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ABSTRACT

Air pollution in urban areas is driven by emission sources and modulated by local meteorology,1

including the effects of urban form on wind speed and ventilation, and thus varies markedly in space2

and time. Recently, mobile measurement campaigns have been conducted in urban areas to measure3

the spatial distribution of air pollutant concentrations. While the main focus of these studies has been4

revealing spatial patterns in mean (or median) concentrations, they have mostly ignored the temporal5

aspects of air pollution. However, assessing the temporal variability of air pollution is essential in6

understanding the integrated exposure of individuals to pollutants above critical thresholds. Here,7

we examine the role of urban land use in mediating the effect of regional meteorology on Nitrogen8

Dioxide (NO2) concentrations measured in different regions of Oakland, CA. Inspired by Land9
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Use Regression (LUR) models, we cluster 30-meter road segments in the urban area based on their10

land use. The concentration data from the resulting clusters are stratified based on seasonality and11

conditionally averaged based on concurrent wind speeds. The clustering analysis yielded 7 clusters,12

with 4 of them chosen for further statistical analysis due to their large sample sizes. Two of the four13

clusters demonstrated in winter a strong negative linear relationship between NO2 concentration14

and wind speed (R2 > 0.87) with a slope of approximately 3 ppb/m s-1. A weaker correlation and15

flatter slope was found for the cluster representing road segments belonging to interstate highways16

(R2 > 0.73 and slope ¡ 2 ppb/m s-1). No significant relationship was found during the summer season.17

These findings are consistent with the concept of strong vertical mixing due to highway traffic and18

increased surface heat fluxes during summer weakening the relationship between wind speed and19

NO2 concentrations. In summary, the clustering analysis framework presented here provides a novel20

tool for use with large-scale mobile measurements to reveal the effect of urban land form on the21

temporal dynamics of pollutant concentrations and ultimately human exposure.22

Keywords Air pollution profiles · Cluster Analysis ·Mobile monitoring · Land use effects · k-means · Exceedance23

probabilities · Unsupervised learning ·Machine learning24

1 Introduction25

Around the globe, exposure to air pollution causes millions of premature deaths annually [1], and is associated with26

chronic respiratory illnesses that increase the co-morbidity risk of many viral infections [2]. Early evidence, for example,27

suggests exposure to air pollution may increase mortality of COVID-19 [3]. One group of pollutants with known28

deleterious effects on health is Nitrogen oxides (NOx). Nitrogen dioxide (NO2) is commonly used as the indicator29

for the NOx group and NO2 is mainly formed by burning of fuel. Exposure to NO2 is associated with irritation of the30

airways, decreased lung capacity, increased mortality from coronary heart disease, and increased incidence of diabetes,31

hypertension, and other cardiovascular and respiratory illnesses [4, 5]. Further, in a study of 66 administrative regions32

in Europe, regions with chronic exposure to NO2 were observed to experience the highest fatality rates from COVID-1933

[6]. Therefore, monitoring and mitigating exposure to NO2 is important to public health and safety.34

Traditionally, air pollution has been monitored using sparse networks of fixed stations installed in urban areas with35

the goal of regulatory compliance. While these fixed stations offer accurate and reliable pollutant measurements,36

they provide very low spatial coverage. Yet, pollutant concentrations can vary sharply over short distances due to37

heterogeneity in emission sources and urban form [7, 8]. In fact, it has been shown that pollutant concentrations can38

differ more between two neighborhoods of the same city than between two distinct cities [9]. Hence, while the networks39

of fixed monitoring stations remain essential for air quality regulation compliance, they fail to capture the strong spatial40

variability in pollutant concentrations within urban areas with strong implications for epidemiology and environmental41

justice [8, 10, 11, 12].42
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Mobile measurements show promise for overcoming the limitations of fixed-site air pollution monitoring stations43

[9, 13, 14, 15, 16]. The spatial flexibility of mobile measurements has led to their application in characterizing regional44

pollutant concentrations and in locating pollution hotspots in select locales [13, 17, 18, 19]. While early local mobile45

campaigns were successful in describing spatial gradients in pollutant concentrations, many of these campaigns had46

limited spatial domains and were conducted for relatively short time periods. Recently, city-scale mobile monitoring47

campaigns have become more common [8, 14, 20, 21], with vehicles outfitted with state-of-the-art sensors and deployed48

to cover extensive parts of urban areas over several months and years, allowing for repeated sampling of visited locations.49

Repeated sampling coupled with data analytics algorithms grants statistical power to construct stable, long-term spatial50

maps of pollutant concentrations at high resolutions over large areas [8, 14, 20]. These spatial maps are useful in51

depicting persistent patterns in pollutant concentrations, measuring average pollution (averaged over a year) in a region,52

and locating air pollution hotspots. However, temporal variability in air pollution is typically not reported, despite its53

vital importance for identifying the time of exposure above key concentration thresholds of human health significance54

[2].55

Temporal dynamics of pollutant concentrations within an urban area are dependent on both the regional (city-wide)56

meteorology for overall atmospheric boundary layer mixing and the local meteorology, as modulated by local urban57

form, for its control on ground level concentrations. In other words, local land use affects the temporal dynamics of air58

quality by mediating the relationship between regional and local meteorology (i.e. some areas more or less ventilated59

than others). Meanwhile, the effects of regional meteorology on air quality are known to vary between seasons [22, 23].60

