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Executive Summary:

• Initial modeling results suggest that a combination of contact tracing, asymptomatic surveil-
lance, and low initial prevalence (supported through testing students prior to, and upon,
returning to campus) can achieve meaningful control over outbreaks on Cornell’s Ithaca cam-
pus in the fall semester if asymptomatic surveillance is sufficiently frequent and if we have
sufficient quarantine capacity. This would dovetail with a complementary effort at Cornell
to reduce transmissions through housing policy, class organization, and regulations on social
gatherings.

• We use our model to predict outcomes for a full return of students, faculty and staff in the
fall semester over a 16 week time period, with cases imported from returning students and
from Tompkins county, counterbalanced by aggressive asymptomatic surveillance where every
member of the campus community is tested every 5 days. The course of the epidemic is random
and we directly model that randomness. Accordingly, our model produces a range of potential
futures. In the median random potential future, under our nominal set of parameters, 3.6% of
the campus population (1254 people) become infected, and 0.047% of the campus population
(16 people) require hospitalization. The 90% quantile rises to 4.02% infected and 0.051%
requiring hospitalization. Of the 1254 infections in the median outcome, 570 are due to direct
outside infections and ensuing additional infections prior to isolation, while 31 (0.09% of the
campus population) are infected before arrival to campus but missed in the test-on-return
protocol. There are an additional set of people infected before arrival, found through test-on-
return, and isolated in Ithaca (22 people) or at home prior to travel (180 people).

• Outside infections from Tompkins County are predicted to be a significant source of cases.
Testing every 5 days is sufficient to keep these imported cases from growing into large epi-
demics, but even low prevalence (e.g., 0.1%) creates a steady stream of imported cases, each
of which then creates 2-3 more cases on campus before we catch the cluster. Over the course
of a semester, outside infection can dominate returning students as a disease source. Measures
that would reduce outside prevalence, especially among those that interact most closely with
the Cornell community, are likely to also improve on-campus health outcomes and reduce
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quarantine needs. This includes using results from on-campus surveillance to identify trans-
mission vectors, reducing transmission of virus from Cornell to the broader community, and
expanding access to testing. Measures reducing contact between the Cornell community and
those outside would have similar benefits.

• Peak Quarantine Capacity: Our preliminary nominal analysis suggests that the number of
people that would need to be quarantined or isolated in the peak period following move-in
is 700. This estimate includes members of the Cornell community who could self isolate, so
should be taken as an over-estimate of the needed quarantine capacity. It is highly sensitive
to assumptions. Due to the uncertainty this creates, we recommend planning for a peak
capacity greater than 700.

• Sustained Quarantine Capacity: Outside infections create a sustained need for quarantine and
isolation capacity. While lower than peak capacity requirements, these may be significant,
with hundreds of people quarantined or isolated at any given time. Since the greatest sustained
source of infection will be interaction with the outside community, the quarantined population
is likely to contain a larger fraction of faculty, staff, and students living off campus than the
peak load following move-in. Work is ongoing to quantify these needs.

• To provide context, we also model what would happen if we did not open Cornell for a
residential fall semester and did full virtual instruction instead. Our nominal parameters
assume that 9000 students would remain in Ithaca but outside the control of the University
in off-campus apartments without asymptomatic surveillance, and that a population of 15000
faculty, staff, and graduate students would remain on campus with asymptomatic surveillance.
The median number of infections over a 16-week period in the no-reopen scenario is ∼ 7200,
which is significantly larger than the ∼ 1200 that occur under the nominal fall-reopen param-
eters. This is because the loss of asymptomatic screening allows cases to grow significantly
in the unmonitored student population. It is also because infections from outside Cornell, a
large driver of cases in the residential-campus scenario, continue to drive cases.

• Our analysis of virtual instruction assumes that (1) virtual instruction allows asymptomatic
screening only for those faculty, staff and graduate students who are assumed to continue to
work/study on campus, with students living locally but taking classes remotely not included;
(2) social distancing interventions are effective enough for virtual instruction students in Ithaca
that contacts and transmission are comparable to residential instruction; and (3) gateway
testing can be implemented for those returning to Ithaca for virtual instruction. Also note
(4) our nominal scenario for residential instruction assumes full compliance with testing,
quarantine and isolation. Assumptions (2) and (3) are likely overly optimistic for virtual
instruction while assumption (4) may be overly optimistic for residential instruction. Other
assumptions would create different predictions. Work continues to understand sensitivity
to parameter choice but early results suggest the conclusion that residential instruction has
better health outcomes than virtual instruction is robust to assumptions.

• In all of our modeling results, modifying modeling parameters by only a modest amount from
nominal values can result in substantially different numbers of infections and hospitalizations.
Some parameter combinations, that we consider to be not implausible, can yield extremely
serious consequences if interventions do not adjust to meet the challenge. Such outcomes
point to the need to design a robust early-warning system. Regular asymptomatic testing as
evaluated here can supply this early warning.

2

• Peak Quarantine Capacity: Our preliminary nominal analysis suggests that the number of people that would need 
to be quarantined or isolated in the peak period following move-in is 700. This estimate includes members of the 
Cornell community who could self isolate, so should be taken as an over-estimate of the needed quarantine capacity. 
It is highly sensitive to assumptions. Due to the uncertainty this creates, we recommend planning for a peak 
capacity greater than 700.

• Sustained Quarantine Capacity: Outside infections create a sustained need for quarantine and isolation capacity. While 
lower than peak capacity requirements, these may be significant, with hundreds of people quarantined or isolated 
at any given time. Since the greatest sustained source of infection will be interaction with the outside community, 
the quarantined population is likely to contain a larger fraction of faculty, staff, and students living off campus 
than the peak load following move-in. Work is ongoing to quantify these needs.

• To provide context, we also model what would happen if we did not open Cornell for a residential fall semester and 
did full virtual instruction instead. Our nominal parameters assume that 9000 students would remain in Ithaca but 
outside the control of the University in off-campus apartments without asymptomatic surveillance, and that a population 
of 15000 faculty, staff, and graduate students would remain on campus with asymptomatic surveillance. 
The median number of infections over a 16-week period in the no-reopen scenario is ∼ 7200, which is 
significantly larger than the ∼ 1200 that occur under the nominal fall-reopen param- eters. This is because the loss 
of asymptomatic screening allows cases to grow significantly in the unmonitored student population. It is also because 
infections from outside Cornell, a large driver of cases in the residential-campus scenario, continue to drive 
cases.

• Our analysis of virtual instruction assumes that (1) virtual instruction allows asymptomatic screening only for those 
faculty, staff and graduate students who are assumed to continue to work/study on campus, with students living 
locally but taking classes remotely not included; (2) social distancing interventions are effective enough for virtual 
instruction students in Ithaca that contacts and transmission are comparable to residential instruction; and (3) 
gateway testing can be implemented for those returning to Ithaca for virtual instruction. Also note (4) our nominal 
scenario for residential instruction assumes full compliance with testing, quarantine and isolation. Assumptions 
(2) and (3) are likely overly optimistic for virtual instruction while assumption (4) may be overly optimistic 
for residential instruction. Other assumptions would create different predictions. Work continues to understand 
sensitivity to parameter choice but early results suggest the conclusion that residential instruction has better 
health outcomes than virtual instruction is robust to assumptions.

• In all of our modeling results, modifying modeling parameters by only a modest amount from nominal 
values can result in substantially different numbers of infections and hospitalizations. Some 
parameter combinations, that we consider to be not implausible, can yield extremely serious 
consequences if interventions do not adjust to meet the challenge. Such outcomes point to 
the need to design a robust early-warning system. Regular asymptomatic testing as evaluated here 
can supply this early warning.



• Moreover, such scenarios suggest that the best course of action may be one that can adapt to
facts on the ground, e.g., by adjusting asymptomatic screening frequency based on observed
prevalence, or by beginning with stronger protections for vulnerable populations that can be
relaxed if the risk level permits.

• In addition to uncertainty about parameters, our model cannot fully capture the intricacies
of the real world. For example, it is difficult to accurately capture the interactions between
the Cornell and non-Cornell communities. We developed a second model of outside infections
that would appear equally reasonable to the one we present here, but whose number of outside
infections imported is a factor of 3 smaller when passed the same raw parameters. A full list
of model limitations is given in the report.

• Under a range of plausible parameter settings, regular asymptomatic testing is essential to
keeping the epidemic under control; without it we see a significant increase in infections
and hospitalizations. We envision that this asymptomatic testing would be enabled by the
capacity at Cornell’s Animal Health Diagnostic Center, with costs controlled through group
testing. Work continues with collaborators in the College of Veterinary Medicine to validate
group testing protocols and obtain regulatory approval. While substantial cost savings may
be possible with large pool sizes (20 or more), we focus our analysis on a more conservative
method using pools of size 5 in which we are more confident that a false negative rate of 10%,
which is comparable to that of individual testing, can be achieved. (This false negative rate
does not include a post-exposure low viral load period during which we assume PCR cannot
detect infection).

• A small number of cases originating from Cornell students or employees could multiply in
the broader community given that aggressive asymptomatic screening is not available to the
general public, especially as social distancing measures are lifted. The cases thus created
could then return to re-infect the Cornell community. This proliferation of cases in the
broader community is not captured by our model.

• Modeling suggests other opportunities for reducing infections and hospitalizations: increasing
the number of infectious cases identified with each contact trace by encouraging students to
take phone calls from health department contact tracers; controlling the number of contacts
per day and transmission probability per contact through housing policy, classroom design,
and regulations on social gatherings; leveraging on-campus surveillance to alert Tompkins
County to vectors infecting individuals on campus (e.g., Ithaca City Schools, a business in
Collegetown); and perhaps even expanding test access beyond the Cornell community to help
reduce prevalence in Ithaca and thus reduce outside infections.

• There are also unmodeled opportunities to reduce infection. Of interest is directed asymp-
tomatic surveillance, e.g., follow-up testing on a dorm floor if a resident living on that floor
is identified as positive. Such interventions are likely to reduce the required frequency of
undirected asymptomatic surveillance. Also, we hypothesize that testing everyone on a deter-
ministic schedule (each person is tested once every 5 days) will outperform testing randomly,
though our model assumes random testing to simplify computation.

• Toward the goal of quantifying uncertainty, we are continuing efforts to estimate parameters,
provide ranges of plausible parameter values against which we should plan, and investigate

3

• Moreover, such scenarios suggest that the best course of action may be one that can adapt to facts on the ground, 
e.g., by adjusting asymptomatic screening frequency based on observed prevalence, or by beginning with 
stronger protections for vulnerable populations that can be relaxed if the risk level permits.

• In addition to uncertainty about parameters, our model cannot fully capture the intricacies of the real world. For example, 
it is difficult to accurately capture the interactions between the Cornell and non-Cornell communities. We 
developed a second model of outside infections that would appear equally reasonable to the one we present 
here, but whose number of outside infections imported is a factor of 3 smaller when passed the same raw 
parameters. A full list of model limitations is given in the report.

• Under a range of plausible parameter settings, regular asymptomatic testing is essential to keeping the epidemic 
under control; without it we see a significant increase in infections and hospitalizations. We envision that 
this asymptomatic testing would be enabled by the capacity at Cornell’s Animal Health Diagnostic Center, with 
costs controlled through group testing. Work continues with collaborators in the College of Veterinary Medicine 
to validate group testing protocols and obtain regulatory approval. While substantial cost savings may be 
possible with large pool sizes (20 or more), we focus our analysis on a more conservative method using pools 
of size 5 in which we are more confident that a false negative rate of 10%, which is comparable to that of individual 
testing, can be achieved. (This false negative rate does not include a post-exposure low viral load period 
during which we assume PCR cannot detect infection).

• A small number of cases originating from Cornell students or employees could multiply in the broader community 
given that aggressive asymptomatic screening is not available to the general public, especially as social 
distancing measures are lifted. The cases thus created could then return to re-infect the Cornell community. 
This proliferation of cases in the broader community is not captured by our model.

• Modeling suggests other opportunities for reducing infections and hospitalizations: increasing the number of infectious 
cases identified with each contact trace by encouraging students to take phone calls from health department 
contact tracers; controlling the number of contacts per day and transmission probability per contact through 
housing policy, classroom design, and regulations on social gatherings; leveraging on-campus surveillance 
to alert Tompkins County to vectors infecting individuals on campus (e.g., Ithaca City Schools, a business 
in Collegetown); and perhaps even expanding test access beyond the Cornell community to help reduce 
prevalence in Ithaca and thus reduce outside infections.

• There are also unmodeled opportunities to reduce infection. Of interest is directed asymp- tomatic surveillance, 
e.g., follow-up testing on a dorm floor if a resident living on that floor is identified as positive. Such interventions 
are likely to reduce the required frequency of undirected asymptomatic surveillance. Also, we hypothesize 
that testing everyone on a deter- ministic schedule (each person is tested once every 5 days) will outperform 
testing randomly, though our model assumes random testing to simplify computation.

Toward the goal of quantifying uncertainty, we are continuing efforts to estimate parameters, provide ranges of plausible parameter values against which we should plan, 
and investigate the impact of modeling assumptions. This effort is supported by a literature review being conducted by the Cornell library and a set of reviews provided 
by experts both within and outside Cornell on a previous version of this report.



the impact of modeling assumptions. This effort is supported by a literature review being
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• In parallel, we are using the model to investigate the impact of having vulnerable individ-
uals stay away from campus and modifications to student housing. We are also adding the
capability to differentiate student from faculty/staff populations.
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1 An Overview of Methods and Results

This document presents a mathematical modeling framework for COVID-19 at Cornell. The frame-
work is designed to support decision making for university leadership as they consider whether and
how to bring students back for a residential fall semester. It is not intended to support decisions
about how to initiate research reactivation, as those decisions are moving on a faster timeline. This
section is intended for a broad audience and provides an overview of the methods and results. Later
sections go into much more detail.

Epidemic Modeling is Fundamentally Imperfect: It is tempting to believe that a model
can predict the future. In the case of epidemic modeling, however, accurate prediction is not an
attainable goal. While we have done our best to include the most salient aspects of reality and
to estimate the parameters that govern them well, epidemics are notoriously difficult to estimate,
including this one.

Indeed, estimates for outcomes are sensitive to parameters. Moreover, while each sensitivity
analysis plot shows the sensitivity to only one parameter as we hold the others fixed at nominal
values, in reality our estimates might all need adjustment simultaneously, potentially by quite a bit.
Thus, while a strategy might be robust to errors in a single parameter, it might not necessarily be
robust to the full uncertainty we face. Further uncertainty is introduced by structural assumptions
that do not hold in reality. Hence, with our current knowledge, we are only moderately confident
in our ability to say whether a particular strategy will achieve a desired level of risk.

Modeling Methodology and Implementation: Our modeling approach has two components:
an Excel model of initial testing for students returning to campus and a stochastic compartmental
simulation of the on-campus population, implemented in Python.

The Excel model of initial testing estimates the number of students isolated before and after
travel to campus, as well as the number of infected individuals missed by the initial tests. The
fraction of individuals missed by this protocol is the initial prevalence for our compartmental simu-
lation. (This is an approximation, discussed below, as it assumes that the people already on campus
have the same initial prevalence.) The compartmental model does not account for individuals that
were detected through this initial testing. Therefore, these people are not included in the figures of
this document, though we do include them in the captions.

The compartmental simulation models the number of people in each of a number of states over
time. States describe the course of the disease in an individual in a detailed way that builds on
a standard SEIR epidemic model; see, e.g., (24) with random durations in disease states. To this
SEIR backbone our model adds more detailed accounting of when an individual becomes PCR
positive, includes asymptomatic but infectious individuals, and models how an individual’s age
influences the severity of their symptoms.

Individuals that report symptoms are tested and isolated, resulting in contact tracing and
quarantining identified contacts. Asymptomatic surveillance is conducted and contacts are traced
on positive cases that are identified. We include parameters for the number of contacts a person has
per day and the probability of infection for each contact. These parameters provide a mechanism
for modeling the impact of social distancing and other transmission mitigation measures like masks.

With one replication the model generates one possible future. Results from one such replication
are shown in Figures 1 and 2. Many replications yield ensemble forecasts of the future as illustrated
in Figures 3 and 4.
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Figure 1: One possible future from our simulation for the fall semester with asymptomatic testing
once every 5 days under nominal parameters, beginning just after move-in. At this point, we assume
0.09% of the population (roughly 31 people) are infected and unknown to health authorities. This
initial prevalence is obtained from the entry model assuming a 2% prevalence among returning
students prior to the two rounds of testing they undergo; testing fails to detect a few infected
students. Roughly 200 people who are infected but identified by on-return testing and isolated
immediately are not pictured. As they infect others, the number of active infections (purple line)
grows. At the same time, many of these infectious cases are identified through asymptomatic
screening, symptomatic self-reporting, and contact tracing, and then quarantined or isolated. This
causes the number of free infectious people (green line) to be smaller than the number of active
infections. Over time, the number of free-infectious and the number of active individuals approach
steady levels, representing the counteracting effect between disease spread and quarantine/isolation
as well as the constant stream of new infections introduced from outside. The red line represents
people who have recovered, and the blue line represents the total number of people who have been
infected at any point. Both increase linearly in time due to the constant stream of outside infections.

We believe that this simulation model captures most phenomena determining growth of a
COVID-19 epidemic, but like any model it has limitations. Moreover, due to the need to de-
liver answers quickly, an explicit decision was made to accelerate development through carefully
considered approximations in two key aspects: contact tracing and risk groups. These are discussed
in detail below in a subsection on limitations.

