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Abstract Simplified numerical models of the atmospheric boundary layer (ABL) are useful
both for understanding the underlying dynamics and potentially providing parsimonious
modelling approaches for inclusion in larger models. Herein the governing equations of a
simplified slab model of the uniformly mixed, purely convective, diurnal ABL are shown to
allow immediate solutions for the potential temperature and specific humidity as functions of
the ABL height and net radiation when expressed in integral form. By employing a linearized
saturation vapour relation, the height of themixed layer is shown to obey a non-linear ordinary
differential equation with quadratic dependence on ABL height. A perturbation solution
provides general analytical approximations, of which the leading term is shown to represent
the contribution under equilibrium evaporation. These solutions allow the diurnal evolution
of the height, potential temperature, and specific humidity (i.e., also vapour pressure deficit)
of the mixed layer to be expressed analytically for arbitrary radiative forcing functions.
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1 Introduction

The daytime (diurnal) atmospheric boundary layer (ABL) is the turbulent mixing region
below the relatively stable free atmosphere. The turbulence in the ABL is principally main-
tained by shear-driven and buoyancy-driven convection. Within the middle portion of this
region, the temperature profiles are nearly adiabatic, while the specific humidity tends
to slightly decrease with height due to the moisturizing effects from below and the dry-
ing process from above (Mahrt 1976; Stull 1988; Garratt 1994). The top of this mixed
layer is capped by a rapid change in potential temperature, the so-called capping inver-
sion, where the vertical profile reverts to (stable) free atmospheric conditions. The physical
characteristics of this mixing region are controlled by both surface and free atmospheric
conditions and in turn govern the vertical heat and mass transport between land surface and
atmosphere.

Simplified slab models of the ABL were first developed in the late 1960s and early 1970s
as in, e.g., Ball (1960), Lilly (1968), Tennekes (1973), Carson (1973), Betts (1973), and
subsequently by many others (e.g., Driedonks 1982b; McNaughton and Spriggs 1986; Rau-
pach 1998, 2000, 2001). More recently, Porporato (2009) investigated a simplified purely
convective ABL slab model with the added assumption of a constant daytime Bowen ratio,
an approximation supported for midday conditions by Brutsaert (1987) on daytime evap-
orative fractions. Despite their zero-dimensional simplification, mixed-layer models agree
favorably with observations and results from large-eddy simulation (Betts 1992; Kim and
Entekhabi 1998; Pelly and Belcher 2001). When coupled to mass and heat transfer between
the land surface and the atmosphere, mixed-layer models provide an efficient benchmark
for a wide range of applications, from atmospheric pollutant transport to the understanding
of eco-hydrological dynamics to parametrization schemes for large-scale climate models
(McNaughton and Spriggs 1986; Kim and Entekhabi 1998; Lyons 2002; Juang et al. 2007;
Siqueira et al. 2009; Konings et al. 2010).

However, in the presence of evapotranspiration even the simplest zero-dimensionalmixed-
layer model does not permit analytical solutions, thus complicating any potential analysis
and physical interpretation of the land-atmosphere interaction. To progress in this direc-
tion, we discuss approximate analytical solutions for the mixed-layer model in the coupled
land-atmosphere system. As a first attempt, we confine our study to well-watered condi-
tions, under which the stomatal conductance and aerodynamic conductance are assumed
to be constant. In Sect. 2 we show immediate solutions for the potential temperature and
specific humidity in terms of the ABL height. In Sect. 3, we employ a linearized satura-
tion vapour curve, which allows us to solve for the surface-layer temperature, providing
an approximate solution to the surface energy balance. Using this solution for the sur-
face energy balance we derive a non-linear differential equation governing the evolution
of the ABL height under equilibrium evaporation in Sect. 4. Analytical solutions for spe-
cific forcings are developed in Sect. 5 which result in an Abel equation of the second kind
and simplifications thereof. In Sect. 6, we use perturbation methods to find the analyti-
cal approximation for arbitrary forcing, and in Sect. 7 we revisit the constant Bowen ratio
solution of Porporato (2009) to derive the effective Bowen ratio for use in that case. In
Sect. 8 we test our models and compare the various solutions with observations from the
Central Facility, Southern Great Plains (CF-SGP). Finally, conclusions are summarized in
Sect. 9.
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2 Basic Equations of the Diurnal Convective ABL Over Land (Models M0
and M1)

At the surface, energy flux partitioning is controlled by the surface energy balance given in
simplified form as