Therefore, the study of the temporal variability of pollutant concentrations requires local pollutant measurements61

over different seasons as done in large scale air quality measurement campaigns. One such campaign was the mobile62

measurement effort by two Google Street View Cars in Oakland, CA, sampling ambient NO2 concentrations with a63

frequency of 1-Hz over a two-year period [24]. This novel dataset provides information on pollutant concentrations64

of all city streets within the study domain of West Oakland, downtown Oakland, and East Oakland across different65

seasons and under varying meteorological conditions [8].66

In this paper, we investigate the role of urban land form in mediating the effect of regional meteorology on intra-urban67

air quality in Oakland, CA using the Google Street View air quality dataset. To the best of our knowledge, this is the first68

study focusing on using city-wide mobile measurements to examine spatially varying temporal patterns in air quality69

due to interaction between meteorology and urban form. To this end, we developed a data-driven spatio-temporal70

framework built upon clustering spatial locations in Oakland, CA based on land use variables. This clustering effectively71

increases the temporal statistical power of mobile measurements that is required for characterizing the effect of wind72

speed on NO2 concentrations and investigating exceedance probabilities. Exceedance probabilities are an important73

measure of exposure to extreme pollutant concentrations, with clear ties to acute effects of air pollution on human74

health. The main contribution of this paper is providing a framework that exploits land use variables to learn about75

the relationship between meteorology and intra-urban air quality using limited air pollution data from mobile sensors.76

The second contribution is the development of a land use clustering technique consisting of the k-means algorithm77
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and a comprehensive procedure for selecting the number of clusters. The third contribution is the application of the78

framework to pre-existing data from Oakland, CA and the insightful results related to how urban form modulates the79

effect of wind speed on intra-urban air quality.80

2 Data81

Multiple datasets including meteorological data, land-use data and mobile NO2 measurements, were analyzed in this82

study to investigate the effect of meteorology and land-use on air pollution levels in distinct regions of Oakland, CA,83

with use cases of each dataset presented in Figure 1.84

2.1 Data Sources85

Mobile measurements of 1-Hz NO2 concentrations were collected in Oakland, CA in a joint effort between University86

of Texas at Austin, Aclima Inc., Google and the Environmental Defense Fund, details of which are available in [8].87

The mobile sampling emphasized three main areas within Oakland: West Oakland (∼10km2), Downtown Oakland88

(∼5km2), and East Oakland (∼15km2) in addition to the highways connecting these areas. West Oakland is bounded by89

major interstate highways, the fifth largest container port in the U.S., and associated rail and truck routes and facilities.90

Residential blocks are dispersed between various industries in this lower-income area of Oakland. Downtown consists91

of a mix of residential and commercial areas with mid to high-rise buildings. East Oakland includes both industrial and92

mixed-income residential areas with higher-income neighborhoods located to the north [8]. The sampling protocol93

involved installation of Aclima environmental intelligence fast-response pollution measurement and data integration94

platforms on two Google Street View mapping vehicles. These vehicles measured weekday daytime NO2 concentrations95

on city streets. Measurements were collected on every road in a 30 km2 domain, incorporating residential, commercial96

and industrial areas [24]. The data includes more than 2.7 million samples from two datasets with measurements from97

a total of 305 days from July 13, 2015 to August 31, 2017. Our data reduction ”snapping” scheme follows that of98

Messier et al. [25]. First, we divided a street centerline file (obtained from OpenStreetMaps.com) into more than 19,00099

30-meter road segments. Next, we employed a nearest-neighbor algorithm (Python SciPy ”ckdnearest” algorithm) to100

”snap” each 1-Hz measurement to its nearest road segment resulting in consistently defined locations [26].101

We also gathered land use data for each 30 meter road segment in the form of 32 binary and continuous geographic102

covariates following the methods of Messier et al. [25]. The full list of the geographic covariates alongside collection103

details are presented in Table S1 of the supporting information document.104

Surface meteorological observations, including hourly temperature, wind speed and direction, and precipitation, for105

Oakland International Airport were acquired from the National Oceanic and Atmospheric Administration (NOAA)106

Automated Surface Observing Systems (ASOS) through Iowa Environment Mesonet (IEM) portal maintained by107

Iowa State University (https://mesonet.agron.iastate.edu/request/download.phtml; accessed November108

1, 2020). A major strength of the ASOS is the consistency of measurements in reporting wind data which is a crucial109
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variable in this study. Hourly solar radiation data in the form of Global Horizontal Irradiance (GHI) was obtained from110

Solcast (https://solcast.com/; accessed November 5, 2020) using the Solcast API, a source for satellite-derived111

solar irradiance data. The data was obtained for a location of 37◦48′54′′N 122◦16′57′′W and is within the core112

of the West Oakland/Downtown domain of NO2 mobile measurements and coincides with the fixed-site regulatory113

monitor located at the Oakland West site managed by the Bay Area Air Quality Management District (BAAQMD). We114

then used linear interpolation to convert the observations to match the 1-Hz measurements of the mobile campaign,115

therefore augmenting the NO2 observations with surface meteorological measurements and satellite-driven radiation116

measurements.117

2.2 Selection of temporal variables118

NO2 concentrations in urban areas are affected by regional meteorological variables. Strong inter-dependencies between119

different meteorological variables, complicate the relationship between these variables and pollutant concentrations.120