Parameters: We obtain parameters from the literature. Unfortunately, the literature is frag-
mented with an incomplete understanding of several important aspects of disease dynamics. Our
work continues in collaboration with the Cornell Library to refine parameter estimates using data
from the literature, the Tompkins County Health Department, and from Cornell. Where it is
not possible to narrow down the value of important parameters, we explore the impact of each
parameter over a plausible range. Parameters are discussed in detail in Section 2.
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Figure 2: For the same simulated future as in Figure 1, cumulative infections that have passed
beyond the time when they would become symptomatic, broken out by severity of symptoms,
versus the number of simulated days. Grey represents individuals that remained asymptomatic
through the course of their infection, orange represents individuals whose worst severity was mild,
blue represents individuals that required hospitalization but not critical care, and red indicates
individuals that required critical care. The vast majority of infected cases are asymptomatic or
mild. The number of people represented at any given point in this figure is slightly smaller than
the cumulative number of people with COVID in Figure 1 because it does not include people who
are early in their disease and have not yet reached the time when they would become symptomatic.
As in Figure 1, about 200 people who are identified and isolated through test-on-return are not
pictured.

Testing Upon Return: We use a spreadsheet-based (Excel) model to study the impact of two
PCR tests for students returning to campus — one local test prior to student departure, and a test
upon student arrival — on the initial prevalence.

The local test is assumed to be an individual test, performed 5 days prior to student departure.
Students are assumed to be isolated in their original location if they test positive. Upon arrival, all
returning students are tested using a group testing protocol. Students are isolated immediately if
they test positive. By screening students both prior to departure and upon their arrival to campus,
we greatly reduce the initial prevalence among the non-isolated campus community.

The model allows for infection of students between the pre-departure and on-arrival tests. There
is a small per-day infection probability prior to departure reflecting effective social-distancing mea-
sures, and a larger per-day infection probability during travel. The travel duration and the likelihood
that students use public transportation (with an associated elevated daily infection probability) de-
pends on the geographic origin of students.

Quarantine Capacity: Because each quarantine and isolation must last at least 14 days, we
expect the peak quarantine capacity usage to occur approximately two weeks after move-in. Ac-
cordingly, to estimate this peak usage, we use our simulation framework to identify all people that
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would need quarantine or isolation in the first 18 days of the fall semester following move-in. This
population consists of two parts: (a) those who test positive upon arrival and are isolated imme-
diately (as obtained by the Excel model), and (b) those quarantined/isolated over the subsequent
18-day period through contact tracing, self-reporting or asymptomatic surveillance (as obtained
from the Python simulation model).

Contact Tracing: In all scenarios, we assume that contact tracing is performed on individuals
that test PCR positive after the test-on-return protocol, whether these individuals were identified
through self-reported symptoms or asymptomatic surveillance.

Since we assume that individuals identified as positive in the return-to-campus testing are iden-
tified immediately, we do not model contact tracing on these individuals.

We do not currently consider antibody tests because of the lack of clarity surrounding their
accuracy and the elevated risk of noncompliance associated with a blood test instead of a saliva
test. Still, one can imagine their use for better measuring prevalence and disease progression.

Asymptomatic Screening with Group Testing: In the fall semester, we propose and study
the use of regular asymptomatic screening of the Cornell population. When applying asymptomatic
testing in our baseline setting, we test 1/5 of the entire campus population every day. In our simu-
lation, for ease of computation, testing is modeled by assuming that each individual independently
has a 1/5 chance of being tested on any day. In reality it is likely better to test according to a fixed
rotation where each person is tested exactly once every 5 days. We include a sensitivity analysis
examining the effect of more or less frequent screening, including testing 1/7 of the population per
day.

Feasibility and cost-effectiveness of this frequency of testing is likely to require group testing,
discussed in detail below in Section 5.3. There we discuss ongoing work to develop a group testing
protocol in collaboration with Drs. Diego Diel and Jeff Pleiss. This requires regulatory approval
for group testing at the ADHC. Work is underway to enable this.

While laboratory work must be conducted to estimate sensitivity and specificity parameters
that would inform a protocol design, we assume for our nominal parameters that a false negative
rate comparable to individual testing would be achieved through a relatively small pool size of 5
and by increasing the reaction volume to mitigate dilution effects. This would require roughly 1400
PCR tests per day.

We are also considering group testing protocols with larger pool sizes that would have more
significant cost savings and could plausibly retain a low false negative rate, especially if viral load is
highly variable and seldom falls in the gap in the limits of detection between pooled and unpooled
tests.

While we study a simple fixed screening strategy in which all members of the campus community
are tested equally often, we envision that there is significant value in testing in a more targeted
way: e.g., testing all residents of a dorm floor when one resident tests positive; testing those with
more contacts or more frequent contact with high-risk individuals; testing a dorm based on the
results of PCR analysis of wastewater.

Outside Infections: We have extended the simulation model to allow for “outside” infections
that arise from interactions with the non-Cornell local community, in addition to within-campus
infections. In our model, each member of the Cornell community has a probability of being infected
by some non-Cornell local person every day. This daily outside-infection probability depends linearly
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on the assumed prevalence in Tompkins County. Each day, a random number of outside infections
arise, modeled as a binomial random variable with parameters the number of susceptible people on
campus, and the daily outside-infection probability.

In the simulation results, the initial number of infectious cases is given by an assumed initial
on-campus prevalence, and then evolves to a level that is non-zero and larger when the outside
prevalence is larger. When we have fast-enough asymptomatic testing to control clusters of infec-
tious cases, cumulative cases do not grow exponentially. Rather, cumulative cases grow linearly,
with a daily increment equal to roughly 2 to 3 times the expected number of active infections due
to interactions with the outside. This factor of 2-3 arises because each new imported case from
outside infects 2-3 others before we can control the cluster. For example, assuming asymptomatic
testing every 5 days and an outside prevalence of 0.1%, in one simulated future approximately 100
outside infections arise over the first 20 simulated days, during which cumulative cases grow from
85 to about 250. Thus, the magnification factor in this example is about (250− 85)/100 ≈ 2.

Scenarios Analyzed: We use our methodology to analyze two scenarios, both focused on the
fall semester:

• Fall Semester, Residential Semester: 20,000 students return to Cornell’s Ithaca campus in the
fall semester. In this scenario, 1/5 of the campus population (faculty/staff/students) is tested
each day in regular asymptomatic screening, and a test-on-return policy additionally tests
students once before they leave home and once again when they arrive in Ithaca. Infections
arrive on campus at the start of the semester due to cases missed during test-on-return and
also arrive through the semester due to infection from the outside community. We assume
that half1 of students arrive early and are also tested through the test-on-return protocol and
subject to asymptomatic screening before move-in weekend.

• Fall Semester, Virtual Instruction: We also consider what happens if we bring no students
back for a residential fall semester. In this scenario, we suppose that a substantial fraction of
students, ranging across 35%, 45%, and 55%, are present in Ithaca where they have already
signed leases and receive virtual instruction while living in the area. The remaining 65%, 55%,
and 45% of students are assumed to not return to Ithaca. We also suppose that faculty, staff,
and a subset of graduate and professional students continue to live in Ithaca and work on
campus. We assume that test-on-return is not conducted and that asymptomatic surveillance
is conducted only for faculty and staff.

We study these scenarios under a nominal set of parameters. We also consider two other sets
of parameters, one more optimistic than the nominal parameters and one more pessimistic. The
optimistic and pessimistic sets of parameter values were constructed by taking several parameters
simultaneously to either the optimistic or pessimistic end of plausible ranges. Thus, they represent
extreme cases. We describe these parameters in detail in Section 2.

Here, “pessimistic” was chosen to be pessimistic in terms of the number infected rather than the
number hospitalized. While most parameters influence both outcomes in the same way, changing

1Results are not sensitive to this fraction. This is because most isolations resulting from positives found in test-
on-return happen at a student’s home. It is also because the prevalence of the population in Ithaca before move-in
is similar to the post-test prevalence of the free returning students (both near 0.1%, as we explain later), allowing us
to model the two as the same, as we explain below. This means that reducing the population of one and increasing
the other has no impact on infectious cases.
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the fraction of cases that have asymptomatic disease can decrease hospitalizations (because those
that become infected are less likely to get sick and need hospitalization) while increasing overall
infections (because infectious individuals spend longer in the general population infecting others).
Thus, the pessimistic settings can produce fewer hospitalizations than the nominal ones when we
do not perform asymptomatic testing, and only slightly more when we do.

While we study a fixed asymptomatic screening frequency, with transmission rates and number
of contacts per day corresponding to fixed social-distancing measures, we underscore the need to
be nimble and react to facts on the ground. We envision that one would monitor prevalence based
on results from asymptomatic screening and adjust the screening frequency and social distancing
measures to control the virus while also reducing costs and supporting an enjoyable campus life.

Performance Measures: We examine three performance measures.

1. The number of members of the Cornell community that undergo serious negative health effects
from COVID-19 requiring hospitalization by the end of the simulated period of 16 weeks (112
days).

2. The number of infections, both because it is an important measure of health impact and
because it is indicative of the required isolation / quarantine capacity.

3. The number of individuals that would need to be isolated or quarantined, including those
that are not infected but would need to be quarantined because they are a close contact of
someone who was.

Recall that our simulation consists of two models: an Excel model of move-in weekend and a
stochastic compartmental simulation, implemented in Python, that models the rest of the semester.
Although it is most natural to combine estimates across the two models, due to time constraints
we sometimes report the numbers separately.

For the stochastic compartmental simulation we also report 10% and 90% quantiles, reflecting
the range of potential futures our simulation model produces under the nominal choice of parame-
ters. We use Monte Carlo simulation, using 100 replications for both the no-reopen plots reported
in this section and the sensitivity analysis plots reported in Section 4. The use of Monte Carlo
simulation creates some errors when estimating these outcome measures, which could be reduced
by running more simulation replications. The bulk of the uncertainty arises from uncertainty about
parameters and the structure of the simulation model itself rather than from Monte Carlo error.

Summary of Results: We first run our simulation under the nominal, optimistic and pessimistic
sets of parameters for the two scenarios described above: a residential fall semester; and virtual
instruction only.

Since our model produces random potential futures, the outcome variable is also random. Fig-
ures 3 and 4 show histograms of outcomes (infection counts and hospitalization counts, respectively)
under our two scenarios, residential (“reopen”) and virtual instruction (“no reopen”) across multi-
ple replications with and without testing under the three different sets of model parameters. The
plot does not include an additional 202 infectious students identified and isolated during the test-
on-return protocol for the residential fall campus scenario, 180 of which would be identified at home
and 22 in Ithaca. For simplicity, the virtual-instruction scenario is assumed to have the same initial
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prevalence numbers as the residential-instruction scenario, despite the lack of any on-return test-
ing for this subpopulation. Absent this assumption there would only be higher initial prevalence
numbers, and the resulting gap between the reopen and no-reopen scenarios would be even wider.
In addition, all three simulations (fall-reopen, no-reopen-students, no-reopen-faculty/staff) use the
same rate of outside infections. A more detailed description of the parameters and assumptions for
this analysis is provided in Section 5.1.

Importantly, not reopening actually results in more infections and hospitalizations than re-
opening. This arises because the students returning to campus in the reopen scenario undergo
test-on-return and asymptomatic surveillance, which controls epidemic spread within this popula-
tion. In contrast, in the no-reopen scenario, returning students are not subject to the University’s
asymptomatic surveillance testing protocols, allowing infections to grow rapidly in this group.

The virtual instruction “no-reopen” simulations are not fully developed. For example, the
model assumes that faculty/staff do not interact with students, but in reality there would be cross-
interaction and thus infection could spread between the groups.

For sensitivity analysis, for each of several parameters we run other simulations varying that
single parameter while holding the other parameters fixed at their nominal values. An example plot
(Figure 5) shows how our outcome variable (percentage of the population requiring hospitalization
due to COVID-19) varies with one of the parameters in our model. The plot shows the estimated
median, 10% quantile and 90% quantile of the percentage of individuals requiring hospitalization
vs. the probability that a symptomatic individual reports their symptoms on a given day. When
an individual is more likely to self-report symptoms, infectious cases are identified, isolated, and
contact traced sooner, resulting in better control of the disease.

Plots are shown for the nominal, optimistic and pessimistic scenarios. A full complement of
these plots are given in Section 4.

In examining these plots, we emphasize the sensitivity of the outcomes to parameters. Moreover,
in Figure 5 and the other figures in Section 4, only one parameter is varied at a time.
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Figure 3: Histograms showing the number of infections in the fall semester, comparing the “re-
open” (i.e., fall residential campus) vs. “no reopen” (i.e., virtual instruction only) under nominal,
optimistic, and pessimistic parameters. Plots do not include an additional 202 infected students
identified and isolated through test-on-return in the reopen scenario. For simplicity, the no-reopen
scenario uses the same post-test initial conditions as the reopen scenario, despite the fact that this
round of testing would not occur in practice. Despite the erroneously low initial infection numbers
at the start of the no-reopen scenario, more infections occur in the no-reopen analysis. This is
largely because of a lack of asymptomatic testing for students who are living in Ithaca but not
subject to university interventions.
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Figure 4: Histograms showing the number of hospitalizations in the fall semester under nominal, op-
timistic, and pessimistic variants of the Reopen vs. No-Reopen alternatives. More hospitalizations
occur in the no-reopen scenario, largely because of a lack of asymptomatic testing for students who
are living in Ithaca but not subject to university interventions. Outside infections also continue to
result in hospitalization of faculty and staff on campus.
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Figure 5: Plot depicts the distribution of hospitalizations (i.e. 50th percentile, with the wider range
corresponding to the 10-90th percentile range) vs. the daily likelihood that a symptomatic individual self-
reports their infection status. The nominal value of this parameter is 18% based on the mean time to report
(5).
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Current Limitations of the Simulation Model: While we believe that our model captures
most aspects of the real world that play a first-order role in the growth or control of a COVID-19
epidemic, there are several aspects we do not model that may materially alter the results.

1. We use an approximation when choosing the prevalence immediately after move-in at the
start of the stochastic python-based simulation. At that time, two groups of people are
combined: returning students who were not isolated or quarantined by test-on-return; and
unquarantined/unisolated faculty/staff/students already on campus. While it would be best
to use the results of a summer simulation to estimate the fraction of people on campus that
are free and infectious, we instead assume it is the same as the fraction among the post-test
returning students. This is discussed in more detail in Section 3.3.

2. Interactions are assumed to be homogeneous across the entire Cornell population and no local
community structure such as friendship networks or different interactions for faculty or staff
compared to students is assumed or leveraged. Accounting for this may influence outcomes
since we anticipate higher contact rates among students vs. staff/faculty may lead to higher
infection rates in students and lower rates in staff/faculty. This may reduce the number of
severe infections, since high-risk individuals are more concentrated among faculty and staff.

3. In our model, infectiousness does not vary once the infectious period begins, i.e., once the
initial exposure period ends.

4. Infectiousness does not vary across individuals: mild cases are assumed to be just as infectious
as severe cases. Similarly, after a person becomes infectious, their infectiousness does not vary
over time. In reality, asymptomatic cases are less infectious than infectious ones, which may
reduce the impact of undetected asymptomatic individuals infecting others.

5. We do not model travel outside of the area.

6. The model of contact tracing is imperfect: within the context of a population-level simulation
model, it is difficult to model contact tracing in a way that is robust across a wide range of
parameter settings. For example, we model contact tracing by supposing that quarantined
contacts are all in the pre-infectious exposed state (if enough such individuals exist). This is
likely accurate for small contact tracing delays (and we believe that in reality these are small),
but becomes inaccurate for large contact-tracing delays. More work is needed (see Section 6)
to understand and improve the accuracy of our model of contact tracing.

7. We model the impact of age and its effect on the distribution of infection severity in an
imperfect way. For example, we model the age group 18-45 as a single unit, and assume
that the probability of hospitalization for an individual in this group is 0.8%. However, this
number is likely driven by individuals aged 35-45, whereas the majority of individuals in this
age group in the Cornell community are students aged 18-25 years, who likely have much
lower rates of hospitalization.

Several of the limitations are addressable given more time, as discussed in Section 6.
In addition, the simulation model is only as accurate as the parameter estimates it uses. While

it is possible to estimate some parameters reasonably accurately, significant uncertainty remains
about others. Sensitivity analysis plots in Section 4 give some information about the influence of
key parameters on outcome metrics. Within Section 6, we call out ongoing workstreams aimed
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we model the age group 18-45 as a single unit, and assume that the probability of hospitalization for an individual 
in this group is 0.8%. However, this number is likely driven by individuals aged 35-45, whereas the majority 
of individuals in this age group in the Cornell community are students aged 18-25 years, who likely have much 
lower rates of hospitalization.



at better estimating important parameters. We also hearken back to the need to be adaptive: by
modifying our strategy (especially, asymptomatic surveillance) based on up-to-date information, we
can hope to create a strategy that is robust to parameter uncertainty.

History and Future of this Document: This document is a living document. Multiple versions
have been shared and we plan to continue updating it as modeling work continues. Section 7 contains
a detailed history of this document and Section 6 a description of work underway. In that work
underway, we specifically call out two efforts. First, detailed reviews of the May 31 version of this
document were obtained from several individuals, both at Cornell and outside the institution. These
reviews identified several opportunities for improvement, which we are working to address. Second,
the Cornell library has begun providing a more detailed literature review to support parameter
estimation. We are working through those references now.

2 Parameters

This section describes the parameters used within our simulation model. For each parameter we
have chosen a nominal (baseline) value, and up to two other values that represent optimistic and
pessimistic settings, based on the literature or data where possible.