Q(t) = Rnet(t) − G(t) = H(t) + λE(t), (1)

where t is time, Q is the net available energy, Rnet is the net radiation at the surface, G is the
ground heat flux, H is the sensible heat flux, λ is the specific latent heat of vaporization, and
E is the evaporative flux. The latter two energy fluxes can be expressed as

H(t) = ghcpρ[θs(t) − θ(t)], (2a)

E(t) = geρ[q∗
s (t) − q(t)], (2b)

where ρ is the density of air, cp is the heat capacity at constant pressure, q∗ is the saturation
specific humidity, q is the specific humidity in the mixed layer, θ is the potential temperature
in the mixed layer, and ge and gh are the conductances to water vapour and sensible heat
transfer. The subscript s refers to the values at the surface. When no subscript is given the
variable is understood to represent conditions within the mixed layer. The conductances gh
and ge typically consist of a series of canopy and atmospheric conductances,

gh = 1/ra, (3a)

ge = 1/(ra + rs), (3b)

where ra is aerodynamic resistance and rs is surface resistance. The surface resistance
describes the resistance of water flow through the crop and soil surface. The aerodynamic
resistance, which is stability dependent, controls the transfer of heat and water from the evap-
orating surface into the air above the canopy. Under well-watered and stationary conditions
(assumed herein), the two conductances gh and ge may be assumed to be constant.

The conservation of dry static energy in the mixed layer gives,

ρcph
dθ

dt
= H(t) + ρcp [θf (h) − θ ]

dh

dt
, (4)

and similarly, the conservation of the mass of water vapour in the mixed layer yields,

ρh
dq

dt
= E(t) + ρ [qf (h) − q]

dh

dt
. (5)

Here the subscript f refers to the values of the free atmospheric profiles. To close these
equations, the buoyancy flux at the top of the boundary layer is often assumed to be
related to the surface buoyancy flux (contribution from convection turbulence) and surface
shear stress (contribution from mechanical turbulence) (Driedonks 1982a; Batchvarova and
Gryning 1991, 1994). To study the essential processes of heat-flux partitioning in the land-
atmosphere interaction, we focus on the warm seasons when buoyancy-driven turbulence
dominates the convection and mechanical turbulence becomes negligible. To further sim-
plify the entrainment and make the system analytically solvable, we use sensible heat flux
(w′θ ′) to approximate the buoyancy flux (w′θ ′

v) and model the entrainment as (Stull 1988;
Garratt 1994),

[θf (h) − θ ]
dh

dt
= −(w′θ ′)h = β(w′θ ′)s, (6)

which is tested laterwith observations. Themodel using the buoyancyflux (w′θ ′
v) is referred to

as M0 and the model using the sensible heat flux (w′θ ′)without considering humidity effects
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on buoyancy is referred to as M1. A comparison between these two models is discussed in
Sect. 8. The ratio β ranges from 0.1 to unity with a typical value of 0.2 (Ball 1960; Stull
1976; Seibert et al. 2000); Angevine (2008) and Canut et al. (2012) recently summarized the
uncertainties of β based on observations and large-eddy simulations.

Following the common modelling assumptions of linear free atmospheric profiles (e.g.,
Tennekes 1973; Porporato 2009),

θf (z) = γθ z + θf0, (7a)

qf (z) = γq z + qf0, (7b)

whereγθ andγq are the slopes of free atmospheric potential temperature and specific humidity
and are treated as constant, the growth of the simplified diurnal boundary layer can be
modelled as (Tennekes 1973; Garratt 1994),

dh

dt
= (1 + 2β)H(t)

ρcpγθh
. (8)

Once the surface and free atmospheric conditions and the radiative forcing are specified,
Eqs. 1–8 in conjunction with the Clausius–Clapeyron relation represent a closed system of
coupled, non-linear differential-algebraic equations for the idealized diurnalmixed layer. The
system can be solved numerically but presents challenges analytically due to its strong cou-
pling and non-linearity. Analytical solutions are desirable, however, both to provide insight
into the dynamical relationships of the state variables and potentially for use in parametrizing
boundary-layer dynamics in large-scale models.