Establishing links between regional meteorology and pollutant concentrations is further complicated by the role of local121

urban land form in mediating the effect of regional meteorology on the local mixing within the urban area. Therefore,122

prior to our statistical analysis, we apply a variable selection procedure driven by the regional meteorological conditions123

during the measurement period and unique to the study area of Oakland, CA. In particular, the temporal variables are124

selected based on two conditions. First, temporal controls with high variability are retained such that robust statistical125

inferences between NO2 concentrations and the variables can be made. Second, correlation between temporal variables126

is used as a selection criterion such that variables with high correlations with each other are discarded. This allows us to127

isolate the effect of the remaining variables and safely assume a cause and effect relationship between the controls and128

the observed concentrations.129

The climate in Oakland is characterized by dry, warm summers and mild, wet winters. However, during the measurement130

campaign precipitation data was reflective of prevailing drought conditions (zero precipitation for more than 99% of all131

study hours). In addition, the prevailing wind direction was found to be from the West for approximately 85% of all132

study hours. Due to the low variability observed in wind direction and precipitation during the study period, the effects133

of these parameters on intra-urban NO2 pollution are not pursued here.134

While high daily temperatures have been previously linked to higher concentrations of NO2, increases in global radiation135

have been shown to correlate with reduced NO2 concentrations [22]. The lack of nighttime measurements coupled with136

a moderate positive correlation (Spearman’s correlation coefficient = 0.57) observed between temperature and radiation137

during the study period, leads to the conclusion that isolating the effect of each of these variables is not viable in our138

analysis. On the other hand, pollutant concentrations, including NO2¸ are known to be seasonal [22, 27]. Henceforth,139

we assume that investigating the seasonality in the data indirectly accounts for the effects of emission seasonality,140

temperature and radiation. Therefore, temperature and radiation are excluded from the analysis and instead a seasonal141

stratification of concentration data as described in section 3 is adopted.142
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A secondary variable with known effects on atmospheric dispersion that can be calculated from the available data143

(radiation and wind speed) is atmospheric stability. In urban areas however, the increased drag force caused by roughness144

obstacles (e.g. buildings and other structures) leads to larger friction velocities than in open areas. Therefore, stability145

over urban areas is biased towards neutral (adiabatic) conditions [28]. As a result, the effects of atmospheric stability on146

intra-urban air pollution are not pursued in this study, due to low variability in stability conditions.147

In this study, we primarily investigate the effects of wind speed on intra-urban NO2 concentrations, as it has been148

established as an important meteorological parameter in affecting NO2 pollution by previous studies [22, 29, 30]. In149

addition, seasonality of NO2 concentrations in Oakland is studied. The exploratory analysis in section 3 further validates150

the choice of wind speed as an important meteorological parameter controlling NO2 concentrations across the city of151

Oakland.152

3 Exploratory Data Analysis153

Prior to clustering, we conducted a preliminary analysis to examine the relationship between the selected variables154

in section 2.2 and NO2 observations on 30-m road segments. The analysis relies on data stratification which refers155

to partitioning the concentration data into distinct and non overlapping groups of independent variable states. Two156

distinct stratifications are applied to the data separately to identify effects of wind speed and seasonal changes on NO2157

concentrations, respectively. Wind speed stratification is carried out by dividing all 1-Hz NO2 measurements into two158

groups: wind speeds below 3.5 m/s (calm) and above 5.5 m/s (windy). The threshold values of 3.5 and 5.5 m/s are159

chosen for the following reasons: 1) similar sample sizes between the two groups, and 2) a wind speed buffer of 2 m/s160

prevents misclassification as the accuracy of the ASOS monitoring system is 1 m/s. After stratification, each group is161

analyzed separately to calculate the median of 1-Hz NO2 measurements (Ccalm, Cwindy) for those 30-m road segments162

that have been visited on at least 10 distinct days, noting that 10 distinct measurement days ensure stable estimations163

of median concentrations [8]. Lastly, the local differences in median NO2 concentrations (∆Cwind) between calm164

and windy measurements are computed as ∆Cwind = Ccalm − Cwindy for each 30-m road segment (Figure 2a). The165

spatial distribution shows the contrast between the median concentrations, with the mean (median) ± standard deviation166

of ∆Cwind = 8.0 (7.6) ± 5.8 ppb. It is worth noting that an increase of 5.3 ppb in long-term NO2 concentrations167

(averaged over one year or more) has been associated with all-cause mortality with hazard ratios of 1.01− 1.03 (95%168

CI), highlighting the significance of the computed ∆Cwind [31].169

Seasonal stratification is carried out by dividing the 1-Hz NO2 measurements into two groups: November 1st until170

February 28th are labeled winter measurements and May 1st until August 31st are labeled summer. Following similar171

steps as the wind speed analysis, the local differences in median NO2 concentrations (∆Cseason) between winter and172

summer are computed as ∆Cseason = Cwinter − Csummer (Figure 2b) for each 30-m road segment. The spatial173

distribution of ∆Cseason indicates higher median concentrations during winter which is in agreement with our analysis174
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of hourly NO2 observations from the fixed site monitoring site in West Oakland (Figure S1 in Supporting information175

document). The mean (median) ± standard deviation of ∆Cseason is 8.0 (7.1)± 5.1 ppb.176

Our exploratory analysis reveals the effect of wind speed on NO2 concentrations through a two-group stratification177

(windy and calm), because a multi-group stratification would not be appropriate as very few road segments would pass178

the 10 distinct day selection criterion. Furthermore, a mixed stratification based on wind speeds and seasons leading179

to 4 groups (e.g. winter and windy, summer and calm, etc.) would not be viable for the same reason. Therefore, we180

propose an approach that uses cluster analysis to group together road segments that are similar in terms of land use to181

investigate the effect of each temporal control separately and with finer granularity (i.e. more wind speed intervals).182