We begin by discussing parameters that describe the progress of the disease in an individual in
Section 2.1, then epidemiological parameters that describe the disease and its spread at a population
level along with our interventions in Section 2.2. Section 2.3 discusses contact tracing and Section 2.4
discusses how symptom severity is modeled. Section 2.5 supplies a calculation of the R0 value
implied by a particular parameter setting, to support comparisons to the literature. Section 2.6
describes how we model infections from the Ithaca community while Section 2.7 discusses the testing
protocol that students will go through before returning to campus. Finally we summarize nominal
values and state optimistic and pessimistic parameter settings for each scenario in Section 2.8.

2.1 Individual Disease Progression

Our simulation assumes that the disease progresses through several stages in each infected individ-
ual, represented in Figure 6.

Figure 6: Timeline of disease progression in an infected individual.

In the period after exposure, the individual is infected but not yet detectable by a PCR test.
They also cannot infect another person during this period. After the exposure period, the individual
becomes infectious and detectable by a PCR test but is not yet symptomatic. Then, the individual
enters a symptomatic period during which the severity of their symptoms falls into one of two
groups: either an extremely mild set of symptoms that the patient would not notice (we refer
to this briefly as being “asymptomatic”); or a more noticeable and perhaps even severe set of
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symptoms (we refer to this as being “symptomatic”). Individuals who are symptomatic self-report
their illness to a healthcare provider with a given probability each day while individuals who are
asymptomatic do not self-report.

Parameters for the length of these windows are given in Table 1.

Table 1: Parameters for disease progression in an individual.
Parameter Description Nominal Parameter Value(s) Sources

Time from exposure
to detectable & infectious

Poisson(2) (23); (35); (2); (39)

Time from detectable & infectious
to symptom onset

Poisson(3)

Time in symptomatic state Poisson(12) (40)
P(self-report each day | asymptomatic) 0 Conservative assumption
P(self-report each day | symptomatic) 0.18 CDC planning scenario

Choice of time in the “exposed” and “detectable and infectious” states: (23) does a pooled
analysis and finds the median incubation period to be 5.1 days, with a confidence interval of 4.5
to 5.8 days. (39) and (35) find that transmissions can occur 2-3 days before symptom onset. Thus
we set the time in the detectable and infectious state to be Poisson(3), and subtract it from the
incubation period to get a mean of 2 days for the exposed state.

The probability of self-reporting each day for symptomatic patients was chosen to match the
average time from symptom onset to hospitalization for influenza-like illness (ILI) according to the
CDC (5), which is based on (3). The latter paper reports that

• 35% of symptomatic individuals seek care in ≤ 2 days,

• 47% of symptomatic individuals seek care in 3− 7 days,

• 18% of symptomatic individuals seek care in ≥ 8 days.

We model this as a random number of days that is conditionally uniform(0,2) with probability 35%,
conditionally uniform(3,7) with probability 47%, and conditionally uniform(8,12) with probability
18%. The resulting mean of this distribution is .35× 1 + .47× 5 + .18× 10 = 4.5 days. The daily
probability of self-reporting for symptomatic individuals is then chosen to be 1/4.5 ≈ 0.22 so that
the mean time to self-report, 1/0.22 = 4.545, approximately matches this value.

Unfortunately, a rounding error in the CDC translation of (3) led us to use the distribution
(35%, 50%, 25%) instead of (35%, 47%, 18%) in our calculations so far. This set of probabilities
is incorrect as the entries sum to 110%. This caused us to compute a larger time-to-report of
0.35× 1+0.5× 5+0.25× 10 = 5.35 days and a daily self-report probability of 1/5.35 ≈ 0.18. Work
is underway to correct this error. From sensitivity tests, we observe that results are somewhat
insensitive to the self-report probability (e.g., see Figure 5). So for the sake of consistency, we
continue to use 0.18 in this version of the report, and will adjust it to 0.22 in future versions.

Other limitations of our approach include:

• The population of individuals considered in (3) differ in age, socioeconomic status, and access
to healthcare from Cornell’s population.
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• Societal opinions and marketing campaigns encouraging the seeking of care may influence
individuals to self-report symptoms more quickly than in (3). Conversely, fear of isolation
may cause individuals to self-report less frequently.

• Different definitions of “symptomatic” between (3) and those used to estimate severity prob-
abilities.

• Although the distribution from which we compute the mean is consistent with the cdf reported
in (3), other distributions with different means are also consistent. While the mean could be
substantially different if the upper bound of the final uniform were significantly bigger than
12, regular asymptomatic screening at a frequency near 12 days or smaller would reduce the
impact of this assumption.

There may be an opportunity to improve our estimates: (3) reports values broken out by age and
occupation (including student).

Another limitation of our model is that we assume that the time to report symptoms is geomet-
rically distributed (i.e., constant probability of self-report per day, given that an individual has not
yet self-reported). However, the data in (3) are not consistent with this distributional assumption.

2.2 Epidemiology and Intervention Measures

Next we examine the parameters for epidemiology (how the disease spreads through people’s daily
interactions) and intervention measures other than contact tracing (asymptomatic testing and iso-
lation/quarantine). The parameter values are presented in Table 2.

Table 2: Parameters for epidemiology and intervention measures.
Parameter Description Nominal Parameter Value(s) Sources

Initial prevalence 0.25%
Contacts per day (for each non-
quarantined / isolated person)

8.3 See text

P(infection transmission |
susceptible -infectious contact)

2.6% (28)

Testing false negative rate 0.1
(20);
(36);

see Section 5.3 for explanation
Testing false positive rate 0.001
P(an isolated individual

recovers each day)
0.05

P(a quarantined individual
is released each day)

0.3

We choose the number of contacts per day to cause our implied R0 (calculated in Section 2.5)
to match the nominal value of 2.5 recommended by the CDC (5).
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There may be an opportunity to improve our estimates: (3) reports values broken out by age and occupation (including student). 

• Societal opinions and marketing campaigns encouraging the seeking of care may influence 
individuals to self-report symptoms more quickly than in (3). Conversely, fear 
of isolation may cause individuals to self-report less frequently.

Another limitation of our model is that we assume that the time to report symptoms is geomet- rically distributed (i.e., constant probability of 
self-report per day, given that an individual has not yet self-reported). However, the data in (3) are not consistent with this distributional 
assumption. 

• Different definitions of “symptomatic” between (3) and those used to estimate severity prob- abilities.

2.2 Epidemiology and Intervention Measures 

• Although the distribution from which we compute the mean is consistent with the cdf reported in (3), other distributions 
with different means are also consistent. While the mean could be substantially different if the upper 
bound of the final uniform were significantly bigger than 12, regular asymptomatic screening at a frequency 
near 12 days or smaller would reduce the impact of this assumption.

Next we examine the parameters for epidemiology (how the disease spreads through people’s daily interactions) and 
intervention measures other than contact tracing (asymptomatic testing and iso- lation/quarantine). The parameter 
values are presented in Table 2. 

Table 2: Parameters for epidemiology and intervention measures. 

Parameter Description Nominal Parameter Value(s) Sources 
Initial prevalence 0.25%  
Contacts per day (for each non- quarantined 
/ isolated person) 

8.3 See text 

P(infection transmission | susceptible -infectious 
contact) 

2.6% (28) 

Testing false negative rate 0.1 (20); (36); see Section 5.3 for explanation 

Testing false positive rate 0.001  
P(an isolated individual recovers each 
day) 

0.05  

P(a quarantined individual is released each 
day) 

0.3  

We choose the number of contacts per day to cause our implied R0 (calculated in Section 2.5) to match 
the nominal value of 2.5 recommended by the CDC (5). 



2.3 Contact Tracing

In our simulation, each positive case identified through symptomatic self reporting or asymptomatic
screening initiates a contact trace. We assume that each such contact trace results in a deterministic
number of contacts identified by the health department. We take this number to be 7 based on
data from the Tompkins County Health Department (29). All such contacts are modeled as either
quarantined or isolated.

We also assume that, among these cases quarantined or isolated, the number that are infectious
is deterministic given the reason for contact trace initiation: symptomatic self-reporting; or asymp-
tomatic screening. Traces resulting from symptomatic self-reporting are modeled as having a higher
number of infectious cases among those contacts identified by the health department because these
cases will tend to have been infecting others for a longer period of time.

We assume that contact traces are not initiated for cases isolated as a result of other con-
tact traces. The Tompkins County Health Department does not currently test contacts and so
would not know that a contact was positive. Moreover, while a quarantined case could become
symptomatic and initiate a contact trace, the fact that this individual had been in quarantine or
isolation would dramatically reduce the number of contacts they would have had. The assumption
that contact tracing is not done on positives that result from another contact trace nevertheless
present a limitation because in the fall additional testing might be performed on contacts.

Here we describe the computation of the two undiscussed contact tracing parameters: the
number of infectious cases identified per symptomatic self-report and the number identified per
positive identified with asymptomatic screening.

For each positive case newly identified because of self-reporting, we assume that the individual
had n contacts while they were infectious but before they were isolated, where the number of
contacts n = ct, where c is the average number of contacts per day and t is the average time
a person was infectious before self reporting. (Here, we use the term “contact” in the sense of
potentially leading to an infection, rather than the more restrictive sense required by the Tompkins
County Health Department for quarantine.)

Given that the individual self-reported, they must be symptomatic (since the asymptomatic
self-reporting rate is assumed to be 0), and so t is the sum of the means of the time in the infection
& detectable state (“ID”, below) and the time in the symptomatic state. (Under our nominal
parameters, this is t = 3 + 1/.18 = 8.56 days.)

As described above, each contact is assumed to be infected with probability p, the transmission
probability from an interaction. We assume that the process of recalling contacts, and in particular
the infected contacts, is imperfect: each infected contact is recalled with a probability r (the
infected contact recollection probability). In total, then the expected number of contact-traced
infected contacts is N = ctpr. Under our nominal parameters, ctp = 8.3 × 8.56 × 0.026 = 1.85.
Then, at r = 0.5, ctpr = 0.92.

We then multiply this number of contact-traced infected contacts per self-reported case by
the number of self-reporting cases, and round down to the nearest integer. We model the actual
number of contact-traced infected contacts overall as deterministic and equal to this value. All of
these identified and positive cases go into isolation (QI). They are pulled from the E, D, and ID
states, in that order of precedence.

The remaining 7−N cases quarantined per self-report are pulled from the susceptible (S) state
and enter quarantine (QS).

Note that ctr = 8.3 × 8.56 × 0.5 = 35.5 contacts is much larger than 7 under our nominal
parameters: This is because 7 models only those contacts that meet the more stringent guidelines
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required for quarantine while ct is the larger number of contacts that could potentially result in
transmission. This is also because the 7 contacts quarantined are unique contacts, while many of
the 35.5 contacts would include multiple contacts with the same person.

Positive cases identified through asymptomatic surveillance follow a similar contact tracing
process, but with a smaller number of infectious contacts identified because individuals identified
through screening should tend to be identified earlier in the course of their disease at which point
they would have infected fewer people. A parameter less than 1 determines the ratio of infectious
contacts identified through a positive identified by asymptomatic screening to those identified by a
symptomatic case.

Our model of contact tracing has a number of limitations. Perhaps the most important is that
it may not accurately capture the expected number of new infectious contacts identified through
each contact trace. In particular, an infectious contact recalled may have already been identified
(through symptomatic self-reporting, asymptomatic screening, or another contact trace) by the
time the trace is completed.

Table 3: Parameters for contact tracing.
Parameter Description Nominal Parameter Value(s) Sources

Fraction of contacts identified and traced 0.5
# Quarantined / isolated per contact trace 7 (29)

Contact tracing delay 1 day (29)
(Isolations per screening positive) /

(isolations per self-report)
0.5

(Implied) New isolations per
self-report contact trace

0.92 Calculation in text

2.4 Severity of Symptoms

Our simulation model separates symptomatic from asymptomatic individuals. Over the course of
the simulation, symptomatic individuals self-report each day with some probability, while asymp-
tomatic individuals do not self-report. Symptomatic infections can be of different levels of severity,
ranging from mild pneumonia symptoms to critical life-threatening conditions. More granularity in
the symptomatic group gives a better understanding of the simulation outcomes. Thus we further
divide the symptomatic individuals into three different severity levels. In total, we consider four
different severity levels, defined as follows:

• Severity level 1: patient is asymptomatic.

• Severity level 2: patient shows mild symptoms, but does not require hospitalization.

• Severity level 3: patient needs to be hospitalized, but does not require intensive care.

• Severity level 4: patient requires intensive care.

At the end of each simulated period, we allocate the symptomatic individuals to severity levels 2-4
with certain proportions. These proportions are estimated from data as explained below. Once
an individual is assigned to a severity level they remain there; further transitions between severity
levels are not modeled.
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Positive cases identified through asymptomatic surveillance follow a similar contact tracing process, but with a smaller 
number of infectious contacts identified because individuals identified through screening should tend to be 
identified earlier in the course of their disease at which point they would have infected fewer people. A parameter 
less than 1 determines the ratio of infectious contacts identified through a positive identified by asymptomatic 
screening to those identified by a symptomatic case. 

Our model of contact tracing has a number of limitations. Perhaps the most important is that it may not accurately capture 
the expected number of new infectious contacts identified through each contact trace. In particular, an infectious 
contact recalled may have already been identified (through symptomatic self-reporting, asymptomatic screening, 
or another contact trace) by the time the trace is completed. 

Table 3: Parameters for contact tracing. 
Parameter Description Nominal Parameter Value(s) Sources 
Fraction of contacts identified and traced 0.5  
# Quarantined / isolated per contact trace 7 (29) 
Contact tracing delay 1 day (29) 
(Isolations per screening positive) / (isolations per self-report) 0.5  

(Implied) New isolations per self-report contact trace 0.92 Calculation in text 

2.4 Severity of Symptoms 
Our simulation model separates symptomatic from asymptomatic individuals. Over the course of the simulation, symptomatic 
individuals self-report each day with some probability, while asymp- tomatic individuals do not self-report. 
Symptomatic infections can be of different levels of severity, ranging from mild pneumonia symptoms to 
critical life-threatening conditions. More granularity in the symptomatic group gives a better understanding of the 
simulation outcomes. Thus we further divide the symptomatic individuals into three different severity levels. In total, 
we consider four different severity levels, defined as follows: 

At the end of each simulated period, we allocate the symptomatic individuals to severity levels 2-4 with certain proportions. 
These proportions are estimated from data as explained below. Once an individual is assigned to a severity 
level they remain there; further transitions between severity levels are not modeled. 

• Severity level 1: patient is asymptomatic.
• Severity level 2: patient shows mild symptoms, but does not require hospitalization.

• Severity level 3: patient needs to be hospitalized, but does not require intensive care.

• Severity level 4: patient requires intensive care.



Let P (sev i) be the probability that, as a result of a single contact with an infected person, an
individual becomes infected and falls within severity level i. Thus the sum of these probabilities
over i = 1, 2, 3, 4 is the probability of infection as a result of a single contact. Then, the probabilities
that as a result of a single contact an individual becomes infected and asymptomatic, respectively
infected and symptomatic, are

P (asymptomatic) = P (sev 1), and

P (symptomatic) = P (sev 2) + P (sev 3) + P (sev 4).

We want to find P (sev i) for the population while considering age-based factors. Specifically,
we model how the severity of the disease varies with age, and that older age groups are more likely
to become infected after an interaction with an infectious person. To that end,

P (sev i) =
∑

age

P (sev i|infected, age)P (infected|age)P (age), where

P (infected|age) = P (infected|contact, age)P (contact|age) ∝ P (infected|contact, age).
The proportionality in the second equation comes from the assumption of a homogeneous well-

mixed population. Therefore, the distribution of the age of contacts is the distribution of the age
of the population.

Severity Calculation Part 1: Severity and Infection given Age We obtain values for the
probability of infection as a function of age from (28), which reports the probability of infection
through a close contact for different age groups among 4941 close contacts traced from early cases
in Guangzhou, China. These estimates are given in the first row of Table 4.

Later, we will estimate the age distribution (P (age)) for Cornell’s fall reopen.

Table 4: Parameters for age-stratified infection probability and severity level distribution. Sources:
(28; 7; 13; 4; 25).

Age grp 1
(0-17)

Age grp 2
(18-44)

Age grp 3
(45-64)

Age grp 4
(65-74)

Age grp 5
(75+)

P(infection | age) 1.8% 2.2% 2.9% 4.2% 4.2%
P(sev 1 | infected,age) 17.0% 52.0% 31.0% 13.0% 13.0%
P(sev 2 | infected,age) 81.6% 47.2% 65.9% 80.6% 80.6%
P(sev 3 | infected,age) 1.1% 0.6% 2.2% 4.7% 4.7%
P(sev 4 | infected,age) 0.3% 0.2% 0.9% 1.7% 1.7%

The severity level distribution for each age stratum is estimated from a combination of data
sources. These data sources are fragmented and partially contradictory. Accordingly, our fitting
procedure is far from ideal, but the best we have been able to do given this data.

We first estimate P (sev 1|infected, age), the asymptomatic rate for each age group, as follows.

1. Fix the asymptomatic rate for the 75+ age group, P (sev 1|infected, age grp 5) to 13%. The
13% figure comes from (19), where a nursing home in Seattle had 3 asymptomatic cases out
of 23 confirmed cases. Note the extremely small sample size.
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P(sev 1 | infected,age) 17.0% 52.0% 31.0% 13.0% 13.0% 
P(sev 2 | infected,age) 81.6% 47.2% 65.9% 80.6% 80.6% 
P(sev 3 | infected,age) 1.1% 0.6% 2.2% 4.7% 4.7% 
P(sev 4 | infected,age) 0.3% 0.2% 0.9% 1.7% 1.7% 

The severity level distribution for each age stratum is estimated from a combination of data sources. These data sources are fragmented and 
partially contradictory. Accordingly, our fitting procedure is far from ideal, but the best we have been able to do given this data. 

We first estimate P(sev 1|infected, age), the asymptomatic rate for each age group, as follows. 