To further understand this system, it is important to first analyze the components that con-
tribute to the growth of the boundary layer. Rewriting Eq. 2b by separating the contribution
from saturation differences at the surface and the air, and the contribution from saturation
deficit in the air, as typically done in the Penman–Monteith or combination approach (Rau-
pach 2001; Brutsaert 2005), one obtains,

E = geρ
(
q∗
s − q∗ + q∗ − q

) = geρ(q∗
s − q∗) + geρ(q∗ − q), (9)

where the first component is the equilibrium evaporation and the second component is the
evaporative flux due to vapour pressure deficit (i.e. the so-called drying power of the air),

Eeq = geρ(q∗
s − q∗), (10a)

Evpd = geρ(q∗ − q). (10b)

Combining Eqs. 9–10 and Eq. 1 and substituting into Eq. 8 yields,

dh

dt
= 1 + 2β

ρcpγθh

[
Q − λ(Eeq + Evpd)

]
. (11)

The boundary-layer growth is controlled by λEeq and λEvpd, while, through the definition
of Bowen ratio,

Bo = H

λE
= H

Q − H
, (12)

the growth of the ABL can also be rewritten as,

dh

dt
= 1 + 2β

ρcpγθh

[
Bo

1 + Bo
Q(t)

]
. (13)

The growth of the boundary layer expressed by Eq. 13 indicates that the Bowen ratio may be
further separated into components due to equilibrium evaporation and vapour pressure deficit
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as in Eq. 11, a point that is investigated in later sections. Note that one could also express the
surface energy partitioning using the evaporative fraction (Brutsaert 2005).

Following Porporato (2009) we introduce the change of variable,

θ̃ = θ − θf0, (14a)

q̃ = q − qf0. (14b)

Employing this change of variable, Eqs. 4 and 8 can be combined to form a pair of
exact differential equations, which can be integrated analytically to find θ̃ as a function of
mixed-layer height,

θ̃ = γθ

1 + β

1 + 2β
h, (15)

where the initial condition θ̃ (t = 0) = 0 implies that the constant of integration vanishes
(Garratt 1994; Porporato 2009). Similarly, we can combine Eqs. 5 and 8 with the total energy
balance, Q = λE + H , and integrate to find an expression for q̃ in terms of h and t ,

q̃ = 1

λρh(t)

∫ t

0
Q(u)du + 1

2

(
γq − cpγθ

λ(1 + 2β)

)
h(t), (16)

where q̃(t) is a function of ABL height h(t) and time t .
Thus, the specific humidity and potential temperature are known analytically if the inte-

grated net available energy and the height of the boundary layer are given. Substituting these
into Eqs. 10 and 11 gives

dh

dt
= (1+2β)

ρcpγθh

{
Q(t)−ρλge

[
q∗(θs)− 1

λρh(t)

∫ t

0
Q(u)du+ h(t)

2

(
γq− cpγθ

λ(1+2β)

)]}
,

(17)
demonstrating that the only remaining hurdle to having a single equation for the diurnal
growth of the mixed layer is the surface energy balance, neatly represented here by q∗(θs).

3 Linearization of the Saturated Vapour Pressure Curve (Model M2)

Combining the surface flux equations and the total energy balance yields

Q = λgeρ(q∗
s − q) + ρghcp(θs − θ). (18)

If we now make the change of variables,

q̃∗
s = q∗(θs) − q∗(θf0), (19a)

θ̃s = θs − θ f0 , (19b)

we have
Q

ρ
= λge

(
q̃∗
s − q̃

) + λge(q
∗
θ f0

− q f0) + ghcp(θ̃s − θ̃ ), (20)

and we note that the second term represents the initial saturation specific humidity deficit,
Δq0, a constant. Equation 20 describes the surface energy balance in our simplified system,
where the surface temperature, θs, appears twice in this equation: once as an argument to the
saturation specific humidity function, q∗

s = q∗(θs), and once explicitly. Attempting to solve
this equation for θs yields,
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q̃∗(θs) + ghcp
λge

θ̃s = Q

ρλge
+ q̃ + ghcp

λge
θ̃ − Δq0, (21)

which provides an implicit solution but does not solve the problem in Eq. 17.
To surmount this difficulty, we again follow the Penman-Monteith or combination

approach (Raupach 2001; Brutsaert 2005) to linearize the saturation specific humidity curve
by expanding in a Taylor series to first order around a suitable reference temperature and
assign the slope at the reference temperature to be the constant εr . The reference temperature,
representing the typical temperature of the day, could be chosen as the temperature close to
the expected midday values of θ . This provides a first-order approximate saturation specific
humidity relation,

q̃∗
s ≈ εr(θs − θ f0) = εr θ̃s (22)

with which we can find the equilibrium Bowen ratio as the ratio of sensible heat flux, Eq. 2a,
to the equilibrium evaporation, Eq. 10a (Priestley and Taylor 1972; McNaughton 1976; De
Bruin 1983; Garratt 1994; Betts 1994; Culf 1994; Heerwaarden et al. 2009),