This clustering approach increases the statistical power of our temporal analysis, because of significantly larger sample183

sizes of each cluster compared to individual road segments.184

4 Methodology185

In this section, we introduce the methodology for using city-wide mobile measurements to examine spatially varying186

temporal patterns in air quality due to interaction between meteorology and urban form. A summary of the developed187

data-driven spatio-temporal framework is as follows. First, inspired by findings of Messier et al. (2018), we cluster188

the spatial locations in Oakland, CA based on land use covariates (as surrogates for emission sources and urban form)189

using the k-means clustering algorithm [25, 32]. This clustering effectively reduces the spatial fidelity of the data,190

but increases its statistical power by producing clusters with large sample sizes. The increase in statistical power is191

required for successful data stratification based on wind speed and season. Subsequently, we use conditional averaging192

to characterize the effect of wind speed on NO2 concentrations in each cluster. We note that the focus on wind speed193

as an effective temporal variable in modulating NO2 concentrations and the need for clusters with large sample sizes194

were discussed in detail in our exploratory analysis described in section 3. The analysis is concluded with the study of195

exceedance probabilities under varying seasons and wind speed conditions. Exceedance probabilities are an important196

measure of exposure to extreme pollutant concentrations, with clear ties to acute effects of air pollution on human197

health.198

4.1 Spatial Clustering199

A popular approach for quantifying intra-urban variation in air pollution is land use regression (LUR) [33, 34, 35].200

LUR models are mainly used to depict spatial variation of air pollution and do not give any information on temporal201

variations of air quality. Furthermore, time series analysis of the mobile measurements is not feasible as the data are202

collected along spatio-temporal paths (cars traversing the city). In addition, the size of the dataset is inadequate to203

resolve the effects of all the factors influencing pollutant concentrations at every 30-m road segment.204

Inspired by LUR models which suggest that locations with similar land use characteristics have similar pollutant205

concentrations, we aim to overcome the sample size issue by clustering the 30-m road segments based on their land use206
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a)

Wind speed Stratification

b)

Seasonal Stratification

−20 −15 −10 −5 0 5 10 15 20
∆Cwind , ∆Cseason [ppb]

Figure 2: Difference in median NO2 concentrations between (a) calm and windy and (b) winter and summer observations.
Map tiles by Stamen Design. Map data by OpenStreetMap. (Color should be used for any figures in print)
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covariates, and then study the temporal evolution of NO2 concentrations within each cluster. This allows us to examine207

how land use modulates the effect of regional meteorology on local air quality dynamics.208

Clustering is an unsupervised learning method for grouping a set of objects in a way that objects in the same group209

are more similar to each other than to those in other groups. The similarity of objects is assigned by the features that210

clustering is based on. In this study, we cluster 30-m road segments in the city of Oakland, CA, by using land use211

covariates of these road segments as features. As discussed in section 2.1 a total of 32 land use covariates are considered.212

Furthermore, it is desirable that road segments that are geographically close to each other fall in the same cluster, as we213

expect the effects of emission sources and local meteorology to be similar for adjacent road segments. Therefore, the214

latitude and longitude of the center point of individual road segments are also included as features in the clustering215

algorithm bringing the total feature count to 34.216

4.1.1 Data Pre-processing217

Performance of clustering algorithms are generally improved when the number of features are lowered [36]. First, we218

lower the number of features using a principal component analysis (PCA). Feature reduction using PCA is appropriate219

in the land-use context, because the land use variables considered are highly correlated with each other, containing220

redundant information that is detrimental to the performance of clustering algorithms. Prior to PCA, the features are221

standardized by subtracting the feature mean and rescaling the feature variance to unity. The standardized features are222

then stored in an n× 34 matrix, with n being the number of unique road segments. Performing PCA on this preliminary223

matrix leads to a new n× 34 matrix that we label matrix P:224

P = (p1,p2, . . . ,p34) =


p1,1 p1,2 . . . p1,34

p2,1 p2,2 . . . p2,34
...

...
...

...

pn,1 pn,2 . . . pn,34

 (1)

where each column vector pj corresponds to the newly formed principal components (PCs) that are linearly uncorrelated225

with each other. The PCs are ordered based on amount of variance in the original variables accounted for by each226

component, with PC1 accounting for the most variance and PC34 accounting for the least. The first 13 PCs account227

for approximately 80% of the variance in land-use variables. To further reduce the number of features, out of the first228

13 PCs, we retain those PCs that are correlated with median NO2 concentrations computed for each road segment.229

Therefore, we calculate the Pearson correlation coefficients of the columns of P and the column vector C:230

C = (C1, C2, . . . , Cn)
T (2)

with Ci computed as median of NO2 concentration at road segment i. Labeling the Pearson correlation coefficient231

between pi and C as ρi, we only retain those PCs that satisfy |ρi| > 0.1. This analysis results in the retainment of 4232
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PCs that account for approximately 60% of the variance, therefore, greatly reducing the number of features prior to233

clustering.234

4.1.2 Clustering Method235

We apply the k-means algorithm developed by Hartigan and Wong (1979) to cluster the 30-m road segments [32].236

This algorithm seeks to partition n points (30-m road segments) in D dimensions (4 PCs in this case) into k clusters.237

It iteratively searches for a local solution that minimizes Euclidean distance between the points and cluster centers.238

The initial cluster centers in the k-means algorithm can be chosen randomly, by the user or by randomized techniques.239

Here, we utilize the popular ”k-means++” initializing algorithm as it seeks to spread out the cluster centers, a desirable240

property in this study [37]. The main advantages of k-means are its ease of implementation, computational efficiency,241

and reduced sensitivity to outliers compared to hierarchical clustering methods.242

4.1.3 Selecting the Number of Clusters243

In k-means clustering the main required hyper parameter is the number of clusters (k) which is often not known a244

priori. The number of clusters can be assigned by either pre-existing knowledge of the data that is not available from the245

dataset itself, or by providing a descriptive statistic for ascertaining the extent to which the observations comprising the246

dataset fall into natural distinct groupings [38]. In short, the number of clusters can either be assigned solely through247

the dataset (Data-based or internal methods) or by additional knowledge obtained externally (External methods). In this248

study, we apply both internal and external methods to select the optimal value of k and validate the clustering analysis.249