1. Fix the asymptomatic rate for the 75+ age group, P(sev 1|infected, age grp 5) to 13%. The 13% figure comes 
from (19), where a nursing home in Seattle had 3 asymptomatic cases out of 23 confirmed cases. Note the 
extremely small sample size.



2. To estimate the asymptomatic rate of the remaining four age groups, we attempt to match
the following data points by minimizing the sum of squared errors. In doing so, we assume
that the asymptomatic rates decrease over Age Groups 2 through 5.

(a) The CDC estimates that the population asymptomatic rate in the USA is 35% (Source:
(5)). Weighting our age-stratified asymptomatic rates by the age distribution for the US
population we should obtain something close to 35%. (Sources for age demographics:
(6) and (18).) We are weighting by the age distribution for the entire US population,
but it would have been more accurate to weight by the infected US population.

(b) The Diamond Princess cruise ship had an estimated 17.9% asymptomatic rate (Source:
(30)). Exactly as we did for the CDC US-population rate, we use age strata for the
infected passengers on the Diamond Princess to attempt to match the 17.9% rate.

(c) A study of 78 infected patients from Wuhan had the following age profile for the 33
asymptomatic patients: 25th percentile: 26 yrs, 50th percentile: 37 yrs, 75th percentile:
45 yrs (Source: (41)). We attempted to match these percentiles. We use the age demo-
graphics of China for this purpose. (Source: (32).)

To this point then, we have estimated the asymptomatic rate for each of the 5 age groups, P (sev
1|infected, age). We next divide the remaining probability within each age group into severity levels
2, 3 and 4 using CDC numbers for hospitalization rates and ICU rates in the nominal planning
scenario (5). By our definition, hospitalization includes both severity levels 3 and 4, and ICU
corresponds to severity level 4. The three equations we need for the three unknowns (probability
of each of severity levels 2, 3 and 4) are

1. P (symptomatic|infected,age) = P (sev 2, 3, 4|infected,age) = 1− P (sev 1|infected,age).
2. Given that a patient is symptomatic, the probability they will be hospitalized is

P (sev 3, 4|infected,age)/P (symptomatic|infected,age).

3. Given that a patient is hospitalized, the probability that they will be admitted to the ICU is

P (sev 4|infected,age)/P (sev 3, 4|infected,age).

CDC (5) estimates the symptomatic case hospitalization ratio to be 1.7% for age 0-49, 4.5% for
age 50-64, and 7.5% for ages 65+. The percent admitted to ICU among those hospitalized is 21.9%
for age 0-49, 29.2% for age 50-64, and 29.8% for ages 65+. We recognize that the age cutoffs are
slightly different to ours. We match CDC’s estimates for age 0-49 to our first two age groups, those
for age 50-64 to our second age group, and those for 65+ to our fourth and fifth age groups. The
probabilities of severity levels 2, 3, 4 are calculated accordingly to fit these estimates.

Severity Calculation Part 2: Age Distribution To complete our severity calculation, we
first identify different groups on Cornell’s campus and estimate their distribution over the five age
groups. The parameter values are given in Table 5.
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2. To estimate the asymptomatic rate of the remaining 
four age groups, we attempt to match 
the following data points by minimizing the 
sum of squared errors. In doing so, we assume 
that the asymptomatic rates decrease 
over Age Groups 2 through 5

To this point then, we have estimated the asymptomatic rate for each of the 5 age groups, P(sev 1|infected, age). We 
next divide the remaining probability within each age group into severity levels 2, 3 and 4 using CDC numbers for 
hospitalization rates and ICU rates in the nominal planning scenario (5). By our definition, hospitalization includes 
both severity levels 3 and 4, and ICU corresponds to severity level 4. The three equations we need for the three 
unknowns (probability of each of severity levels 2, 3 and 4) are 

(a) The CDC estimates that the population asymptomatic rate in the USA is 35% (Source: (5)). Weighting our 
age-stratified asymptomatic rates by the age distribution for the US population we should obtain something 
close to 35%. (Sources for age demographics: (6) and (18).) We are weighting by the age distribution 
for the entire US population, but it would have been more accurate to weight by the infected US 
population.

CDC (5) estimates the symptomatic case hospitalization ratio to be 1.7% for age 0-49, 4.5% for age 50-64, and 7.5% 
for ages 65 plus. The percent admitted to ICU among those hospitalized is 21.9% for age 0-49, 29.2% for age 
50-64, and 29.8% for ages 65 plus. We recognize that the age cutoffs are slightly different to ours. We match CDC’s 
estimates for age 0-49 to our first two age groups, those for age 50-64 to our second age group, and those for 
65 plus to our fourth and fifth age groups. The probabilities of severity levels 2, 3, 4 are calculated accordingly to 
fit these estimates.

P(symptomatic|infected,age) equals P(sev 2, 3, 4|infected,age) equals 1 minus P(sev 1|infected,age).

Severity Calculation Part 2: Age Distribution To complete our severity calculation, we first identify different groups on Cornell’s campus and estimate 
their distribution over the five age groups. The parameter values are given in Table 5. 

(b) The Diamond Princess cruise ship had an estimated 17.9% asymptomatic rate (Source: (30)). Exactly as 
we did for the CDC US-population rate, we use age strata for the infected passengers on the Diamond 
Princess to attempt to match the 17.9% rate.

Given that a patient is symptomatic, the probability they will be hospitalized 
is P(sev 3, 4|infected,age)/P(symptomatic|infected,age).
Given that a patient is hospitalized, the probability that they will be admitted 
to the ICU is P(sev 4|infected,age)/P(sev 3, 4|infected,age).

(c) A study of 78 infected patients from Wuhan had the following age profile for the 33 asymptomatic patients: 
25th percentile: 26 yrs, 50th percentile: 37 yrs, 75th percentile: 45 yrs (Source: (41)). We attempted 
to match these percentiles. We use the age demo- graphics of China for this purpose. (Source: 
(32).)



Table 5: Information for different population groups on Cornell’s campus. The size of each group
as well as the faculty age distribution are provided by (9); the age distribution for academic pro-
fessionals, staff, and students are assumed.

Group size
Age group 1

(0-17)
Age group 2

(18-44)
Age group 3

(45-64)
Age group 4

(65-74)
Age group 5

(75+)
Faculty 1684 0% 33.1% 46.1% 17.9% 2.9%

Academic
professionals

1114 0% 90% 10% 0% 0%

Staff 7485 0% 50% 50% 0% 0%
Students 24027 0% 100% 0% 0% 0%

For the fall reopen, we assume everyone is on campus and compute a combined age distribution
over all 34,310 people. Results are presented in Table 6.

Table 6: Parameters for age distribution on campus for Fall reopen.
Age group 1

(0-17)
Age group 2

(18-44)
Age group 3

(45-64)
Age group 4

(65-74)
Age group 5

(75+)
P(age) for Fall reopen 0% 85.81% 13.17% 0.88% 0.14%

Finally, using the age distribution for the fall re-open, we can calculate the severity level distri-
bution using the procedure described above. Results are presented in Table 7.

Table 7: Severity level distribution on campus for Fall reopen under the nominal scenario.
Severity 1 Severity 2 Severity 3 Severity 4

Fall reopen 47.81% 50.91% 0.94% 0.34%

Sensitivity Analysis The optimistic and pessimistic parameter settings also vary the probability
that an infected person is asymptomatic. The CDC gives a range of 20 − 50% with an expected
value of 35% (source: planning scenarios given by (5)). For the optimistic parameter, we multiply
the nominal probability, P (sev 1), by 20/35 and for the pessimistic parameter we multiply it by
50/35. We re-scale the other severity probabilities accordingly.

2.5 Implied R0

To support intuition and comparison to other measurements of disease spread, it is useful to calcu-
late the R0 implied by a fall scenario with no testing or contact tracing measures. In this scenario,
infected individuals are only isolated if they self-report. We estimate R0 under optimistic, nominal,
and pessimistic parameters. We selected our parameters so that our implied R0 range is similar to
the range suggested in (5), though our pessimistic value is somewhat higher than that range: our
value is 3.2 while the CDC uses 3. Our optimistic R0 matches the CDC at 2.

First, we find the expected time that a case is both infectious and free. This is the sum of the
duration of the infectious period before symptom onset (time in ID) and the expected time of being
free after symptom onset (time in Sy). For asymptomatic individuals, the latter is the remaining

24

Table 5: Information for different population groups on Cornell’s campus. The size of each group as well as the faculty age distribution 
are provided by (9); the age distribution for academic pro- fessionals, staff, and students are assumed. 

 Group size Age group 1 (0-17) Age group 2 (18-44) Age group 3 (45-64) Age group 4 (65-74) Age group 5 (75+) 

Faculty 1684 0% 33.1% 46.1% 17.9% 2.9% 
Academic professionals 1114 0% 90% 10% 0% 0% 

Staff 7485 0% 50% 50% 0% 0% 
Students 24027 0% 100% 0% 0% 0% 

For the fall reopen, we assume everyone is on campus and compute a combined age distribution over all 34,310 
people. Results are presented in Table 6. 

Table 6: Parameters for age distribution on campus for Fall reopen. 

 Age group 1 (0-17) Age group 2 (18-44) Age group 3 (45-64) Age group 4 (65-74) Age group 5 (75+) 

P(age) for Fall reopen 0% 85.81% 13.17% 0.88% 0.14% 

Finally, using the age distribution for the fall re-open, we can calculate the severity level distri- bution using the procedure 
described above. Results are presented in Table 7. 

Table 7: Severity level distribution on campus for Fall reopen under the nominal scenario. 

 Severity 1 Severity 2 Severity 3 Severity 4 
Fall reopen 47.81% 50.91% 0.94% 0.34% 

Sensitivity Analysis 

The optimistic and pessimistic parameter settings also vary the probability that an infected person is asymptomatic. The CDC gives 
a range of 20 − 50% with an expected value of 35% (source: planning scenarios given by (5)). For the optimistic parameter, we 
multiply the nominal probability, P(sev 1), by 20 over 35 and for the pessimistic parameter we multiply it by 50 over 35. We re-scale 
the other severity probabilities accordingly.

2.5 Implied R0 
To support intuition and comparison to other measurements of disease spread, it is useful to calcu- late the R0 implied by a fall scenario 
with no testing or contact tracing measures. In this scenario, infected individuals are only isolated if they self-report. We estimate 
R0 under optimistic, nominal, and pessimistic parameters. We selected our parameters so that our implied R0 range is similar 
to the range suggested in (5), though our pessimistic value is somewhat higher than that range: our value is 3.2 while the CDC 
uses 3. Our optimistic R0 matches the CDC at 2. 

First, we find the expected time that a case is both infectious and free. This is the sum of the duration of the infectious 
period before symptom onset (time in ID) and the expected time of being free after symptom onset (time 
in Sy). For asymptomatic individuals, the latter is the remaining 



length of their disease duration because they do not self-report. For a symptomatic individual, who
self-reports every day with a fixed probability, the expected number of days that he/she is free after
symptom onset is given by inverse of his/her daily self-reporting probability. Then, over each day
in the “infectious and free” duration, a free infectious individual comes into contact with a certain
number of people and infects them with a fixed probability (2.6% in all three scenarios). Thus, the
expression for R0 is given by

(Days infectious pre-symptoms + Expected days free post-symptoms)

* Contacts / day * Probability (infection transmissions | contact),

where

Expected days free post-symptoms = percent asymptomatic * duration of Sy

+ percent symptomatic * 1 / daily self-reporting probability.

For the three parameter settings, we calculate R0 according to the procedure above:

• Optimistic: R0 = (2.5 + (27.3% · 10 + 72.7% · 1/18%)) · 8.3 · 2.6% = 2.

• Nominal: R0 = (3 + (47.8% · 12 + 52.2% · 1/18%)) · 8.3 · 2.6% = 2.5.

• Pessimistic: R0 = (3.5 + (68.3% · 14 + 31.7% · 1/18%)) · 8.3 · 2.6% = 3.2.

Note: These numbers might be slight over-estimates because the above calculation assumes that all
people an infected person comes into contact with are distinct. In reality, a person is likely to have
common contacts on different days. Moreover, the contacts of different people might overlap given
the small-world network structure of Cornell’s campus, as studied by (37), which notes the tight
clustering and low degrees of separation among students based on course co-enrollment information
alone. Note R0 is calculated under the assumption that all others are susceptible.

2.6 Outside Infections

To model the effect of interacting with the wider Tompkins county, we specify a parameter that
governs the probability that anyone in the Cornell population is exposed to an infectious person
from outside Cornell on any given day, which we call the daily outside-infection probability. We have
developed two methods to estimate this parameter, which yielded estimates that differ by a factor
of 3. Here we describe in detail only the first one that yields the larger estimate. We comment
briefly on the other estimation method afterwards.

The daily outside-infection probability depends on an assumed prevalence within Tompkins
County, the probability of infection as a result of a contact, and the amount of contact that an
individual in the Cornell community has with others outside of Cornell.

To estimate these quantities, we break the Cornell population into seven groups based on their
daily activity routines and estimate the amount of contact a member of each group has with those
outside of Cornell, normalized so that someone with exactly 1 close contact per day would have a
value of 1. This is shown in Table 8.

Someone who works at Cornell and lives with a spouse that works outside of Cornell would have
a higher amount of contact with the outside due to the possibility of transmission through their
spouse, even if that Cornell employee has no other non-Cornell contacts. For this reason, we model
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length of their disease duration because they do not self-report. For a symptomatic individual, who self-reports every 
day with a fixed probability, the expected number of days that he/she is free after symptom onset is given 
by inverse of his/her daily self-reporting probability. Then, over each day in the “infectious and free” duration, 
a free infectious individual comes into contact with a certain number of people and infects them with a 
fixed probability (2.6% in all three scenarios). Thus, the expression for R0 is given by 

(Days infectious pre-symptoms plus Expected days free post-symptoms)

* Contacts over day * Probability (infection transmissions | contact), where

Expected days free post-symptoms equals percent asymptomatic * duration of Sy

plus percent symptomatic * 1 over daily self-reporting probability.

For the three parameter settings, we calculate R0 according to the procedure above: 

Note: These numbers might be slight over-estimates because the above calculation assumes that all people an 
infected person comes into contact with are distinct. In reality, a person is likely to have common contacts on 
different days. Moreover, the contacts of different people might overlap given the small-world network structure 
of Cornell’s campus, as studied by (37), which notes the tight clustering and low degrees of separation 
among students based on course co-enrollment information alone. Note R0 is calculated under the assumption 
that all others are susceptible. 

Optimistic: R0 = (2.5 plus (27.3% times by 10 plus 72.7% times by 1 over 18%)) times by 8.3 times by 2.6% equals 2.

2.6 Outside Infections 
To model the effect of interacting with the wider Tompkins county, we specify a parameter that governs the probability 
that anyone in the Cornell population is exposed to an infectious person from outside Cornell on any 
given day, which we call the daily outside-infection probability. We have developed two methods to estimate 
this parameter, which yielded estimates that differ by a factor of 3. Here we describe in detail only the 
first one that yields the larger estimate. We comment briefly on the other estimation method afterwards. 

Nominal: R0 = (3 plus (47.8% times by 12 plus 52.2% times by 1 over 18%)) times by 8.3 times by 2.6% = 2.5.

The daily outside-infection probability depends on an assumed prevalence within Tompkins County, the probability of infection as a result 
of a contact, and the amount of contact that an individual in the Cornell community has with others outside of Cornell. 

To estimate these quantities, we break the Cornell population into seven groups based on their daily activity routines and estimate the 
amount of contact a member of each group has with those outside of Cornell, normalized so that someone with exactly 1 close contact 
per day would have a value of 1. This is shown in Table 8. 

Pessimistic: R0 = (3.5 plus (68.3% times by 14 plus 31.7% times by 1 over 18%)) times by 8.3 times by 
2.6% = 3.2.

Someone who works at Cornell and lives with a spouse that works outside of Cornell would have a higher amount of contact with the outside 
due to the possibility of transmission through their spouse, even if that Cornell employee has no other non-Cornell contacts. For 
this reason, we model 



those with school-aged children as having a substantial amount of contact with the outside world,
although some (27) have argued that children are actually not a significant vector for COVID-19.

We aggregate the expected number of close contacts per day across all groups and multiply
that by outside prevalence and the probability of infection transmission per close contact, which
we set to be 2.6%, to get an expected number of daily outside infections in the entire Cornell
community. Then we divide the expected daily outside infections by the total Cornell population
to approximate the daily outside-infection probability as a single parameter. This figure is 0.055
* outside prevalence. Due to this linear dependence, we typically state results in relation to the
assumed outside prevalence value, rather than to the daily outside-infection probability.

Below we explain our reasoning behind group-splitting and parameter estimation in detail.

Table 8: Group division for calculating daily outside-infection probability.

Group Name Group size

Amount of contact with outside
(Normalized so a group with

1 close contact / day / person

has value 1)

Faculty/Staff who do not have a spouse
or whose SO works at Cornell & no school-age children

4000 3

Faculty/Staff whose SO does not
work at Cornell & no school-age children

3000 5

Faculty/Staff with school-age children 3283 10
Undergraduates living on campus 6920 1/7
Undergraduates living off campus 8123 3/7
Graduate/Professional students

living in campus housing
988 1/7

Graduate/Professional students
living elsewhere

7996 1

We first split the population into students (undergraduate, graduate, and professional students)
and non-students (faculty, staff, and academic professionals), because these two groups have quite
different daily routines, which result in different levels of interaction with the local community every
day. We further subdivide these groups as follows based on factors that significantly influence their
frequency of contact with outside:

For members of faculty/staff group, having school-age children is likely their major source of
contact with outside, as children gather in classrooms on a daily basis and are relatively less cautious
about personal hygiene. Having a spouse that does not work at Cornell also introduces a higher
risk of infection from outside. Thus, we subdivide the faculty/staff group into three subgroups
based on these factors, as seen in the top three rows of Table 8. The faculty/staff group has 10283
people, according to the University Factbook (9). The sizes of the subgroups and the numbers of
daily effective close contacts are estimated based on faculty’s experience.