Boeq = H

λEeq
= ghcpρ(θs − θ)

λgeρ(q∗
s − q∗)

= ghcp
λgeεr

. (23)

This equilibriumBowen ratio is also the upper limit of theBowen ratio as Q → ∞. Generally,
when keeping all other variables fixed, the Bowen ratio increaseswith the increasing available
energy (Q) and quickly reaches an upper limit (Boeq = Bomax) (see Porporato 2009, Fig.
5).

Substituting Eqs. 22 and 23 into the surface energy balance, Eq. 20, gives an approximate
surface temperature,

θ̃s ≈ Boeq
1 + Boeq

(
Q

ρghcp
+ λge

cpgh
q̃ + θ̃ − λgeΔq0

ghcp

)
. (24)

This approximate solution for θ̃s is conveniently linear and separable in Q, θ̃ , and q̃ . Substi-
tuting Eqs. 15 and 16 into Eq. 24 yields the desired representation of θ̃s as a function of h
and t only, which greatly simplifies the surface coupling for the sake of analytical treatment.

Substituting θ̃s from Eq. 24 into the combination of Eqs. 1, 2a, and 8 gives the following
non-linear ordinary differential equation (model M2),

dh

dt︸︷︷︸
I

= f (t)

h︸ ︷︷ ︸
II

+ g(t)

h2︸︷︷︸
III

+ C︸︷︷︸
IV

, (25)

where,

f (t) = 1 + 2β

ρcpγθ

Boeq
1 + Boeq

(
Q(t) − ρλgeΔq0

)
, (26a)

g(t) = ge
1 + 2β

ρcpγθ

Boeq
1 + Boeq

∫ t

0
Q(u)du, (26b)

C =
(

− 1 + β

1 + Boeq

)
gh +

(
−cpγθ − λγq(1 + 2β)

2cpγθ

Boeq
1 + Boeq

)
ge. (26c)

Note that the constant C is a linear combination of gh and ge with coefficients depending
primarily on the atmospheric lapse rates and equilibrium Bowen ratio (Boeq). Equation 26c
also suggestsC is negative when γθ is positive and γq is negative, which is usually true above
a well-watered surface.
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Thus, we have shown that the system of equations for h, θ , and q can be reduced exactly
to the single problem of solving the coupling of the surface energy balance with the ABL
height, h. Further, linearizing the saturation vapour pressure curve provides a non-linear
first-order ordinary differential equation for the ABL height, the solution to which solves the
entire model approximately. Equation 25 still resists analytical solution, however, due to its
strong non-linearity. In the sections to follow we consider this equation and its approximate
solutions in more detail.

4 Equilibrium Solution (Model M3)

While Eq. 25 is unlikely to yield a closed-form solution, we can make a “first guess” at a
solution by considering the case under equilibriumevaporation, i.e.,when the terms g(t)/h2+
C are very small or cancel one another resulting in an exactly solvable condition. In such a
case, Eq. 25 reduces to

dh

dt
= f (t)

h
. (27)

Assuming nomorning transient (h(0) = 0) and no initial humidity deficit under well-watered
conditions (Δq0 = 0), then we have the solution

heq(t) =
(
2

∫ t

0
f (u)du

)1/2

. (28)

This “equilibrium” solution has exactly the same form of the solution for the mixed layer
under constant Bowen ratio as in Tennekes (1973), Garratt (1994), and Porporato (2009). In
this case, the constant Bowen ratio becomes the Bowen ratio under equilibrium evaporation
(Bo = Boeq), which is the algebraic limit of the Bowen ratio as Q → ∞ (Porporato 2009).
Due to the overestimation of the Bowen ratio, the equilibrium solution also overestimates
the rate of boundary-layer growth. Figure 1 (left) compares the numerical solution to Eq. 25
(M2) with the equilibrium solution heq(t) (M3). Though overestimating the mixed-layer
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Fig. 1 Left numerical solution for the ABL height from full numerical simulation (M1), linearized saturation
vapour pressure curve approximation (M2), and constant equilibrium Bowen ratio model (M3) (see Table 1
for a detailed model description). Right numerical simulation of the mixed-layer height growth rate of each
individual term in Eq. 25. The parameters in these numerical solutions and simulations represent typical surface
and atmospheric characteristics in warm seasons under well-watered condition (see Table 2)
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height through much of the day, the shape of the equilibrium solution is consistent with the
fully non-linear version and thus encourages further analysis to find a good approximation.