To select the number of clusters, clustering solutions are first found for a sequence of consecutive k values between 5250

and 15. These solutions are then compared to each other using internal and external methods to find the optimal number251

of clusters.252

Internal method The gap statistic approach originally introduced by Tibshirani et al. is among the standard data-253

based methods for choosing the number of clusters in a dataset [39]. This method utilizes the total ”within-cluster254

dispersion”, which is defined as the sum of the distance between each data point (road segment features) in the cluster255

and the cluster center. For each value of k, the k-means algorithm is applied to the observed data and a randomly256

generated data set that uniformly spans the feature space and has the same size as the observed data. The gap function,257

Gap(k), is then computed as the difference between the sum of the total within-cluster dispersion for the observed and258

random data (generated 100 times in this analysis). The optimal number of clusters for the given data set is the smallest259

k such that260

Gap(k) ≥ Gap(k + 1)− sk+1 (3)

where sk+1 is the standard deviation of the total within-cluster sum of squares of the randomly generated data.261

External method In regards to applying additional knowledge to assign the number of clusters, we consider the262

cluster average of variability of median NO2 concentration for all 30-m road segments within each cluster. Variability263
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labeled V , is calculated as the standard deviation from the mean of median daytime concentrations for 30-m road264

segments within each cluster:265

V (j) =

(
1

nj

nj∑
i=1

(
C

(j)
i − C̄(j)

)2)1/2

(4)

where nj is the number of road segments in cluster j, C(j)
i is the median NO2 concentration observed at the i’th road266

segment belonging to cluster j and C̄(j) is the mean of median NO2 concentrations observed at all road segments267

belonging to cluster j. Average cluster variability, labeled S, is then calculated as follows:268

S(k) =
1

k

k∑
j=1

V (j) (5)

At first glance, solutions with lower average variability may be judged to be superior to those with higher average269

variability. However, average variability within clusters generally tends to decrease with increasing number of clusters.270

Therefore, we create a “benchmark” for every value of k, and judge the superiority of solutions based on their distance271

from this benchmark. For each k, the benchmark is created by first sorting 30-m road segments by their corresponding272

value of median NO2 concentrations and then grouping the road segments into k equally-sized clusters. We then find273

the number of clusters that minimizes the difference between average variability of the median NO2 concentrations of274

the original clustering using k-means algorithm, S(k) from Eq. 5, and the average variability of median concentrations275

of the benchmark, S∗(k), for k values between 5 and 15:276

arg min
k∈[5,15]

[S(k)− S∗(k)] (6)

4.2 Statistical Analysis277

Once the road segments are clustered, the effects of wind speed and seasonality on 1-Hz NO2 concentrations corre-278

sponding to road segments in each cluster are investigated. Similar to section 3, NO2 concentrations in each cluster are279

stratified into two groups based on the measurement season. Following this division, conditional averaging based on280

wind speed is employed to quantify the effect of wind speed on NO2 concentrations for each cluster/season combination.281

Further, probabilities of NO2 exceeding pre-determined thresholds are calculated through a two-step sampling process282

for every cluster, season and wind speed condition.283

4.2.1 Conditionally Averaged Concentration284

Every NO2 concentration measurement coincides with a wind speed measurement as described in section 2.1. The285

concentration values are organized based on the wind speed such that multiple concentration values are grouped together286

within a given wind speed interval, U . The conditionally averaged NO2 concentration value, denoted 〈c|u〉, is calculated287

within designated wind speed intervals as shown:288

〈c|u〉 =
1

NU

∑
ui∈U(u)

c (ui) (7)
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where c represents 1-Hz NO2 measurements, U(u) = {ui : −∆u/2 ≤ u− ui < ∆u/2,∀i = 1, 2, . . . , NU} and NU289

is the total number of data points within the given wind speed interval U . In this analysis, ∆u is set at 1m/s. This290

choice of the wind speed intervals is driven by the accuracy of 1m/s of the ASOS monitoring system and the available291

sample size of NO2 measurements coinciding with each given interval. In addition, conditional probability distribution292

functions (PDFs) of concentration are also constructed to calculate the conditional interquartile range in a similar293

manner to the conditional averages.294

4.2.2 Exceedance Probabilities295

Exceedance probabilities are calculated by computing empirical cumulative distribution functions (ECDFs) of NO2296

concentrations for every cluster, season and wind speed condition. Due to the streaming nature of mobile measurements,297

observations recorded on any given day are correlated, particularly if the observations were recorded over a short period298

of time (e.g. one hour). Furthermore, the number of measurements on each day varies widely across different days,299

especially after cluster, season and wind speed stratifications. Therefore, direct calculation of the ECDFs using raw300

1-Hz measurements gives extra weight to days with high number of measurements and biases calculated exceedance301

probabilities. To overcome this issue, we utilize the following two-step sampling strategy to compute ECDFs and302

exceedance probabilities. For each cluster, season and wind speed condition, the steps are as follows:303

1. Randomly select a day with replacement from the days with at least 100 mobile measurements for the given304

cluster, season and wind condition.305

2. Randomly sample N = 100 NO2 measurements with replacement from the selected day.306

3. Repeat the first two steps ND = 10 times to create an ECDF with ND ×N = 1000 samples.307

4. Calculate exceedance probability as: PE(T ) = (Number of samples with concentrations > T )/(ND ×N)308

with T corresponding to the concentrations threshold chosen for NO2. A robust estimate of the exceedance probability309

is then computed by repeating the steps above 1000 times to account for variability introduced through the random310

selection. We note that the data corresponding to days with less than 100 measurements account for less than 5% of311

all the data for a given cluster, season and wind condition, and therefore unlikely to have a significant effect on the312

calculated probabilities. In addition, ND = 10 is chosen since there are at least 10 unique measurement days with at313

least 100 measurements for each cluster, wind and season condition.314

5 Results and Discussion315

5.1 Spatial Clustering316

After pre-processing the land use data corresponding to individual 30-m road segments described in section 4.1.1, we317

select the number of clusters k, using both data-based and external methods.318
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Figure 3: Selecting optimal number of clusters through (a) gap-statistic as an internal method suggesting 7 clusters
as the optimal choice for k, with the vertical lines corresponding to sk and (b) comparison of average within-cluster
variability of daytime median NO2 concentrations between the clustering solution and clustering benchmark as an
external method, suggesting 7 clusters.