For students, the two important factors for daily interaction with outside are 1) whether the
student is an undergraduate or a graduate/professional student, and 2) whether the student lives
in campus housing. Being an undergraduate and/or living on campus implies a smaller scope of
daily activity mostly within the campus. With this reasoning, we split the student group into four
subgroups. The Student and Campus Life (Student and Campus Life) website states that 46%
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those with school-aged children as having a substantial amount of contact with the outside world, although some 
(27) have argued that children are actually not a significant vector for COVID-19. 
We aggregate the expected number of close contacts per day across all groups and multiply that by outside prevalence and the probability 
of infection transmission per close contact, which we set to be 2.6%, to get an expected number of daily outside infections 
in the entire Cornell community. Then we divide the expected daily outside infections by the total Cornell population to approximate 
the daily outside-infection probability as a single parameter. This figure is 0.055 * outside prevalence. Due to this linear dependence, 
we typically state results in relation to the assumed outside prevalence value, rather than to the daily outside-infection probability. 

Below we explain our reasoning behind group-splitting and parameter estimation in detail. 

Table 8: Group division for calculating daily outside-infection probability. 

Group Name Group size Amount of contact with outside (Normalized 
so a group with 1 close contact 
/ day / person has value 1) 

Faculty/Staff who do not have a spouse or whose SO works at Cornell 
& no school-age children 

4000 3 

Faculty/Staff whose SO does not work at Cornell & no school-age 
children 

3000 5 

Faculty/Staff with school-age children 3283 10 
Undergraduates living on campus 6920 1 over 7
Undergraduates living off campus 8123 3 over 7
Graduate/Professional students living in campus housing 988 1 over 7

Graduate/Professional students living elsewhere 7996 1 

We first split the population into students (undergraduate, graduate, and professional students) and non-students 
(faculty, staff, and academic professionals), because these two groups have quite different daily routines, 
which result in different levels of interaction with the local community every day. We further subdivide 
these groups as follows based on factors that significantly influence their frequency of contact with outside: 

For members of faculty/staff group, having school-age children is likely their major source of contact with outside, as children gather in 
classrooms on a daily basis and are relatively less cautious about personal hygiene. Having a spouse that does not work at Cornell 
also introduces a higher risk of infection from outside. Thus, we subdivide the faculty/staff group into three subgroups based on 
these factors, as seen in the top three rows of Table 8. The faculty/staff group has 10283 people, according to the University Factbook 
(9). The sizes of the subgroups and the numbers of daily effective close contacts are estimated based on faculty’s experience. 

For students, the two important factors for daily interaction with outside are 1) whether the student is an undergraduate or a graduate/professional 
student, and 2) whether the student lives in campus housing. Being an undergraduate and/or living on campus implies 
a smaller scope of daily activity mostly within the campus. With this reasoning, we split the student group into four subgroups. The 
Student and Campus Life (Student and Campus Life) website states that 46% 



(6920) of undergraduates live on campus, and Cornell Graduate School website (8) states that 11%
(988) of graduate/professional students live on campus. This informs our choice of the subgroup
sizes. For students living on campus, we estimate their activity pattern to be such that they have
one close contact per week with outside; we estimate this number to be three for undergraduates
living off campus, and to be seven (one contact per day) for graduate/professional students living
off campus.

We calculate the expected number of total daily close contacts by multiplying the two columns
entry-wise and summing across all groups. We then multiply this by the assumed outside prevalence
and the probability of transmission per contact (2.6%) and divide by the Cornell population (34,310)
to obtain the probability of outside infection per person per day, which turns out to be 0.055 *
assumed outside prevalence.

In Table 9 below, we list the critical outside prevalence values and the corresponding outside
infection rate. In the simulation, for each day, the outside infection rate is the daily probability a
person in state “susceptible” transitions to state “exposed”.

Table 9: Outside prevalence and daily outside-infection probability
Outside prevalence 0.1% 0.2% 0.278% 1% 1.25%

Daily outside-infection probability 0.000055 0.00011 0.000153 0.00055 0.0006875

We choose prevalence 0.1%, 0.2%, 1% for baseline comparisons. In addition to those, we add
0.278% and 1.25% for the following reasons.

• 0.278% is the result of Cornell vet school CVM testing where the researchers tested one
positive out of a sample of 360 people in May 2020. We took this figure as a reliable source
estimating outside infection rate where 0.278% ≈ 1/360.

• 1.25% is approximately the largest prevalence at which we would fail to reject a one-sided
test when observing no more than one success from a Binomial distribution with sample size
360. This is our “pessimistic” case.

There is significant uncertainty in these estimates. It is hard to locate data for each group’s number
of daily contacts with the Tompkins community, so these are estimated based on our experience
as members of the Cornell community. In addition, using the test result 1/360 as an estimate of
outside prevalence implicitly assumes that the context of the May vet school test would be similar to
the Tompkins County condition in the fall semester. However, this is a somewhat bold assumption;
moreover, we don’t know how the circumstances will change between now and fall, which might
further invalidate this estimate.

We conclude this section by briefly explaining the (unused) second method of estimating the daily
outside-infection probability. We use the same separation into groups adopted above. However,
we break down a person’s daily contacts into outside-Cornell contacts and within-Cornell contacts.
Faculty and staff with children have significantly more outside-Cornell contacts than do on-campus
students. Likewise, Cornell students have significantly more within-Cornell contacts than outside-
Cornell contacts. As a consequence of this group-dependent distribution of contacts inside and
outside Cornell, each group has both a different chance of outside infection and a different number
of follow-on within-Cornell infections should someone from that group become infected. The net
effect of our analysis using this more complicated modeling of contacts is that the daily outside-
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(6920) of undergraduates live on campus, and Cornell Graduate School website (8) states that 11% (988) of graduate/professional 
students live on campus. This informs our choice of the subgroup sizes. For students living 
on campus, we estimate their activity pattern to be such that they have one close contact per week with outside; 
we estimate this number to be three for undergraduates living off campus, and to be seven (one contact 
per day) for graduate/professional students living off campus. 

We calculate the expected number of total daily close contacts by multiplying the two columns entry-wise and summing 
across all groups. We then multiply this by the assumed outside prevalence and the probability of transmission 
per contact (2.6%) and divide by the Cornell population (34,310) to obtain the probability of outside 
infection per person per day, which turns out to be 0.055 * assumed outside prevalence. 

In Table 9 below, we list the critical outside prevalence values and the corresponding outside infection rate. In the 
simulation, for each day, the outside infection rate is the daily probability a person in state “susceptible” transitions 
to state “exposed”. 

Table 9: Outside prevalence and daily outside-infection probability 

Outside prevalence 0.1% 0.2% 0.278% 1% 1.25% 
Daily outside-infection probability 0.000055 0.00011 0.000153 0.00055 0.0006875 

We choose prevalence 0.1%, 0.2%, 1% for baseline comparisons. In addition to those, we add 0.278% and 1.25% for the following reasons. 

There is significant uncertainty in these estimates. It is hard to locate data for each group’s number of daily contacts 
with the Tompkins community, so these are estimated based on our experience as members of the Cornell 
community. In addition, using the test result 1/360 as an estimate of outside prevalence implicitly assumes 
that the context of the May vet school test would be similar to the Tompkins County condition in the fall 
semester. However, this is a somewhat bold assumption; moreover, we don’t know how the circumstances will 
change between now and fall, which might further invalidate this estimate.

0.278% is the result of Cornell vet school CVM testing where the researchers tested one positive out of a sample 
of 360 people in May 2020. We took this figure as a reliable source estimating outside infection rate 
where 0.278% ≈ 1 over 360.

We conclude this section by briefly explaining the (unused) second method of estimating the daily outside-infection 
probability. We use the same separation into groups adopted above. However, we break down a person’s 
daily contacts into outside-Cornell contacts and within-Cornell contacts. Faculty and staff with children have 
significantly more outside-Cornell contacts than do on-campus students. Likewise, Cornell students have significantly 
more within-Cornell contacts than outside- Cornell contacts. As a consequence of this group-dependent 
distribution of contacts inside and outside Cornell, each group has both a different chance of outside 
infection and a different number of follow-on within-Cornell infections should someone from that group become 
infected. The net effect of our analysis using this more complicated modeling of contacts is that the daily outside-

1.25% is approximately the largest prevalence at which we would fail to reject a one-sided 
test when observing no more than one success from a Binomial distribution with 
sample size 360. This is our “pessimistic” case.



infection probability is reduced by a factor of approximately 3. For the sake of conservativeness,
we do not use this reduced probability in the results presented herein.

2.7 Test-on-Return

The returning population during the move-in weekend is assumed to be 10,000 under the nominal
scenario. We envision that a fraction of the undergraduate population may choose to come to Ithaca
early, or choose not to come. We do not model students returning over the course of a few days but
rather model them as an impulse arriving all at once to estimate the potential quarantine capacity
needed in the extreme case. In the nominal scenario, we estimate the prevalence of COVID-19 in
students’ original locations to be 2%. We consider two tests for each undergraduate that decides
to return: one local test performed prior to student departure and a test upon student arrival.
The local test is assumed to be an individual test, performed 5 days prior to student departure.
Students are isolated in their original location if they test positive. The false negative rate (FNR)
of the test is set to 10%. The test upon student arrival uses a group testing protocol, with false
negative rate (FNR) and false positive rate (FPR) set to 10% and 0.1%, respectively; see Section
5.3 for explanations. The parameters corresponding to different scenarios in the Test on Return
methodology are listed in Table 10.

The model also allows for infection of students between pre-departure and on-arrival tests. The
duration between pre-departure test and departure is assumed to be 5 days. Under the nominal
scenario, the per-day infection probability prior to departure is assumed to be 0.01%, reflecting
effective social-distancing measures. The per-day infection probability during travel is assumed
to be 0.1%, reflecting the impossibility of fully effective social distancing during travel. Per-day
infection probabilities in Optimistic and Pessimistic scenarios can be found in Table 10.

Table 10: Parameters for Test-on-Return modeling
Parameters Optimistic Nominal Pessimistic

Number of undergraduates returning 8000 10000 12000
Prevalence level at student origin 0.50% 2.00% 4.00%

False negative rate for test before arrival
(individual test)

10.00%

False negative rate for test after arrival
(group test)

10.00%

False positive rate for test after arrival 0.10%
Probability of getting infected during

each day of travel
0.05% 0.10% 0.20%

Probability of getting infected during
each day between local test and departure

0.005% 0.01% 0.02%

We divide students into groups based on their geographic origins, estimating the travel duration
and likelihood that students use public transportation within each group, as shown in Table 11.
We then aggregate these numbers to compute the weighted probability of infection between pre-
departure test and departure, and infection during travel.
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infection probability is reduced by a factor of approximately 3. For the sake of conservativeness, we do not use this reduced probability 
in the results presented herein. 

2.7 Test-on-Return 

The returning population during the move-in weekend is assumed to be 10,000 under the nominal scenario. We 
envision that a fraction of the undergraduate population may choose to come to Ithaca early, or choose not 
to come. We do not model students returning over the course of a few days but rather model them as an impulse 
arriving all at once to estimate the potential quarantine capacity needed in the extreme case. In the nominal 
scenario, we estimate the prevalence of COVID-19 in students’ original locations to be 2%. We consider 
two tests for each undergraduate that decides to return: one local test performed prior to student departure 
and a test upon student arrival. The local test is assumed to be an individual test, performed 5 days 
prior to student departure. Students are isolated in their original location if they test positive. The false negative 
rate (FNR) of the test is set to 10%. The test upon student arrival uses a group testing protocol, with false 
negative rate (FNR) and false positive rate (FPR) set to 10% and 0.1%, respectively; see Section 5.3 for 
explanations. The parameters corresponding to different scenarios in the Test on Return methodology are 
listed in Table 10. 
The model also allows for infection of students between pre-departure and on-arrival tests. The duration between pre-departure test 
and departure is assumed to be 5 days. Under the nominal scenario, the per-day infection probability prior to departure is assumed 
to be 0.01%, reflecting effective social-distancing measures. The per-day infection probability during travel is assumed to be 
0.1%, reflecting the impossibility of fully effective social distancing during travel. Per-day infection probabilities in Optimistic and Pessimistic 
scenarios can be found in Table 10. 

Table 10: Parameters for Test-on-Return modeling 

Parameters Optimistic Nominal Pessimistic 
Number of undergraduates returning 8000 10000 12000 
Prevalence level at student origin 0.50% 2.00% 4.00% 
False negative rate for test before arrival (individual 
test) 

10% 10.00% 10.00%

False negative rate for test after arrival (group test) 10% 10.00% 10.00%

False positive rate for test after arrival 0.10% 0.10% 0.10%
Probability of getting infected during each day of 
travel 

0.05% 0.10% 0.20% 

Probability of getting infected during each day between 
local test and departure 

0.005% 0.01% 0.02% 

We divide students into groups based on their geographic origins, estimating the travel duration and likelihood 
that students use public transportation within each group, as shown in Table 11. We then aggregate 
these numbers to compute the weighted probability of infection between pre- departure test and departure, 
and infection during travel. 



Table 11: Parameters for modeling infections between two PCR tests. Sources for geographic origin
distribution: (10; 11; 12).

NY + New England
+ Mid Atlantic

Midwest +
South/Southeast

West +
Southwest/Mountain

International

Fraction of the
undergraduate population

59.56% 13.72% 15.36% 11.36%

Fraction of population
using public transportation

within the group
50.00% 90.00% 100.00% 100.00%

Fraction of population
using public transportation

29.78% 12.35% 15.36% 11.36%

Duration of travel (days) 0.5 1 1 2
Duration between local

test and departure (days)
5
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Table 11: Parameters for modeling infections between two PCR tests. Sources for geographic origin distribution: 
(10; 11; 12). 

 NY + New England + Mid 
Atlantic 

Midwest + South/Southeast West + Southwest/Mountain International 

Fraction of the undergraduate population 59.56% 13.72% 15.36% 11.36% 

Fraction of population using public 
transportation within the group 

50.00% 90.00% 100.00% 100.00% 

Fraction of population using public 
transportation 

29.78% 12.35% 15.36% 11.36% 

Duration of travel (days) 0.5 1 1 2 
Duration between local test and departure 
(days) 

5 5 5 5



2.8 Parameter Values for Fall Reopen

In addition to the nominal parameters, we consider an optimistic and a pessimistic setting. Table
12 is a comprehensive summary of the parameters we use for all settings.

Table 12: Parameters for optimistic, nominal, and pessimistic settings.

Parameter Name Optimistic Nominal Pessimistic

Time in E Poisson(2)

Time in D 0

Time in ID Poisson(2.5) Poisson(3) Poisson(3.5)
Time in Sy

(with and w/o symptoms)
Poisson(10) Poisson(12) Poisson(14)

Contacts per day
(for each free person)

8.3

P(infection transmission |
susceptible-infectious contact)

2.6%

Total population 34310

Student-origin prevalence 0.5% 2% 4%
Ithaca outside prevalence 0.1% 0.278% 1.25%

Prevalence at beginning of compartmental simulation 0.05% 0.09% 0.175%
Asymptomatic rate 27.3% 47.8% 68.3%

P(self-report each day |
no symptoms)

0%

P(self-report each day |
symptoms)

18%

New quarantines+isolations
per contact trace

7

(Implied) new isolations per
self-report contact trace

0.92

(Isolations per screening positive) /
(isolations per self-report)

0.5

Fraction of contacts identified and traced 0.5

Contact tracing delay 1 day 1 day 2 days

Testing false positive rate 0.1%

Testing false negative rate 10%

P(an isolated individual
recovers each day)

0.05

P(a quarantined individual
is released each day)

0.3

Age-severity matrix (Table 5)

Implied R0 w/o intervention 2 2.5 3.2

Simulated time length 16 weeks (112 days)

Parameters for the Excel model (Table 10)
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2.8 Parameter Values for Fall Reopen 

In addition to the nominal parameters, we consider an optimistic and a pessimistic setting. Table 12 is a comprehensive 
summary of the parameters we use for all settings. 

Table 12: Parameters for optimistic, nominal, and pessimistic settings.

Parameter Name Optimistic Nominal Pessimistic 
Time in E Poisson (2) Poisson (2) Poisson (2)
Time in D 0 0 0
Time in ID Poisson(2.5) Poisson(3) Poisson(3.5) 
Time in Sy (with and w/o symptoms) Poisson(10) Poisson(12) Poisson(14) 

Contacts per day (for each free person) 8.3 8.3 8.3

P(infection transmission | susceptible-infectious contact) 2.6% 2.6% 2.6%

Total population 34310 34310 34310
Student-origin prevalence 0.5% 2% 4% 
Ithaca outside prevalence 0.1% 0.278% 1.25% 
Prevalence at beginning of compartmental simulation 0.05% 0.09% 0.175% 
Asymptomatic rate 27.3% 47.8% 68.3% 
P(self-report each day | no symptoms) 0% 0% 0%

P(self-report each day | symptoms) 18% 18% 18%

New quarantines+isolations per contact trace 7 7 7

(Implied) new isolations per self-report contact trace 0.92 0.92 0.92

(Isolations per screening positive) / (isolations per self-report) 0.5 0.5 0.5

Fraction of contacts identified and traced 0.5 0.5 0.5
Contact tracing delay 1 day 1 day 2 days 
Testing false positive rate 0.1% 0.1% 0.1%
Testing false negative rate 10% 10% 10%
P(an isolated individual recovers each day) 0.05 0.05 0.05

P(a quarantined individual is released each day) 0.3 0.3 0.3

Age-severity matrix (Table 5) (Table 5) (Table 5)
Implied R0 w/o intervention 2 2.5 3.2 
Simulated time length 16 weeks (112 days) 16 weeks (112 days)16 weeks (112 days)
Parameters for the Excel model (Table 10) (Table 10) (Table 10)



3 Detailed Simulation Model Specification

Our simulation framework has 2 major components:

1. Test-on-return (Excel) - the goal of this component is to estimate the effectiveness of our
test-on-return protocol. We use its output to determine the initial prevalence for the com-
partmental simulation and to estimate the quarantine requirements at the beginning of the
semester.