5 Approximation to an Abel Equation

Looking closer at the system, Fig. 1 (right) shows each term in Eq. 25 solved numerically.
As can be seen, terms I and II are almost parallel to each other with a distance related to the
sum of terms III and IV. During the diurnal evolution, term III does not show any noticeable
variation and term IV is constant as defined in Eq. 26c.

The behaviour of term III suggests that substituting a constant in its place would be a
reasonable approximation. Recalling that g(t) = ge

∫
f (t)dt , we can rewrite term III as,

g(t)

h2
= ge

2

(
heq(t)

h

)2

. (29)

In this form, as heq/h → 1, the term in brackets approaches ge/2. and the sum of terms III
and IV in Eq. 25 approaches ge/2+C . Since C in Eq. 26c is generally negative in value, and
heq is larger than h, we can expect the sum of terms III and IV to approach zero “from the
right” so that in general ge/2+C ≤ (III+IV) < 0. Assuming a correction factor that equally
splits the difference of this interval, the sum of terms III and IV may be approximated as,

C ′ = 1

2

(
C + ge

2

)

=
(

− 1 + β

2(1 + Boeq)

)
gh +

(
cpγθ + λγq Boeq(1 + 2β)

4cpγθ (1 + Boeq)

)
ge. (30)

Similar toC ,C ′ is again another linear combination of gh and ge, andwith this approximation,
Eq. 25 becomes

dh

dt
= f (t)

h
+ C ′. (31)

From a physical point of view, f (t)/h in Eq. 31 contributes to the ABL growth through the
equilibrium evaporation (Eeq), while theC ′ in (31) influences the ABL growth by the evapo-
ration through the vapour pressure deficit (Evpd). From a mathematical point of view, Eq. 31
is a particular form of Abel’s equation of the second kind, which is itself a generalization of
the Riccati equation (Zaitsev and Polyanin 2012). We can set the equation to a normal form
by introducing the change of variable y = h(t)/C ′,

yy′
t − y = F(t), (32)

where F(t) = f (t)/C ′2 and represents a rescaled radiative forcing function. Unfortunately
no general solution exists for this Abel equation for arbitrary forcing F(t). Closed-form
solutions of the Abel equation for specific forcing functions (see Zaitsev and Polyanin 2012)
will be explored in subsequent contributions, while here we proceed seeking further approx-
imations of sufficiently general validity.

6 Solution with an Effective Bowen Ratio (Model M4)

As Eq. 31 cannot be solved directly for an arbitrary forcing function, a perturbation method
(Logan 2013) is used here to find the approximation solution. By assumingC ′ is a small term
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Fig. 2 The mixed-layer height as
a function of time predicted by
the full numerical simulation
(M1), constant equilibrium
Bowen ratio model (M3), and the
approximate solution h(t) (M4)
(see Table 1 for detailed
description of models). The
parameters for simulations can be
found in Table 2

0 2 4 6 8 10 12
0

500

1000

1500

Time (h)

h 
 (

m
)

 

 

M1
M3
M4

andwriting the solution h(t) in perturbation series to the first order as h(t) = h0(t)+C ′h1(t),
we can find that h0(t) = heq(t) and h1(t) = t and thus the first-order approximation is given
as,

h(t) = heq(t) + C ′t. (33)

Clearly, the first term on the right-hand side (heq) is the equilibrium solution and the second
term (C ′t) is the perturbation term, accounting for the contribution from evaporation due
to vapour pressure deficit. This model is referred to as M4 hereafter. As shown in Fig. 2,
this approximation works well (see Sect. 8 below for a more comprehensive test of the
models). The inclusion of C ′ in M4 adds the contribution from the vapour pressure deficit
that efficiently reduces the resulting overestimation from the equilibrium solution of M3.

Having an analytical solution for the height of the ABL provides an approximate solution
to the entire system (i.e., for h, θ , and q) since q and θ can be expressed exactly as functions of
the ABL height and time (Eqs. 15 and 16). The resulting approximate solutions are discussed
below.