Internal method We computed the gap statistic for clustering solutions between 5 and 15 clusters to find the optimal319

number of clusters suggested by this method. The gap statistic for these solutions are shown in Figure 3a with the320

vertical error bars corresponding to the standard error, sk. Based on equation 3, this method assigns 7 clusters as the321

optimal value for k.322

External method As discussed in section 4.1.3, we computed the statistics required to select the optimal number323

of clusters k using information external to land-use and location data. The results are shown in figure 3b where S(k),324

S∗(k) and their differences are plotted for clustering solutions between 5 and 15 clusters. Since the goal is to minimize325

S(k)− S∗(k), this methodology indicates that the optimal choice for k is 7 clusters.326

Since both validation methods yield the same result regarding the optimal number of clusters, 7 was chosen as the327

number of clusters. Figure 4a shows the clustering solution utilizing the k-means algorithm with k = 7 as a spatial map328

of Oakland, CA. Meanwhile, Figure 4b presents the histograms of median NO2 concentrations at each road segment329

belonging to each of the 7 clusters. This clustering solution shows that cluster 1 is a mixture of highways and major330

roads in industrial areas closer to East Oakland, cluster 2 covers residential areas in East Oakland that are located at331

higher elevations (¿100m higher than sea level), cluster 3 mostly includes both major and narrow roads in industrial332

zones of West Oakland and Downtown, cluster 4 covers highways that are truck prohibited, cluster 5 mostly covers333

residential zones and roads located in East Oakland, cluster 6 mostly consists of interstate highways that allow truck334

passage and cluster 7 covers residential areas in West Oakland and Downtown. Based on these findings, the clusters335

will be referred to using the following labels:336

• Cluster 1 - Industrial East Oakland337

• Cluster 2 - Elevated residential East Oakland338
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• Cluster 3 - Industrial West Oakland339

• Cluster 4 - Truck prohibited highways340

• Cluster 5 - Residential East Oakland341

• Cluster 6 - Truck-route highways342

• Cluster 7 - Residential West Oakland343

With geographically similar road segments grouped together in clusters with a significant number of mobile NO2344

measurements available within each cluster, mobile measurements within each cluster can be investigated with regards345

to wind speed and seasonal changes.346

5.2 Effects of Wind Speed on Concentrations347

For each cluster, effects of wind speed on NO2 concentrations during each season are examined through conditionally348

averaged concentrations and are shown in Figures 5 and 6 for winter and summer, respectively. The results are shown349

for 4 of the 7 clusters including Industrial and residential West Oakland and inter-state highways (i.e. clusters 3,350

4, 6 and 7) for the following reasons: 1) These regions cover highways, industrial and residential zones where the351

population lives, works and commutes, 2) the results allow for comparisons between residential/industrial zones,352

truck-route/truck-prohibited highways, and highway/non-highway roads, and 3) the majority of mobile measurements353

were made in these regions and therefore sample sizes are large enough for statistically significant analyses.354

During winter, the West Oakland clusters follow a similar downward trend as measured by a linear fit to the conditionally355

averaged concentrations, even though concentrations are generally higher in the industrial cluster. While the concentra-356

tions on truck-route highways also drop with increasing wind speed, the drop is smaller than West Oakland. A plausible357

explanation for this behaviour is the additional turbulence on the highways caused by moving traffic which increases358

vertical mixing of the pollutants with the clean air above even in the absence of wind. This additional turbulence in turn359

leads to a smaller marginal effect of wind speed on NO2 concentrations. Concentrations on truck prohibited highways360

do not follow a significant downward trend which is likely due to traffic turbulence and the topography of this cluster,361

located at higher elevations compared to other investigated clusters.362

In the summer, the conditionally averaged concentrations do not follow a significant trend in any of the clusters,363

suggesting that wind speed is a less important predictor of NO2 concentrations in the summer compared to winter. One364

possible explanation for this behaviour is increased vertical mixing in the summer caused by increased radiation and365

surface heat fluxes that leads to overall lower concentrations in the summer as investigated in section 3. We note that366

the concentrations observed for each cluster during summer is consistently lower than those observed in the winter, as367

evident through a comparison between figures 5 and 6 which is in agreement with Figure 2b. These results also explain368

the minor differences observed between concentrations corresponding to calm and windy conditions in Figure 2a, since369