2. Compartmental Simulation (Python) - the goal of this component is to model the spread of
the disease on campus, and the impact of different interventions such as contact tracing and
asymptomatic testing. It tracks population-level counts of individuals across multiple relevant
states. As in reality, the dynamics are stochastic. We use Monte Carlo simulation to generate
many potential futures starting from a random initial state that reflects an initial prevalence.

Details of combining the initial prevalence Excel estimate with the Python-based simulation can
be found in Section 3.3.

3.1 Test-on-Return (Excel)

We use a spreadsheet-based (Excel) model (available here2) to study the impact of two PCR tests for
students returning to campus — one local test prior to student departure, and a test upon student
arrival — on the initial prevalence. The local test is assumed to be an individual test performed
5 days prior to student departure. The individual test is assumed to have a false negative rate
of 10% and students that test positive are isolated in their original location. Students that test
negative (which consist of infected students not identified by the test and students susceptible to
infection) are allowed to return to the campus. We calculate these numbers based on an assumed
student-origin prevalence level.

The model then allows for infection of students between the pre-departure and on-arrival tests.
There is a small per-day infection probability prior to departure reflecting effective social-distancing
measures, and a larger per-day infection probability during travel. The travel duration and the like-
lihood that students use public transportation (with an associated elevated daily infection probabil-
ity) depends on the geographic origin of students. We estimate the probability of student infection
between the pre-departure and on-arrival tests based on their geographic origin. The fractions of
such infections that end up being in exposed (E) state and in infectious and detectable (ID) state
upon arrival in Ithaca are calculated accordingly based on a typical duration in the exposed (E)
state. Detailed definitions of these infection states can be found in Secion 3.2.1.

Upon arrival, all returning students are tested using a group testing protocol (discussed in
Section 5.3). The group test is assumed to have an FNR of 10% and an FPR of 0.1%. Students
that test positive (which consist of true positives and false positives) are isolated immediately. The
fraction of individuals missed by this protocol is used in two ways:

• It is set as the initial prevalence for our compartmental simulation (Section 3.2). This is
an approximation as it assumes that the people already on campus have the same initial
prevalence. Detailed discussions of the approximation can be found in Section 3.3.

2https://docs.google.com/spreadsheets/d/1E4hoMIvmHcq819KeVOTf7PyAt826UbBG4G2dnLTv42w/edit?usp=

sharing
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3 Detailed Simulation Model Specification 

Our simulation framework has 2 major components: 

Details of combining the initial prevalence Excel estimate with the Python-based simulation can be found in Section 3.3. 

1.Test-on-return (Excel) - the goal of this component is to estimate the effectiveness of our test-on-return protocol. 
We use its output to determine the initial prevalence for the 
compartmental simulation and to estimate 
the quarantine requirements at the beginning of the semester.

3.1 Test-on-Return (Excel) 

We use a spreadsheet-based (Excel) model (available below ) to study the impact of two PCR tests for students 
returning to campus — one local test prior to student departure, and a test upon student arrival — on 
the initial prevalence. The local test is assumed to be an individual test performed 5 days prior to student departure. 
The individual test is assumed to have a false negative rate of 10% and students that test positive are 
isolated in their original location. Students that test negative (which consist of infected students not identified 
by the test and students susceptible to infection) are allowed to return to the campus. We calculate these 
numbers based on an assumed student-origin prevalence level.

The model then allows for infection of students between the pre-departure and on-arrival tests. There is a small 
per-day infection probability prior to departure reflecting effective social-distancing measures, and a larger 
per-day infection probability during travel. The travel duration and the like- lihood that students use public 
transportation (with an associated elevated daily infection probabil- ity) depends on the geographic origin 
of students. We estimate the probability of student infection between the pre-departure and on-arrival tests 
based on their geographic origin. The fractions of such infections that end up being in exposed (E) state and 
in infectious and detectable (ID) state upon arrival in Ithaca are calculated accordingly based on a typical duration 
in the exposed (E) state. Detailed definitions of these infection states can be found in Secion 3.2.1. 

2. Compartmental Simulation (Python) - the goal of this component is to model the spread of the disease on campus, 
and the impact of different interventions such as contact tracing and asymptomatic testing. It tracks 
population-level counts of individuals across multiple relevant states. As in reality, the dynamics are stochastic. 
We use Monte Carlo simulation to generate many potential futures starting from a random initial state 
that reflects an initial prevalence.

Upon arrival, all returning students are tested using a group testing protocol (discussed in Section 5.3). The group test is assumed to 
have an FNR of 10% and an FPR of 0.1%. Students that test positive (which consist of true positives and false positives) are isolated 
immediately. The fraction of individuals missed by this protocol is used in two ways: 

It is set as the initial prevalence for our compartmental simulation (Section 3.2). This is an approximation as 
it assumes that the people already on campus have the same initial prevalence. Detailed discussions of the 
approximation can be found in Section 3.3.

https://docs.google.com/spreadsheets/d/1E4hoMIvmHcq819KeVOTf7PyAt826UbBG4G2dnLTv42w/edit?usp= sharing

https://docs.google.com/spreadsheets/d/1E4hoMIvmHcq819KeVOTf7PyAt826UbBG4G2dnLTv42w/edit?usp= sharing


• It is set as the initial prevalence for an 18-day simulation run that aims to estimate the peak
usage of quarantine capacity in the first 18 days of the fall semester following move-in. The
18-day simulation model has the same structure as the compartmental simulation model but
only runs for 18 days. Moreover, it does not allow removal of people from the quarantine states
because we want to estimate the peak quarantine usage. The total quarantine or isolation
is the sum of the following two figures: (a) those who test positive upon arrival and are
isolated immediately (as obtained by the Excel model), and (b) those quarantined/isolated
over the subsequent 18-day period through contact tracing, self-reporting or asymptomatic
surveillance (as obtained by the 18-day simulation model).

3.2 Compartmental Simulation (Python)

This section summarizes the dynamics of the Compartmental Simulation model that is implemented
in python.

3.2.1 Population-Level Dynamics

The states across which individuals are tracked, and a short description of the dynamics governing
relevant state transitions, are as follows. These dynamics are depicted in Figure 7.

Susceptible (S) A susceptible person does not carry the virus, is not infectious, and tests negative
by PCR. A susceptible (S) person becomes exposed (E) with some probability once he/she
comes in contact with someone infectious. We describe the assumptions regarding contacts
and transmission in more detail below.

Exposed (E) An exposed person is infected after previous contact with someone infectious. The
person is not yet infectious, detectable, or symptomatic. The person spends a random number
of days in the exposed state, and then becomes detectable (D).

Detectable (D) A detectable person carries the virus, is potentially detectable by PCR, but is
not yet infectious. For our simulation, we assume that 0 time is spent in this state; people go
directly from exposed (E) to infectious and detectable (ID).

Infectious and detectable (ID) An infectious and detectable person is infectious, i.e. he/she
can generate more exposed cases from the currently susceptible population. The person is
not symptomatic and does not self-report their illness. The person spends a random number
of days in the infectious and detectable state, and then becomes either Symptomatic or
Asymptomatic (i.e., they will never have symptoms).

Symptomatic / Asymptomatic The asymptomatic/symptomatic states are the next stage in
the disease for those leaving the infectious and detectable state. Asymptomatic people do not
report their symptoms. Symptomatic people who have not yet self-reported or been identified
in some other way (contact tracing, screening) self-report to the healthcare system with some
probability each day. Self-reported individuals enter the quarantine-infected (QI) state. An
asymptomatic or a symptomatic person who does not self-report eventually recovers (R).

Recovered (R) The person’s disease is no longer infectious. We assume all patients recover and
there are no deaths. Indeed, the mortality rate is low and we strive to keep prevalence low,
deaths would be exceedingly rare. Recovered patients cannot become susceptible again.
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3.2 Compartmental Simulation (Python) 

It is set as the initial prevalence for an 18-day simulation run that aims to estimate the peak usage of quarantine 
capacity in the first 18 days of the fall semester following move-in. The 18-day simulation model has 
the same structure as the compartmental simulation model but only runs for 18 days. Moreover, it does 
not allow removal of people from the quarantine states because we want to estimate the peak quarantine 
usage. The total quarantine or isolation is the sum of the following two figures: (a) those who test 
positive upon arrival and are isolated immediately (as obtained by the Excel model), and (b) those quarantined/isolated 
over the subsequent 18-day period through contact tracing, self-reporting or asymptomatic 
surveillance (as obtained by the 18-day simulation model).

This section summarizes the dynamics of the Compartmental Simulation model that is implemented in python. 

3.2.1 Population-Level Dynamics 

The states across which individuals are tracked, and a short description of the dynamics governing relevant state transitions, are as follows. 
These dynamics are depicted in Figure 7. 

Susceptible (S) 

A susceptible person does not carry the virus, is not infectious, and tests negative by PCR. A susceptible (S) person becomes 
exposed (E) with some probability once he/she comes in contact with someone infectious. We describe the assumptions 
regarding contacts and transmission in more detail below.

Exposed (E) 

An exposed person is infected after previous contact with someone infectious. The person is not yet infectious, detectable, or 
symptomatic. The person spends a random number of days in the exposed state, and then becomes detectable (D).

Detectable (D) 

A detectable person carries the virus, is potentially detectable by PCR, but is not yet infectious. For our simulation, we assume 
that 0 time is spent in this state; people go directly from exposed (E) to infectious and detectable (ID).

Infectious and detectable (ID) 
An infectious and detectable person is infectious, i.e. he/she can generate more exposed cases from the currently susceptible 
population. The person is not symptomatic and does not self-report their illness. The person spends a random number 
of days in the infectious and detectable state, and then becomes either Symptomatic or Asymptomatic (i.e., they will 
never have symptoms).

Symptomatic / Asymptomatic 

The asymptomatic/symptomatic states are the next stage in the disease for those leaving the infectious and detectable state. Asymptomatic 
people do not report their symptoms. Symptomatic people who have not yet self-reported or been identified in some 
other way (contact tracing, screening) self-report to the healthcare system with some probability each day. Self-reported 
individuals enter the quarantine-infected (QI) state. An asymptomatic or a symptomatic person who does not self-report 
eventually recovers (R).

Recovered (R) 
The person’s disease is no longer infectious. We assume all patients recover and there are no deaths. Indeed, the mortality rate is low and we strive to keep 
prevalence low, deaths would be exceedingly rare. Recovered patients cannot become susceptible again.



Quarantine-Susceptible (QS) The person is put in quarantine by a test decision, or by the
outcome of a contact trace, but does not carry the virus. At the conclusion of quarantine a
person returns to the susceptible state

Quarantine-Infected (QI) Someone with the virus is put in isolation or quarantine by a test
decision, a contact trace, or by self-reporting. At the conclusion of isolation the person enters
the recovered state.

Figure 7: The dynamics between disease and quarantine states over a single time period for the
compartmental simulation. “S” = susceptible, “E” = exposed, “D” = detectable, “ID” = infec-
tious and detectable, “R” = recovered, “QS” = quarantined susceptible, and “QI” = quarantined
infected. Solid lines represent the epidemiological progressions, outside infections, and people being
released at the end of their quarantine; dashed lines represent the effects of intervention measures,
including testing, self-reporting, and contact-tracing, which put some of the population into iso-
lation/quarantine. Both on-campus transmissions and outside infections generate new cases that
move from the susceptible to exposed state.

3.2.2 Daily Infection Dynamics

In our model, susceptible individuals can become exposed to the virus and transition to the ex-
posed state, depending on daily contacts and an infection-transmission probability. A “contact”
is an interaction between two people that has the potential for transmission of the infection. The
dynamics are governed by the following values.

1. The expected number of contacts per person per day (c). This is an input parameter.

2. The number of free and infectious individuals, i.e., individuals who have the virus, are infec-
tious, and who are not yet in isolation. The number of free and infectious individuals (FI) is
the sum of the numbers of individuals in the ID, asymptomatic and symptomatic states.
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Quarantine-Susceptible (QS) 

The person is put in quarantine by a test decision, or by the outcome of a contact trace, but does not carry the virus. At the conclusion 
of quarantine a person returns to the susceptible state

Quarantine-Infected (QI)

Someone with the virus is put in isolation or quarantine by a test decision, a contact trace, or by self-reporting. At the conclusion 
of isolation the person enters the recovered state.

3.2.2 Daily Infection Dynamics 

In our model, susceptible individuals can become exposed to the virus and transition to the ex- posed state, depending on daily contacts 
and an infection-transmission probability. A “contact” is an interaction between two people that has the potential for transmission 
of the infection. The dynamics are governed by the following values. 

1.The expected number of contacts per person per day (c). This is an input parameter.
2.The number of free and infectious individuals, i.e., individuals who have the virus, are infectious, and who are 
not yet in isolation. The number of free and infectious individuals (FI) is the sum of the numbers of individuals 
in the ID, asymptomatic and symptomatic states.



3. The number of free and susceptible individuals, i.e., individuals who are susceptible to the
disease and not currently quarantined. The number of free and susceptible individuals (FS)
is simply the number of individuals in state S.

4. The number of free individuals, i.e. the size of the pool of individuals within which interactions
can occur. This pool consists of free and susceptible, free and infectious, exposed, detectable
and recovered individuals. Hence the number of free individuals (F ) is the sum of FI , FS , E,
D and R.

5. The transmission probability p that gives the probability of transmission during an interaction
between an infectious person and a susceptible person.

6. The daily outside-infection probability r.

Every infected individual interacts with a random number of other free individuals each day,
modeled as a Poisson(c) random variable. Each of these free individuals is assumed to be susceptible
with a probability that is proportional to the number of free susceptibles within the free population,
i.e., a contact is a susceptible with probability FS/F . Thus, the total number of interactions between
an infectious person and a susceptible each day is modeled as a Poisson random variable with
mean cFIFS/F . This simplified model of interactions assumes no overlap between the interactions
originating from each infectious person. Finally, each interaction between an infectious person and
a susceptible person results in transmission with probability p. Accordingly, the total number of
new infections each day due to internal-to-Cornell transmission is modeled as a Poisson random
variable with mean cFIFSp/F . In addition, the number of new infections due to outside infection is
binomially distributed with parameters FS (free and susceptible individuals) and r (daily outside-
infection probability).

3.2.3 Interventions: Self-Reporting and Contact-Tracing

There are two interventions through which positive cases can be isolated.

1. Self-reporting. Individuals in the symptomatic state have a probability of self reporting each
day. If they self report they enter the quarantine-infected state (QI). If they do not self-report
and do not recover, then they remain in their present state for another day.

2. Contact tracing. We use a simplified model of contact tracing. A contact trace is initiated
when an individual self-reports symptoms or when they are identified as positive through
asymptomatic screening. Additional contact tracing is not initiated from positive cases found
among contacts traced, as the Tompkins County Health Department does not have a policy
of testing contacts.

Contact tracing is described by 3 parameters: number of people to place into quarantine or
isolation with each contact trace; the number among these that are infectious for self-reporting
positive cases; and the number that are infectious for cases identified through asymptomatic
screening. We set the number of infectious cases identified smaller for those identified through
asymptomatic screening because these cases will tend to have been infectious for less time
and thus will tend to have infected fewer people. The choice of these parameters is discussed
in detail in Section 2.3.
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Every infected individual interacts with a random number of other free individuals each day, modeled as a Poisson(c) 
random variable. Each of these free individuals is assumed to be susceptible with a probability that is 
proportional to the number of free susceptibles within the free population, i.e., a contact is a susceptible with probability 
FS over F. Thus, the total number of interactions between an infectious person and a susceptible each 
day is modeled as a Poisson random variable with mean cF1FS over F. This simplified model of interactions 
assumes no overlap between the interactions originating from each infectious person. Finally, each interaction 
between an infectious person and a susceptible person results in transmission with probability p. Accordingly, 
the total number of new infections each day due to internal-to-Cornell transmission is modeled as a 
Poisson random variable with mean cF1FSp over F. In addition, the number of new infections due to outside infection 
is binomially distributed with parameters FS (free and susceptible individuals) and r (daily outside- infection 
probability).

3. The number of free and susceptible individuals, i.e., individuals who are susceptible to the 
disease and not currently quarantined. The number of free and susceptible individuals (FS) 
is simply the number of individuals in state S.

3.2.3 Interventions: Self-Reporting and Contact-Tracing 

There are two interventions through which positive cases can be isolated. 

4. The number of free individuals, i.e. the size of the pool of individuals within which interactions can occur. This 
pool consists of free and susceptible, free and infectious, exposed, detectable and recovered individuals. 
Hence the number of free individuals (F) is the sum of FI, FS, E, D and R.

Contact tracing is described by 3 parameters: number of people to place into quarantine or isolation with 
each contact trace; the number among these that are infectious for self-reporting positive cases; and 
the number that are infectious for cases identified through asymptomatic screening. We set the number 
of infectious cases identified smaller for those identified through asymptomatic screening because 
these cases will tend to have been infectious for less time and thus will tend to have infected fewer 
people. The choice of these parameters is discussed in detail in Section 2.3. 