The daytime evolution of the potential temperature in the mixed layer is found by sub-
stituting h from Eq. 33 into the relation for θ , Eq. 15. Similarly, the daytime evolution of
the specific humidity is found by substituting the approximate ABL height into Eq. 16. The
resulting approximate analytical results (M4) are plotted alongside full numerical simulation
(M1) as well as the constant equilibrium Bowen ratio solution (M3) in Fig. 3.
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Fig. 3 As in Fig. 2, but for potential temperature (left) and specific humidity (right)
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0.014 0.0145 0.015 0.0155

294

296

298

300

q (kg kg−1)

θ  
(K

)

γθ=0.0065

γθ=0.0055

γθ=0.0075

0.014 0.0145 0.015
293

294

295

296

297

298

299

300

q (kg kg−1)

γq=−3.3x10−6

γq=−4.3x10−6

γq=−2.3x10−6

θ 
(K

)

Fig. 4 The diurnal mixing diagram resulting from the approximate analytical solution (other than specified
in the legend, parameters are listed in Table 2)

As the potential temperature is a linear function of the ABL height (see Eq. 15), the
approximate solution of potential temperature has the same shape as the approximate solution
of h(t). The fit with the specific humidity is not as close. Since the approximate solution was
derived in part by linearizing the saturation vapour curve, it is perhaps no surprise that the
resulting solution for the specific humidity is less perfect than that for h or θ .

From Eqs. 15 and 16, the mixing diagram (Betts 1992) can be given analytically (inverting
the axes) as

q̃(θ̃) = γθ (1 + β)

λρ(1 + 2β)

1

θ̃

∫ t

0
Q(u)du + 1

2
θ̃

(
γq(1 + 2β)

γθ (1 + β)
− cp

λ(1 + β)

)
. (34)

The resulting mixing diagram is shown in Fig. 4. Generally, humidity increases slower (or
even decreases) in the morning and then increases more rapidly in the afternoon. This can
be explained by the diurnal pattern of ABL growth rate that is more rapid in the morning
and consistently decreases during the following day as shown in Fig. 1 (right). Due to this
slowdown in ABL growth rate, entrainment from the free atmosphere transports more dry air
into theABL in themorning than in the afternoon, thus exhibiting a convex shape in themixing
diagram. When the potential temperature lapse rate (γθ ) decreases, the atmosphere becomes
more unstable and the ABL grows more rapidly, leading to greater dry air entrainment as
shown in Fig. 4 (left). When increasing the slope of specific humidity (γq), the atmosphere
becomes more humid and entrainment brings more moist air to the ABL as indicated in Fig. 4
(right).

Instead of deriving the surface fluxes by directly analyzing the approximations of Eqs. 2a
and 2b, it is simpler to use the approximate solution for the ABL height to derive the effective
Bowen ratio. Using the approximated solution h(t) in Eq. 33, its differential form h

′
(t) =

f (t)/heq(t) + C ′, and ABL growth equation (8), one can obtain effective sensible heat flux
(He(t))

He(t) =
[

f (t)

heq(t)
+ C ′

] [
heq(t) + C ′t

] ργθcp
1 + 2β

. (35)

With Eq. 35, one can further find the effective Bowen ratio through the definition Eq. 12 as
Boe(t) = He(t)/[Q(t) − He(t)].

This Bowen ratio can then be used to find the surface sensible and latent heat fluxes in the
same manner. The resulting Bowen ratio is shown in Fig. 5 with the numerical solution for
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Fig. 5 Bowen ratio from the full
numerical simulation (M1) and
analytical approximation (M4)
(the parameters are listed in
Table 2)
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comparison. The approximate solution partitions heat flux well and, while simplifying the
shape somewhat, also captures the time dependence of the Bowen ratio.

7 Solution with a Constant Effective Bowen Ratio (Model M5)

Porporato (2009) analytically solved a simplified case of constant Bowen ratio but left open
the question of how to assign an appropriate value for the constant Bowen ratio. We have
already shown that using the algebraic limit (Bomax = Boeq) derived in Porporato (2009)
for the constant Bowen ratio corresponds to the equilibrium solution (28). However, this
value is not the best choice for a constant effective Bowen ratio, since it would significantly
overestimate the rate of growth of themixed layer (see Fig. 1). A reasonable choice of constant
effective Bowen ratio (Boce) is to use the mean value during the diurnal period,

Boce = 1

T

∫ T

0
Boe(u)du. (36)

With the assumption of constant Bowen ratio Boce, θ and q show a linear relationship with
h as derived in Porporato (2009). Replacing the Bo in Eq. 13 with Boce, one can find the
governing equation for the boundary-layer growth,

dh

dt
=

(
1 + 2β

ρcpγθh

)[
Boce

1 + Boce
Q(t)

]
. (37)

This ordinary differential equation is solvable and the solutions to the ABL height and other
atmospheric variables can be found in Porporato (2009), simply by replacing Bo with Boce.
This model is hereafter referred to as M5.