summer and winter measurements were not separated in the analysis of wind speed in section 3.370
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Figure 4: Clustering 30-m road segments into k = 7 clusters. (a) Spatial map of 30-m road segments, color coded
based on cluster numbers, and (b) histograms of daytime median NO2 concentrations for each cluster. Cluster 1 is
a mixture of highways and major roads in industrial areas closer to East Oakland, cluster 2 covers residential areas
in East Oakland that are located at higher elevations (¿100m higher than sea level), cluster 3 mostly includes both
major and narrow roads in industrial zones of West Oakland and Downtown, cluster 4 covers highways that are truck
prohibited, cluster 5 mostly covers residential zones and roads located in East Oakland, cluster 6 mostly consists of
interstate highways that allow truck passage and cluster 7 covers residential areas in West Oakland and Downtown.
Map tiles by Stamen Design. Map data by OpenStreetMap. (Color should be used for any figures in print)
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Figure 5: Effect of wind speed on NO2 concentrations for each cluster during Winter, with statistically significant
decay of concentrations observed in three clusters consisting of Industrial West Oakland, Residential West Oakland
and Truck-route highways. Statistically significant trends were not found between the concentrations and wind speeds
for the Truck prohibited highways. The colored solid lines correspond to conditionally averaged concentrations found
through Eq. 7. Shaded regions correspond to the interquartile range of conditional concentration distributions. The
black dashed lines correspond to a linear fit to the curve with details of the fit described in the text boxes, where
coefficient of determination is represented by R2 and the significance of the slope of the linear fit is quantified through
t-tests with the p-values shown.

As mentioned in section 2.2, we found that for more than 85% of the study period (more than 90% during winter) the371

prevailing wind direction was from the West. Hence, there are few measurements in each cluster during winter where372

the wind is from other directions, leading to high uncertainties when making inferences. Additionally, with mobile373

concentration measurements, the alignment between polluting sources and the sensor is constantly changing within374

each cluster. Therefore, at the spatial resolution of our analysis, wind direction does not provide us with additional375

information regarding the NO2 concentration patterns. These reasons have led us to refrain from providing a wind rose376

alongside Figure 5.377

5.3 Exceedance Probabilities378

For each cluster, the probability of observing NO2 concentrations above the threshold of 40 ppb (95th percentile379

of concentrations observed for the investigated clusters) are calculated under four conditions based on wind speed380
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Figure 6: Effect of wind speed on NO2 concentrations for each cluster during Summer. Statistically significant trends
were not found between the concentrations and wind speeds for any of the clusters. As in Figure 5, the colored solid
lines correspond to conditionally averaged concentrations found through Eq. 7. Shaded regions correspond to the
interquartile range of conditional concentration distributions. The black dashed lines correspond to a linear fit to the
curve with details of the fit described in the text boxes, where coefficient of determination is represented by R2 and the
significance of the slope of the linear fit is quantified through t-tests with the p-values shown.

and seasonality as depicted in Figure 7. The four conditions are obtained through a mixed data stratification process381

following the steps described in section 3. The truck-route highways cluster shows a sharp drop in exceedance382

probabilities during windy conditions compared to calm conditions with a 53% drop during winter and a 84% drop in383

the summer. One possible explanation for this sharp drop is tied to traffic density and speed of cars on the highway.384

Considering that high NO2 are often due to high traffic during which cars are moving slowly, therefore not contributing385

to turbulence and mixing of the pollutants. In these conditions wind can be an effective tool for creating additional386

turbulence that leads to the mixing of the pollutants and lowers pollutant concentrations. The significant difference387

between the probabilities of the two highway clusters highlights the effect of trucks and high emitting vehicles on high388

NO2 concentrations. In addition, almost all of the measurements on truck prohibited highways during summer fall389

below the 40 ppb threshold, leading to very small exceedance probabilities. The trend observed for the industrial West390

Oakland cluster is similar to that found in section 5.2, with exceedance probability dropping under windy conditions391
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Figure 7: Probability of observing NO2 concentrations above 40 ppb for groupings based on cluster, season and wind
speed. Exceedance probabilities are calculated as the average of 1000 sampling simulations shown as filled circles, with
vertical lines corresponding to the 25th-75th percentile ranges. (Color should be used for this figure in print)

and lower values observed during summer. Moreover, there is a perceptible difference between the two West Oakland392

clusters, highlighting the correlation between land use and pollutant concentrations.393

It is worth noting that the 40 ppb threshold is smaller than regulatory limits for short term exposure. Nevertheless,394

the exceedance probability analysis was worthwhile as it showed that the response of the tails of the concentration395

distribution to wind speed differed from the response of the mean concentrations. Furthermore, NO2 levels are correlated396

with other pollutant concentrations highlighting the importance of an exceedance probability analysis in the context of397

exposure to other air pollutants in addition to NO2 [40].398

6 Sensitivity Analysis399

6.1 Sensitivity of Wind Speed Effects to Wind Speed Intervals400

The linear fits to the conditionally averaged concentrations found in Section 5.2 are subject to the chosen wind401

speed intervals. As such we repeated the analysis to compute the slope of the linear fit to the conditionally averaged402

concentrations for different lengths of the wind speed intervals, ∆u, varying between 0.5m/s and 1.5m/s. The403

calculated slopes for different wind speed intervals for each cluster during winter are provided in Table 1, indicating404

that the magnitude of the calculated slopes depend on the wind speed intervals. Nevertheless, these results confirm405
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Table 1: Slope of linear fit to conditionally averaged NO2 concentrations for 4 clusters during winter. Numbers in
brackets refer to the p-values of the slope significance t-tests and are shown for p-values above 0.05. The boldface row
corresponds to the analysis of section 5.2.