1. Self-reporting. Individuals in the symptomatic state have a probability of self reporting each 
day. If they self report they enter the quarantine-infected state (QI). If they do not self-report 
and do not recover, then they remain in their present state for another day.

5. The transmission probability p that gives the probability of transmission during an interaction 
between an infectious person and a susceptible person.

2. Contact tracing. We use a simplified model of contact tracing. A contact trace is initiated when an individual 
self-reports symptoms or when they are identified as positive through asymptomatic screening. Additional 
contact tracing is not initiated from positive cases found among contacts traced, as the Tompkins 
County Health Department does not have a policy of testing contacts.

6. The daily outside-infection probability r.



3.3 Approximation when combining test-on-return Excel model and stochas-
tic Python-based simulation

Here we discuss an approximation used when passing the results from the Excel-based model of
test-on-return into the stochastic Python-based simulation, and specifically in the fraction of the
population that is free and infectious at the start of the simulation.

The way in which we pass results from one model to the other is intended to simulate the fact
that, after move-in, two groups of people are combined: returning students who were not isolated
or quarantined by test-on-return; and unquarantined/unisolated faculty/staff/students already on
campus.

We estimate the prevalence of the unisolated/unquarantined returning students in a reasonable
way, by modeling false negatives and the pre-test prevalence.

To estimate the fraction of people already on campus that are infectious, it would be best to run
an additional simulation starting earlier in the summer, using the testing interventions that would
be in place, and to take the prevalence at the start of move-in. In our simulations, we observe that
the fraction of the population that is free & infectious typically converges to a steady state value
driven by outside infections and the rate of asymptomatic screening.

However, for expedience, we instead suppose that the fraction of people already on campus that
are infectious is equal to the fraction among the post-test returning students.

We can use Figure 1 to understand the level of error in this approximation.
Based on Figure 1, after move-in, the number of people in a population of 34K that are free

and infectious has a steady state 40. This is approximately 0.1% of the population. Our simulation
dynamics are approximately scale-invariant (if you double the size of the population, you roughly
double the number of free and infectious people), which would argue that at the end of the summer
the fraction of people in the on-campus population that are infectious would also be 0.1%.

Under the nominal parameters, this happens to be fairly close to fraction free and infectious
among the post-test returning students: 0.09%.

4 Sensitivity Analysis: Fall Full-Return

The results below indicate the sensitivity of our model outcomes under perturbations to meaningful
parameters for the Fall full-return scenario. The primary sensitivity analysis appears in Section 4.1.
Analysis relating to quarantine capacity appears in Section 4.2. Discussion of the results is deferred
to 4.3.

4.1 Sensitivity Results for Parameters in the Python Simulation

The sensitivity results consist of multiple plots, each consisting of 3 curves corresponding to the
nominal, pessimistic and optimistic settings as given in Table 12. Each curve gives the results as we
perturb a single parameter, keeping other parameters fixed to their nominal value for that setting.

The plots give sensitivities for the following list of parameters:

• The daily likelihood of a symptomatic individual self-reporting (Figure 8). This was also
shown above as Figure 5.

• The initial prevalence of the infection, stated as a percentage of the total population (Figure
9).
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Figure 8: Plot depicts the distribution of infections and hospitalizations (i.e. 50th percentile, with
the wider range corresponding to the 10-90th percentile range) vs. the daily likelihood that a symp-
tomatic individual self-reports their infection status. The value of this parameter is 18%, for all the
nominal/optimistic/pessimistic parameter scenarios.

• The probability of transmission when an infectious individual comes into contact with a
susceptible individual (Figure 10).

• The average number of contacts per person per day, for an individual who is not quarantined
or isolated (Figure 11).

• The contact trace delay, i.e. the number of days between an individual self-reporting and
the resulting quarantine and isolation decisions enacted from that individual’s contact trace
(Figure 12).

• The number of new positive cases that are identified and isolated for each one individual who
undergoes a contact trace (Figure 13).

• The fraction of infections which are are asymptomatic (Figure 14).

• The percentage of the population that is tested for the infection each day (Figure 15).

• The false-negative rate associated with the daily tests (Figure 16).

• The daily probability of an infection from outside interaction (Figure 17).

Each point on each of the sensitivity plots contained in Figures 8—16 is obtained from 100
Monte Carlo replications for the relevant parameter configuration over a time horizon of 112 days
or 16 weeks. We do not indicate the Monte Carlo error in these plots; indeed, the Monte Carlo error
tends to be very small, except when estimating very small probabilities. The y-axis corresponds to
the distribution of hospitalizations at the end of the 16 week time horizon; the main plot depicts
the 50th percentile, while the shaded region depicts the 10-90th percentile range.

4.2 Quarantine Capacity Sensitivity Analysis

Table 13 summarizes the peak quarantine capacity needed in a single move-in weekend and the
subsequent 18 days of the fall semester, under the optimistic, nominal and pessimistic settings.
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very small probabilities. The y-axis corresponds to the distribution of hospitalizations at the end of the 16 
week time horizon; the main plot depicts the 50th percentile, while the shaded region depicts the 10-90th percentile 
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• The probability of transmission when an infectious individual comes into contact with a susceptible 
individual (Figure 10).

4.2 Quarantine Capacity Sensitivity Analysis 
Table 13 summarizes the peak quarantine capacity needed in a single move-in weekend and the subsequent 18 
days of the fall semester, under the optimistic, nominal and pessimistic settings. 

• The average number of contacts per person per day, for an individual who is not quarantined 
or isolated (Figure 11).
• The contact trace delay, i.e. the number of days between an individual self-reporting and the resulting quarantine 
and isolation decisions enacted from that individual’s contact trace (Figure 12).

• The number of new positive cases that are identified and isolated for each one individual who 
undergoes a contact trace (Figure 13).

• The fraction of infections which are are asymptomatic (Figure 14).
• The percentage of the population that is tested for the infection each day (Figure 15).

• The false-negative rate associated with the daily tests (Figure 16).
• The daily probability of an infection from outside interaction (Figure 17).



Figure 9: Plot depicts the distribution of infections and hospitalizations (i.e. 50th percentile, with the
wider range corresponding to the 10-90th percentile range) vs. the initial percentage of infected individ-
uals within the population. The values of this parameter are 0.05%, 0.09% and 0.175%, for the opti-
mistic/nominal/pessimistic scenarios respectively.

Figure 10: Plot depicts the distribution of infections and hospitalizations (i.e. 50th percentile, with
the wider range corresponding to the 10-90th percentile range) vs. the likelihood of transmission when a
susceptible individual comes into contact with an infectious individual. The nominal value of this parameter
is 2.6%, for all the nominal/optimistic/pessimistic parameter scenarios.
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Figure 11: Plot depicts the distribution of infections and hospitalizations (i.e. 50th percentile, with the
wider range corresponding to the 10-90th percentile range) vs. the average number of contacts that a
non-quarantined and non-isolated individual has on any given day. The nominal value of this parameter is
8.3 contacts per day, for all the nominal/optimistic/pessimistic parameter scenarios.

Figure 12: Plot depicts the distribution of infections and hospitalizations (i.e. 50th percentile, with the
wider range corresponding to the 10-90th percentile range) vs. the delay, measured in days, from identifying
a new positive case to isolating their contacts via contact tracing. The nominal value of this parameter is
1 day for the optimal/noministic parameter scenarios and 2 days for the pessimistic parameter scenario.
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Figure 13: Plot depicts the distribution of infections and hospitalizations (i.e. 50th percentile, with the
wider range corresponding to the 10-90th percentile range) vs. the number of isolations which occur for
each individual who undergoes a contact trace. The nominal value of this parameter is 0.87, 0.92, and 0.98
for the optimistic, nominal, and pessimistic parameter scenarios, respectively.

Figure 14: Plot depicts the distribution of infections and hospitalizations (i.e. 50th percentile, with
the wider range corresponding to the 10-90th percentile range) vs. fraction of infections which be-
come asymptomatic. The fraction of asymptomatic infections is 27.3%, 47.8%, and 68.3% for the opti-
mistic/nominal/pessimistic parameter scenarios, respectively.
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Figure 15: Plot depicts the distribution of infections and hospitalizations (i.e. 50th percentile, with the
wider range corresponding to the 10-90th percentile range) vs. the percentage of the total population that
is tested for the presence of infection each day. The value of this parameter is 20% of the population (across
all scenarios), which approximately corresponds to testing the entire population once every 5 days. This
was also shown above as Figure 5.

Figure 16: Plot depicts the distribution of infections and hospitalizations (i.e. 50th percentile, with the
wider range corresponding to the 10-90th percentile range) vs. the false-negative rate used for the daily
testing procedure. The value of this parameter across all scenarios is 10%.
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Figure 17: Plot depicts the distribution of infections and hospitalizations (i.e. 50th percentile, with the
wider range corresponding to the 10-90th percentile range) vs. the daily probability of an individual being
infected from outside interaction. The value of this parameter is 0.005%, 0.015%, and 0.069% across the
optimistic, nominal, and pessimistic parameter regimes, respectively.

(See Section 2.7). The number of quarantined/isolated cases due to a positive test upon arrival
is obtained from the Excel model, while the number of quarantined or isolated cases over the
subsequent 18-day period is obtained from the python simulation model using 500 Monte Carlo
replications.

These estimates of quarantine needs include members of the Cornell community who could self
isolate. Thus the capacity needed to quarantine/isolate students will be smaller.

Table 13: Peak quarantine capacity needed in a single move-in weekend and the subsequent 18 days
of the fall semester, under three different scenarios.

Optimistic Nominal Pessimistic
Students in ID state isolated due to

positive test on arrival
5 22 53

Student in S state isolated due to
positive test on arrival

8 10 11

(a) Students that test positive upon
arrival and are isolated immediately

13 32 64

Number of cases in QI state over
the 18-day period

70 172 626

Number of cases in QS state over
the 18-day period

288 496 1301

(b) Number of quarantined/isolated
cases over the 18-day period

358 668 1927

(a) + (b) Total quarantine capacity
needed in the 18-day period

371 700 1991
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Figure 17: Plot depicts the distribution of infections and hospitalizations (i.e. 50th percentile, with the 
wider range corresponding to the 10-90th percentile range) vs. the daily probability of an individual 
being infected from outside interaction. The value of this parameter is 0.005%, 0.015%, and 
0.069% across the optimistic, nominal, and pessimistic parameter regimes, respectively. 

(See Section 2.7). The number of quarantined/isolated cases due to a positive test upon arrival is obtained from 
the Excel model, while the number of quarantined or isolated cases over the subsequent 18-day period is 
obtained from the python simulation model using 500 Monte Carlo replications. 

These estimates of quarantine needs include members of the Cornell community who could self isolate. Thus the 
capacity needed to quarantine/isolate students will be smaller. 

Table 13: Peak quarantine capacity needed in a single move-in weekend and the subsequent 18 days of the fall 
semester, under three different scenarios. 

 Optimistic Nominal Pessimistic 
Students in ID state isolated due to positive test 
on arrival 

5 22 53 

Student in S state isolated due to positive test on 
arrival 

8 10 11 

(a) Students that test positive upon arrival and are 
isolated immediately 

13 32 64 

Number of cases in QI state over the 18-day period 70 172 626 

Number of cases in QS state over the 18-day period 288 496 1301 

(b) Number of quarantined/isolated cases over the 
18-day period 

358 668 1927 

(a) + (b) Total quarantine capacity needed in the 
18-day period 

371 700 1991 



4.3 Discussion

1. The trends in all plots are intuitive, with the potential exception of Figure 14 depicting infec-
tions and hospitalizations as a function of the fraction of infections that become asymptomatic.
Overall infections increase due to asymptomatic individuals infecting others throughout the
course of their infection until they are tested and isolated. Hospitalizations decrease because
asymptomatic individuals do not need to be hospitalized. The horizontal axes range up to
80%. The low sensitivity to this value at the lower end of the scale indicates that the combi-
nation of asymptomatic testing and symptomatic self-reporting is sufficient to keep on top of
the epidemic.

2. The percentage of infections in all plots is substantially higher than the percentage of hospi-
talizations, because the unique age demographics of the Cornell community yield a very low
hospitalization rate. The nominal level of infection and hospitalization are 3.6% and 0.047%
(1254 people and 16 people, respectively).

3. Figure 8 shows a modest but important reduction in infections and hospitalizations as the
self-reporting probability increases. While modest, these reductions can probably be readily
achieved through an information campaign to encourage people to report and self isolate as
soon as they feel any symptoms.

4. Figure 9 shows a small sensitivity of hospitalizations to initial prevalence. In settings where
epidemics grow, the role of initial prevalence is largely to get out of an initial phase in which
random variation in contact tracing can contain an epidemic, and into uncontrolled growth.
As the initial prevalence increases, it is less likely that the epidemic can be contained, but our
aggressive asymptomatic testing ensures that the tipping point to uncontrolled growth is at a
high level of initial prevalence. On the other hand, Figure 17 depicts a strong dependency of
infections and hospitalizations on the likelihood of outside infections. This is to be expected,
since this probability is a persistent source of infections, and thus also hospitalizations, over
time. The strong dependency suggests that minimizing the risk of infection from interaction
with the outside community can go a long way to curbing the spread of the disease in the
Cornell community.

5. In virtually all sensitivity plots the results for pessimistic, nominal and optimistic settings are
ordered as we would expect. The only exceptions are the hospitalization percentages plotted
in Figures 10, 11 and 17. In the first two of these plots, the curves cross at the right-hand end,
which is counter-intuitive. We believe this occurs because the settings progressively increase
the asymptomatic rate amongst those confirmed with the virus as the settings progress from
pessimistic to optimistic. At the right-hand end of these plots, the parameters take values
that ensure that the epidemic spreads to essentially the entire Cornell community. In that
setting, a high asymptomatic rate is actually an advantage, because it decreases the fraction
of people who will need to be hospitalized. In the last of these plots, i.e. Figure 17 depict-
ing sensitivity with respect to daily outside infections, we see that the order of optimistic,
nominal, and pessimistic is reversed. This is again due to the higher rates of asymptomatic
infections in the pessimistic and nominal parameters. When interpreting this particular plot,
it is important to keep in mind that the daily probability of outside infection takes a different
baseline value in each of the optimistic/nominal/pessimistic scenarios. Thus, in other sensi-
tivity plots, the effect of asymptomatic infections on hospitalization percentage is mitigated
by large discrepancies in the rate of outside infections.
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6. The results are highly sensitive to the transmission probability per contact and contacts
per day, highlighting the need for measures such as masks to reduce the former, and social
distancing to reduce the latter.

7. Figure 12 indicates almost no dependence on contact tracing delay. As described in Section 1,
we believe that our model of contact tracing becomes less accurate as contact tracing delays
increase: in reality, for large contact tracing delays, we expect the number of hospitalizations
to be significantly larger than those predicted here. Work to address this inaccuracy is called
out in Section 6.

8. There is modest but important sensitivity to isolations per contact trace in Figure 13, high-
lighting the value of quality contact tracing.

9. There is high sensitivity to the percentage of the population tested daily (Figure 15) around
the nominal value of 20%. We explore the implications of moving to a lower frequency of 14%
corresponding to testing the entire population once every seven days in Section 5.2.

10. There is low sensitivity to the false negative rate in daily testing in Figure 16. We believe this
is due to contact tracing, which can lead to isolation of many of those true cases that escape
detection.

11. Figures 3 and 4 contrast the full reopen and do-not-reopen scenarios for the fall. Those
results are discussed at a high-level in in Section 1, and a detailed discussion is provided in
Section 5.1. In essence, the full reopen scenario results are far better due to intervention
measures planned by Cornell for the reopen scenario that would not be available to Cornell
students who return to Ithaca but not to campus in the no-reopen scenario.

12. All figures do not count infected students who were identified during the test-on-return pro-
cedure. This number is very small, relatively speaking, and does not change the overall sense
obtained from the plots.

13. The sensitivity analysis for quarantine capacity needs in Section 4.2 is telling. Under the
nominal setting, the total number of people that would need to be quarantined or isolated in
the peak period following move-in is 700. This result is extremely sensitive to our choice of
parameter values. The number of cases imported to the Cornell community and Tompkins
County is highly sensitive to the prevalence level at student origin. In addition, outside
infections are a significant source of cases for the Cornell community, even over just those
first 18 days.

5 Additional Discussion

5.1 Virtual Instruction “No-Reopen” Scenario

While the total infection numbers reported by our simulation may seem large, it is important to
think critically about the state of the world if Cornell were not to reopen for the Fall semester. We
envision that, for lack of a better option, a meaningful fraction of the student population would
still return to Ithaca in the fall. In this case, in light of the decision to not reopen campus, these
returning students would be outside the purview of Cornell and would not be subject to repeated
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asymptomatic surveillance. We use our simulation model to try quantifying the distribution of
infection and hospitalization counts in this setting.

To compare the two alternatives, henceforth referred to as the Reopen and No-Reopen scenarios,
we adopt a simulation methodology which assumes that the No-Reopen scenario can be modeled as
two distinct communities with zero interaction between one another. The first community reflects
the faculty, staff, and graduate students who will be on campus in the fall under both alternatives.
Following from the Cornell facts page (9) there are 10283 individuals across faculty, academic
professionals, and staff; there are 15043 undergraduate students; and there are 8984 graduate
and professional students. We use a population size of 15000 for the first community, to reflect the
presence of all faculty, staff, and academic professionals, together with a little over half the graduate
student population. For the second community, we take a nominal population size of 9000 students
who return to Ithaca but remain outside the purview of Cornell’s asymptomatic testing, which we
view as comprised mainly of undergraduate students but includes a small number of graduate and
professional students as well.