A comparison of the ABL height evolution from the full numerical simulation (M1) and
this effective constant Bowen ratio model (M5) is shown in Fig. 6. As can be seen, the
analytical solutions with effective constant Bowen ratio reach an acceptable approximation.

8 Model Testing

To test the various models and approximation methods (as listed in Table 1), we use sounding
profiles and surface heat-flux data from the Atmospheric Radiation Measurement (ARM)
Program (http://www.arm.gov/) at Central Facility in Southern Great Plains (CF-SGP).
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Fig. 6 The mixed-layer height
predicted by the full numerical
simulation (M1), constant
equilibrium Bowen ratio (M3)
and constant effective Bowen
ratio (M5) (the parameters are
listed in Table 2)
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Table 1 Summary of Hierarchy of Models

Model Equation Description

M0 – Full numerical simulation of the coupled surface-ABL dynamics. The
governing equations for M0 are the same as those for M1, except
replacing θ , γθ , and H with θv , γθv , and Hv , respectively

M1 1–8 Full numerical simulation of the coupled surface-ABL dynamics (w′θ ′
v is

approximated as w′θ ′ for parametrizing the entrainment flux)

M2 25 Numerical simulation of ABL dynamics with linearized saturation vapour
pressure curve. The ABL height is modelled by Eq. 25. In this study,
model M2 is a transitional model, which is then used to derive model
M3, M4, and M5

M3 28 Analytical solutions for the ABL dynamics with assumption of constant
equilibrium Bowen ratio

M4 33 Analytical approximation based on model M3 with further inclusion of C ′.
ABL height [h(t)] is modeled in Eq. 33, and other ABL variables such as
θ and q can be derived by substituting h(t) for h(t) in Eq. 15 and 16

M5 36 Analytical approximation for the ABL dynamics with the assumption of
constant effective Bowen ratio

Radiosonde data in CF-SGP are often available in the early morning (0530 local time) and
late afternoon (1730 local time). More details on radiosonde, surface flux and meteorological
data can be found in Hubbe et al. (1997) and Santanello et al. (2005). Radiosonde measure-
ments of temperature, pressure, and relative humidity were converted to profiles of potential
temperature and specific humidity. Half-hour accumulated precipitation is available from
the Surface Meteorological Observation System (SMOS). Half-hour averaged soil moisture,
surface latent heat flux, and sensible heat flux are measured with an Energy Balance Bowen
Ratio (EBBR) Station.

In CF-SGP, the vegetation is mainly grass and pasture. Under well-watered conditions,
surface resistance rs is set to a typical value of 70sm−1, and aerodynamic resistance ra
(sm−1) for the grass surface is approximated as ra = 208/u2, where u2 is the wind speed at
2m (Allen et al. 1998). Net available energy is modelled as Q(t) = Qmax[1 − (t/t0 − 1)2],
where t0 = 6 h is the time of midday.

Clear-sky days under well-watered conditions from 2002 to 2009 in summer were chosen
to test the model. The calibrated parameters for these ensemble mean profiles (shown in
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Fig. 7 Ensemble profiles of early morning clear-sky potential temperature and specific humidity from 2002
to 2009 in summer under well-watered condition at the Central Facility, Southern Great Plain. The thick line
shows the mean value, and the solid lines represent one standard deviation from the mean

Table 2 Typical parameters for
model testing derived from
observations in CF-SGP

Variable Value Unit

β 0.2 –

λ 2.45 × 106 J kg−1

ρ 1.225 kg m−3

cp 1005 J kg−1K−1

u2 5.44 m s−1

γθ 0.0065 K m−1

θf0 293 K

γq −3.3 × 10−6 kg kg−1m−1

qf0 0.014 kg kg−1

Qmax 493 W m−2

Fig. 7), representing the typical atmospheric characteristics under well-watered conditions
in the continental temperate region in summer, were used to test the various models and
approximation methods as shown in Figs. 1, 2, 3, 4, 5 and 6. All these typical parameters are
listed in Table 2.