Δu
(m/s)

Industrial
West Oakland

Residential
West Oakland

Truck-Prohibited
Highways

Truck Route
Highways

0.5 -3.16 -3.04 -0.61 (0.07) -2.12
0.6 -3.07 -2.96 -0.51 (0.18) -2.02
0.7 -3.00 -2.98 -0.49 (0.22) -1.84
0.8 -3.01 -2.85 -0.49 (0.22) -1.81
0.9 -3.42 -3.17 -0.63 (0.23) -1.95
1.0 -3.24 -3.04 -0.48 (0.20) -1.88
1.1 -3.17 -2.69 -0.53 (0.34) -1.71
1.2 -3.37 -2.97 -0.38 (0.50) -2.09
1.3 -3.03 -2.83 -0.73 (0.22) -1.87
1.4 -3.11 -3.16 -0.54 (0.46) -1.82 (0.11)
1.5 -2.92 -2.94 -0.44 (0.43) -1.79 (0.07)

that the effects of wind speed are less pronounced on NO2 concentrations on highways compared to residential and406

industrial regions in West Oakland.407

6.2 Exceedance Probabilities408

The two-step sampling process used to compute the exceedance probabilities, requires two parameters: Number of409

randomly selected days, ND, and the number of samples per day, N . Here, we investigate the dependence of the410

calculated exceedance probabilities on these two parameters, ND and N , respectively.411

Sensitivity to number of randomly selected days, ND The exceedance probabilities were calculated as described412

in section 4.2.2 for number of randomly selected days between 10 and 20 days. For each ND, the average exceedance413

probabilities for 1000 simulations were computed for each cluster under each wind/season conditions. The resulting414

average exceedance probabilities showed very little dependence on ND with all values staying within 10% of the415

original average exceedance probabilities plotted in Figure 7.416

Sensitivity to number of samples per day, N Similarly exceedance probabilities were calculated with varying417

number of samples per day between 100 and 500 with increments of 50. There was no observable change in exceedance418

probabilities when number of samples per day was increased, suggesting that the original sampling of 100 samples per419

day was sufficiently large and therefore did not influence the exceedance probabilities.420

7 Conclusions421

An understanding of the interaction between urban form and the temporal dynamics of air pollutants is crucial for422

characterizing the effects of urban development and climate change on urban air quality, and especially for understanding423

how different settings in a given city can be subject to different health risks. In this study, a spatio-temporal framework424

consisting of a spatial clustering analysis and a robust statistical analysis of wind speed effects on pollutant concentrations425
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was presented. The framework was used to study the influence of wind speed in the reduction of NO2 concentrations in426

different regions of Oakland, California during different seasons. The analysis showed a negative correlation between427

wind speed and NO2 concentrations in industrial and residential regions bounded by highways during winter, with428

increasing wind speeds leading to lower concentrations. However, it was found that increased vertical mixing of429

pollutants caused by sources other than wind speed (e.g. moving traffic and increased surface heat fluxes during430

summer) can lower the effectiveness of wind speed in lowering NO2 concentrations. Furthermore, an analysis of431

exceedance probabilities showed that the response of the tails of the concentration distribution differs from that of432

the mean concentrations. These findings coupled with projections of climate and urban development can be used433

as predictive tools for future air quality in urban areas. For example, if reductions in wind speeds and increases in434

periods of stability as observed over the past few decades continue (through either climate or urban density changes)435

[41], on the basis of the current level of emissions poorer air quality is expected in residential and industrial areas of436

Oakland during winter. The large discrepancies between the exceedance probabilities observed on truck-route and437

truck prohibited highways suggest that stricter truck emission standards can potentially lead to substantial decreases438

in exposure to traffic related pollutants. It is worth noting that the truck-route highways surround the lower-income439

residential neighborhoods of West Oakland, while the truck-prohibited highways are bounded by higher-income regions440

to the north. Hence, truck-route designations can be considered by policymakers to address disparities in exposure to441

air pollution. Moreover, a study of the health of the commuters using truck-route highways versus truck-prohibited442

highways can be informative regarding these acute effects on the health of the Oakland population.443

The application of the proposed framework to mobile measurements in Oakland has been insightful in comparing444

the effects of wind speed on NO2 concentrations across different clusters. However, the findings presented here are445

particular to the measurement domain of Oakland, and generalizing the findings to other urban areas should be done446

with care. An additional consideration for interpreting our results is the choice of the pollutant: NO2 is a secondary447

pollutant forming through photochemical conversion from Nitrogen Oxide and is dominated by local traffic. Moreover,448

for epidemiological analyses, it is necessary to relate the on-road concentrations investigated here to true exposures449

at residential and work addresses. On the other hand, the proposed framework can be applied to other urban areas450

with less consistent meteorology than Oakland, to study the effects of other prominent meteorological parameters451

on air quality as mediated by local land use. The framework could be applied to study the response of other major452

air pollutants such as ozone (O3) and PM2.5 to meteorological conditions as influenced by varying urban land form.453

Other well-known clustering algorithms such as DBSCAN, HDBSCAN, and hierarchical clustering could also lead to454

potential improvements in the presented framework. It is worth noting that while the developed framework has not been455

used as a tool to predict NO2 concentrations at locations not measured by the mobile monitors, prediction is possible if456

certain conditions are met. In particular, if road segments without NO2 measurements are incorporated into the spatial457

clustering scheme and clustered into one of the existing clusters with sufficient measurements, predictions regarding458

NO2 concentrations can be made based on the prevailing wind conditions. Although further investigation is required459
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to quantify the prediction performance of this methodology, we believe that predictions will be highly uncertain with460

respect to instantaneous measurements but will likely be more accurate in the mean.461

By utilizing the meteorological data from one station, we captured the effect of urban form in mediating the effect462

of regional meteorology on intra-urban air quality. We note that an improved measurement campaign could deploy463

meteorological stations in the measurement area (e.g. in each cluster) or integrate anemometers onto the measurement464

vehicle for real-time wind speed measurements [42]. In that case, an even more robust spatio-temporal analysis465

can be designed to study the relationship between air quality and meteorological conditions at the neighborhood466

scale. Furthermore, coupled meteorological and air quality measurements can also be utilized in emission source467

characterization, similar to efforts in characterizing methane emission sources using mobile sensors in the oil and gas468

industry [43].469
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