The majority of parameters used in the simulation for the two groups take their optimistic /
nominal / pessimistic values as specified in Table 12; for example, both communities use a nominal
initial prevalence level of 0.09%. (This assumes optimistically that those in the second community
not already in Ithaca would not bring high prevalence with them.) The few parameters which are
not copied over from Table 12 are summarized as follows:

• The faculty-staff community has a population size of 15000, which reflects the campus popula-
tion in the absence of undergraduate students, and includes faculty, staff and some graduate /
professional students. The returning student community has a population size of 7000, 9000,
and 11000, for the respective optimistic, nominal, and pessimistic regimes.

• The returning student community simulation does not use any asymptomatic testing.

• The age distribution among the faculty/staff/graduate students/professional students on cam-
pus is assumed to be 57% in the 18-44 category, 39.8% in the 45-64 category, 2.7% in the
65-74 category, and 0.43% in the 75+ category.

• The returning student age distribution is assumed to be 100% in the 18-44 category.

Figure 18 and 19 depict the distribution of infections and hospitalizations, respectively, across the
pessimistic/nominal/optimistic parameter regimes. Across all parameter regimes we see that having
a large contingent of students return to Ithaca who are not subject to asymptomatic testing produces
worse outcomes than if all students were to return to Ithaca and be subject to asymptomatic testing.

It is important to note that the large number of infections in the no-reopen alternative is largely
exacerbated by high rates of asymptomatic infections among the student population, who we assume
all fall under the 18-45 age category. As noted in item 7 in the list of model-limitations in Section 1,
the hospitalization rate for this age category is assumed to be 0.8%, but this is likely largely driven
by the ages 34-45 which are not immediately relevant as the student population consists mainly of
individuals aged 18-25 years. However, while the hospitalization rate may be a slight overestimate
for this reason, the observed gap in outcomes in Figures 18 and 19 is so wide that this source of
error likely has negligible effect.
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Figure 18: Histograms showing the number of infections in the fall semester under nominal, opti-
mistic, and pessimistic variants of the Reopen vs. No-Reopen alternatives.

5.2 Testing Once per Week

One of the proposals that we considered was reducing the frequency of testing from once every five
days to once a week (once every seven days). To evaluate the effect of this policy, we can refer
to Figure 20 which shows the sensitivity analysis of the testing fraction parameter (inverse of the
frequency).

Table 14 below shows the median infections and hospitalizations under both testing regimes.
Our simulation model indicates that testing weekly instead of once every 5 days would lead to a
41% increase in infections and hospitalizations.
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the sensitivity analysis of the testing fraction parameter (inverse of the frequency). 

Table 14 below shows the median infections and hospitalizations under both testing regimes. Our simulation model indicates that testing 
weekly instead of once every 5 days would lead to a 41% increase in infections and hospitalizations. 



Figure 19: Histograms showing the number of hospitalizations in the fall semester under nominal,
optimistic, and pessimistic variants of the Reopen vs. No-Reopen alternatives.

Table 14: Median infections and hospitalizations under nominal scenario with testing once every 5
days and once a week.

Testing Frequency Infections Hospitalizations
5 days 1254 16.1
7 days 1778 22.8

5.3 Asymptomatic Screening with Group Testing

We envision group testing as an important component for enabling widespread asymptomatic screen-
ing. Group testing pools multiple samples together and tests each pool using a single PCR test. It
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Table 14: Median infections and hospitalizations under nominal scenario with testing once every 5 days and once 
a week. 

Testing Frequency Infections Hospitalizations 
5 days 1254 16.1 
7 days 1778 22.8 

5.3 Asymptomatic Screening with Group Testing 

We envision group testing as an important component for enabling widespread asymptomatic screen- ing. Group testing pools multiple 
samples together and tests each pool using a single PCR test. It 



Figure 20: Plot depicts the distribution of infections and hospitalizations (i.e. 50th percentile, with the
wider range corresponding to the 10-90th percentile range) vs. the percentage of the total population that is
tested for the presence of infection each day. The nominal value of this parameter is 20% of the population,
which approximately corresponds to testing the entire population once every 5 days. This was also shown
above as Figure 15.

could save a significant amount of testing resources while still ensuring a reasonably high accuracy.
The idea of group testing was first proposed by Dorfman (14) as an approach to screening soldiers
for syphilis during WWII. Since then, different group testing protocols have been developed and
studied. In the context of COVID-19, recent analyses and editorials (17; 21; 22) have called for
widespread deployment of group testing because it can greatly expand the testing capacity. In mid
May, the city Wuhan screened nine million citizens using pools of 5-10 samples (15). Researchers
at Stanford Health Care Clinical Virology Laboratory (16), University of Saarland (26), Nebraska
Public Health Laboratory (1), Technion-Israel Institute of Technology (42), and Goethe University
Frankfurt (33) examined the efficacy of pooled RT-PCR experimentally and showed that pooled
testing is able to preserve high accuracy while saving a significant amount of testing resources.

While larger pool sizes and more sophisticated testing algorithms can conserve more test re-
sources, we adopt the more conservative protocol of one-stage pooled test using pool size 5. The
concrete protocol is as follows:

• Collect samples from individuals. Before testing, take two subsamples of equal volume, A and
B from each sample.

• Test subsample A’s in pools of five.

• For people whose pooled tests are positive, test their subsample B’s individually.

• If an individual’s subsample B tests positive, he/she is labeled positive and isolated.

We argue that this pooled testing protocol could plausibly achieve a false negative rate of 10%.
First, we define two terms: the viral load of a sample refers to the amount of viral material present
in a sample; the limit of detection (LoD) of a PCR test refers to the threshold viral load value such
that samples with viral load above LoD will always be detectable and those with viral load below
LoD might be undetected.

Given the small pool size and low prevalence, it is highly unlikely that a pool contains more
than one positive sample. So, if a pool tests positive, we can safely assume that it contains an
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While larger pool sizes and more sophisticated testing algorithms can conserve more test re- sources, we adopt the more conservative 
protocol of one-stage pooled test using pool size 5. The concrete protocol is as follows: 

We argue that this pooled testing protocol could plausibly achieve a false negative rate of 10%. First, we define 
two terms: the viral load of a sample refers to the amount of viral material present in a sample; the limit of 
detection (LoD) of a PCR test refers to the threshold viral load value such that samples with viral load above 
LoD will always be detectable and those with viral load below LoD might be undetected. 

• Collect samples from individuals. Before testing, take two subsamples of equal volume, A 
and B from each sample.

Given the small pool size and low prevalence, it is highly unlikely that a pool contains more than one positive sample. So, if a pool tests 
positive, we can safely assume that it contains an 

• Test subsample A’s in pools of five.
• For people whose pooled tests are positive, test their subsample B’s individually.

• If an individual’s subsample B tests positive, he/she is labeled positive and isolated.



positive subsample A with viral load above LoD. Since the pair of subsamples A and B have equal
volumes, they contain roughly the same amount of viral material (under the assumption that the
sample is well-mixed). Hence, we assume that the corresponding subsample B also has a viral load
beyond LoD and will test positive in the follow-up individual test.

Thus, under the assumptions stated above, if an infected sample is detectable in an individual
test, it is detectable in a pooled test. The probability that an infected sample is detectable in an
individual test (and pooled test) is given by the individual PCR sensitivity. Both Kojima et al.
(20) and To et al. (36) report a sensitivity for the individual PCR test of roughly 90%, or a false
negative rate of 10%. Therefore, it is justified that our group testing protocol can achieve a false
negative rate of 10%.

Next we calculate the required test capacity for carrying out the testing protocol under our 5-day
testing cycle. Assuming an on-campus prevalence of 0.09% (under nominal scenario), the number of
tests required to screen the entire Cornell population of 34,310 once is given by 34310/5+ 34310×
0.09%×5 ≈ 7016 tests. The first term is the number of size-5 pooled tests needed; the second term
is the expected number of individual follow-up tests needed. Since we test 1/5 of the population per
day, we expect to need roughly 1400 tests every day. This is a large number of tests but potentially
feasible within the capacity of the Animal Health Diagnostic Center (ADHC).

Experimental measurement of pooled test accuracy is being conducted by our collaborators Dr.
Diego Diel and Dr. Jeff Pleiss. Work is in progress to estimate the cost of applying the proposed
pooling protocol to Cornell campus.

Previously, we also explored a second pooling protocol, the square-array protocol, first proposed
by Phatarfod and Sudbury (31) and closely analyzed by Westreich et al. (38). Under this protocol,
we place samples onto a square array and form a pool from each row and each column. A PCR test is
run on each pool, providing an indication of whether at least one sample in that pool contains viral
material. Samples whose rows and columns are both positive are tested in follow-up confirmatory
individual tests. Based on earlier discussions with Dr. Pleiss, the cost of the 24×24 square-array
protocol (not including tubes, viral transport media, sample collection, transportation, and IT)
would be on the order of 20 cents per sample tested. At the above cadence of 1/5 of the community
per day, this roughly costs 34, 310/5× 0.2 dollars per day, or about $10K per week.

To provide robustness in the case of equipment failure, it would be important to fall redundant
equipment as a fallback.

The additional cost of sample collection could be reduced by asking students and other members
of the campus community to collect their own saliva (and potentially also add transport media).
In particular, one possible implementation of asymptomatic surveillance would follow the following
steps, leveraging the capabilities of the ADHC.

• Student (or staff / faculty) gets a saliva RNA collection kit on a bi-weekly basis;

• Student spits into the tube until the saliva sample reaches a specified volume (indicated on
the tube);

• Student adds viral transport media (VTM) that comes with the kit to the tube;

• Student sticks the barcode label to the tube and keeps a photo of the label for future reference;

• Student drops off the saliva sample at specified drop-off locations (e.g. first floor of dorm
buildings) throughout the campus;

48

positive subsample A with viral load above LoD. Since the pair of subsamples A and B have equal volumes, they 
contain roughly the same amount of viral material (under the assumption that the sample is well-mixed). Hence, 
we assume that the corresponding subsample B also has a viral load beyond LoD and will test positive in 
the follow-up individual test. 

Thus, under the assumptions stated above, if an infected sample is detectable in an individual test, it is detectable 
in a pooled test. The probability that an infected sample is detectable in an individual test (and pooled 
test) is given by the individual PCR sensitivity. Both Kojima et al. (20) and To et al. (36) report a sensitivity 
for the individual PCR test of roughly 90%, or a false negative rate of 10%. Therefore, it is justified that 
our group testing protocol can achieve a false negative rate of 10%. 

Next we calculate the required test capacity for carrying out the testing protocol under our 5-day testing cycle. Assuming an on-campus 
prevalence of 0.09% (under nominal scenario), the number of tests required to screen the entire Cornell population of 34,310 
once is given by 34310 over 5 plus 34310 times by 0.09% times by 5 ≈ 7016 tests. The first term is the number of size-5 pooled 
tests needed; the second term is the expected number of individual follow-up tests needed. Since we test 1 over 5 of the population 
per day, we expect to need roughly 1400 tests every day. This is a large number of tests but potentially feasible within the 
capacity of the Animal Health Diagnostic Center (ADHC).

Experimental measurement of pooled test accuracy is being conducted by our collaborators Dr. Diego Diel and Dr. Jeff Pleiss. Work is 
in progress to estimate the cost of applying the proposed pooling protocol to Cornell campus. 

Previously, we also explored a second pooling protocol, the square-array protocol, first proposed by Phatarfod and Sudbury (31) and closely 
analyzed by Westreich et al. (38). Under this protocol, we place samples onto a square array and form a pool from each row and 
each column. A PCR test is run on each pool, providing an indication of whether at least one sample in that pool contains viral material. 
Samples whose rows and columns are both positive are tested in follow-up confirmatory individual tests. Based on earlier discussions 
with Dr. Pleiss, the cost of the 24 times by 24 square-array protocol (not including tubes, viral transport media, sample collection, 
transportation, and IT) would be on the order of 20 cents per sample tested. At the above cadence of 1 over 5 of the community 
per day, this roughly costs 34, 310 over 5 times by 0.2 dollars per day, or about $10K per week.

To provide robustness in the case of equipment failure, it would be important to fall redundant equipment as a fallback. 

The additional cost of sample collection could be reduced by asking students and other members of the campus community to collect their 
own saliva (and potentially also add transport media). In particular, one possible implementation of asymptomatic surveillance would 
follow the following steps, leveraging the capabilities of the ADHC. 

• Student (or staff / faculty) gets a saliva RNA collection kit on a bi-weekly basis;
• Student spits into the tube until the saliva sample reaches a specified volume (indicated on 
the tube);
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• Student drops off the saliva sample at specified drop-off locations (e.g. first floor of dorm buildings) 
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• Courier collects samples (contactlessly) on the same day and brings them to the vet school
lab;

• ADHC uses group testing to identify positive cases.

6 Ongoing Work

This is a work in progress. Here we provide a partial list of improvements that we considered but
did not include due to time constraints. To support prioritization of ongoing work, we describe
work items below, segmented by the amount of effort required. A small effort (S) is roughly 1-5
person-days, a medium effort (M) is 6-10 person-days, and a large effort (L) is 11-20 person-days.
Here, we have roughly 5 people who can each provide 5 person days per week.

• (M) Estimate sustained quarantine capacity. Requires revisiting our assumption about hold-
ing times for quarantined susceptible individuals to extend the mean holding time to 14 days

• (M) Estimate impact of telling high-risk individuals not to come to campus

• (L) Group testing protocol design

• (L) Segment populations into groups (enables accuracy improvements & new features)

– (S) Estimate impact of moving from doubles to singles (requires segmenting populations
into groups)

– (S) Estimate impact of “pod” dorm structure

• (L) Simulations at the individual level (enables accuracy improvements & new features below)

– (S) Improvement to contact tracing accuracy (requires individual sims)

– (S) Improvement to risk group accuracy (requires individual sims)

• (M) Parameter estimation of number of contacts based on card swipe and network data from
Cornell

• (L) Develop and understand adaptive screening and social distancing strategies, including
efforts to identify ranges of plausible parameters over which strategies should be robust.

We also call out two additional efforts.
First, the Cornell Library has been conducting a rapid literature search to support parameter

estimation and model-building. The initial results from this literature search (available at this
zotero link) are now available at the time of writing. We are reading this papers and plan to update
our parameters and model structure with the information contained.

Second, we sent the May 31 version of our report out for informal review both within and outside
of Cornell. We received detailed comments from three sets of reviewers:

• Dr. Leah Johnson from Virginia Tech

• Drs. Casey Cazer, Kristina Ceres, and Yrjö Gröhn from the College of Veterinary Medicine

• Drs. Renata Ivanek and Ece Bulut from the College of Veterinary Medicine

We are working through these reviews to respond to the opportunities for improvement that
they identified.
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7 History of This Document

This is a living document and is being shared periodically with stakeholders even while we refine
results. Here we describe this document’s evolution.

May 21 version A first and very preliminary version of this document (dated May 21) was shared
with a small number of people between May 21 and May 24 to get feedback on methodology and
priorities for additional work. It used a single set of nominal parameters and included sensitivity
analyses varying one at a time.

May 27 version: This version developed a new set of nominal parameters. It included two addi-
tional sets of parameters, an “optimistic” set (which was the same as the May 21 set of parameters)
and a “pessimistic” set. It also included a more detailed discussion of group testing, and a number
of other edits. This version was shared more broadly, including with Provost Kotlikoff and the
President of Boston University, Bob Brown.

May 28 version: We computed Figure 1 (an example trajectory) using the nominal parameters
(previously it had been computed using a separate set of parameters and had been intended only as
an illustration). We then split the figure into two figures, one showing cumulative cases by severity
and the other showing current counts by infection statuses relevant to epidemic growth.

May 31 version: Based on feedback from President Brown and his team on the May 27 version,
we reexamined the literature on asymptomatic rates, which led us to make a number of modifications
to other parameters that significantly altered the results. These are listed here:

• Significant increase to asymptomatic rate (see 2.4 for details).

• Decrease in probability of hospitalization to conform with CDC numbers

• Reducing self-reporting rate to conform to 5̃ days on average across people between becoming
symptomatic and self-reporting, based on CDC numbers for influenza-like illness. (We see an
opportunity to improve this through an information campaign.)

• Decreased contacts per day so that implied R0 equals CDC’s baseline estimate of 2.5. Opti-
mistic and Pessimistic scenarios adjusted to reflect the CDC’s range for R0 of 2 to 3, though
our pessimistic value (3.2) is actually above the CDC’s range.

• Contact tracing delay in optimistic scenario increased to 1 day

The net effect of the fraction of people asymptomatic, self-reporting rate, and contacts per
day on infections are summarized through the implied R0. Thus, while increasing asymptomatic
rate tends to increase infections, the reduction in contacts / day more than compensates for it.
As a result, the May 31 parameters predict significantly fewer infections than the May 27 and 28
parameters.

The main additional effect of the parameter change is to reduce the fraction of infected cases hos-
pitalized. These two effects (reduced infections, reduced hospitalization rate) significantly reduces
the number of hospitalizations overall.
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June 10 version

• Added the ability to model outside infections

• Added an explicit model of test-on-return

• Added a comparison to a “no-return” virtual-instruction-only scenario

• Added a discussion of quarantine.

• Significant update to the writeup.

We were surprised to see that the outside infections had such a large effect on results. Indeed,
they are essentially the driving factor in infections.

June 11 version Minor update: fixed a few typographical errors and added some clarifications.

June 15 version Minor update. Clarified details of the no-return analysis, including that it
includes some graduate students in the number that are modeled as being on campus in addition
to faculty/staff. Also clarified some details of the age-severity distribution calculations. Added a
paragraph to the executive summary pointing out that predictions for the no-reopen scenario is
sensitive to assumptions, but that the conclusion that no-reopen has worse outcomes appears to be
robust across a range of parameter settings.
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