To further test the approximation method from the linearized saturation curve and the
inclusion of C ′ (M4), here we plot its solutions of ABL height at the end of the day against
the full numerical simulations (M1) using the atmospheric parameters from the observations
as in Fig. 8. As can be seen, the approximation method (M4) captures the essential ABL
evolution under various climate conditions.

In the full numerical simulation model (M1), the sensible heat flux is used to approximate
the buoyancy flux for the parametrization of the entrainment by neglecting humidity effects
(i.e. the potential temperature is used in place of the virtual potential temperature). As noted
by Driedonks (1982a), this approximation could underestimate the buoyancy flux and over-
estimate the strength of the buoyancy inversion, thus leading to slower ABL growth. To test
this approximation, we plot the ABL height at the end of the day from the two numerical
models with (M0) and without (M1) humidity effects using the same 94-day atmospheric
parameters in Fig. 9 (left). As can be seen, the ABL height is slightly higher when humidity
effects are considered (M0). However, since the errors are biased, it may be reasonable to
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Fig. 8 ABL height at the end of
the day (t = 12 h) predicted by
analytical approximation M4 and
full numerical simulation M1
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Fig. 9 Left ABL height at the end of the day predicted by the full numerical simulationM1 (without humidity
effects on buoyancy) and M0 (with humidity effects on buoyancy). Right root-mean-square error (RMSE) of
ABL height at the end of the day from M1 varying parameter β

compensate part of these humidity effects by adjusting the entrainment ratio (β). Figure 9
(right) shows that the root-mean-square error (RMSE) of the ABL at the end of the day can
be reduced to a minimum value when the entrainment ratio β is around 0.45.

To analyze the sensitivity of certain parameters to Bowen ratio in the models, we control
two important atmospheric characteristics (γθ and γq ) and compare their sensitivity to the
calculated constant effective Bowen ratio (M5) and the average daytimeBowen ratio from the
full numerical simulation (M1) in Fig. 10. Generally, when the atmosphere is drier (smaller
γq ), a higher vapour pressure deficit leads to greater evaporation and a lower Bowen ratio.
When the upper atmosphere is colder (smaller γθ ), the vapour pressure deficit may become
relatively smaller during the growth of ABL, leading to less evaporation and higher Bowen
ratios. Figure 10 also shows similar tendencies of the Bowen ratio for both models, indicating
that it is possible to use the analytical approximation (M4) at least in the range specified here.

To demonstrate the detail of diurnal evolution of the ABL, we compare the daytime
Bowen ratios from observation with the ones from full numerical simulation (M1), analytical
approximation (M4), and constant effective Bowen ratio (M5) for two typical days at CF-SGP
in Fig. 11. The numerical simulation and the approximation follow the diurnal variation of the
observed Bowen ratios indicating the approximation can efficiently partition the sensible and
the latent heat flux for the given available energy. The model M5 provides constant Bowen
ratios for the heat-flux partitioning in the diurnal evolution and can be efficiently used to
estimate the ABL growth as shown in Fig. 6.
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Fig. 10 Sensitivity of γθ and γq to the constant effective Bowen ratio (M5) and the average daytime Bowen
ratio from the full numerical simulation (M1). The range of γθ and γq covers the selected 94-day observations.
Other parameters are typical values listed in Table 2
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Fig. 11 Diurnal evolution of Bowen ratio from the numerical simulation (M1), analytical approximation
(M4), and observations on 22 June (a) and 25 June (b) 2007

9 Conclusions

We have presented a theoretical investigation of a mixed-layer model for the diurnal con-
vective boundary layer dominated by buoyancy-drive turbulence for which the potential
temperature and specific humidity can be solved in terms of the boundary-layer height and
time. We have further derived the differential equation for the growth of the boundary layer,
h(t), in terms of h(t) and t only and shown, using perturbation methods, that the solution
of Porporato (2009) assuming constant Bowen ratio represents the zero-order approximate
solution to this differential equation. A closed form solution for the first-order approxima-
tion is derived here from which the entire system can be solved algebraically to first order
for a given net radiation function Q(t). The structure of the solution results from the two
components of evaporation (i.e. equilibrium evaporation and evaporation due to the vapour
pressure deficit), allowing us to see the effects of the energy and moisture balances on the
growth of the ABL in closed form.
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