deterministic test schedule, rather than the easier-to-model random one assumed
in the June 15 report, because it will likely have better performance and is what we plan to
implement in practice. Also, using a higher frequency of testing in subpopulations with more
contacts, as this is likely to also provide value. These two interventions are likely to increase
the effectiveness of asymptomatic screening.
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e Modeling variability in transmission probability over the course of an individual’s infection.
While we model the transmission probability as constant once the pre-infectious period is
complete, transmission probability (at least among symptomatic individuals) is believed to
peak shortly before becoming symptomatic. This will tend to reduce the number of sec-
ondary infections prevented by a given frequency of asymptomatic screening, and reduce its
effectiveness.

e Modeling variability in transmission probability, test sensitivity, and susceptibility with the
age of the infected individual and whether that individual is asymptomatic. Some literature
reports that young people are less susceptible to infection than older individuals (Davies et al.,
2020), which is likely to create more optimistic outcomes.

e Modeling the effect of greater awareness of COVID-19 on symptomatic self-reporting rate.
This is likely to have beneficial effects.

We hope to complete these analyses while prioritizing other analysis tasks that are important
for supporting efficient operational execution as students return.
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