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ABSTRACT

We investigate the predictability of East African short rains at long (up to 12 month) lead times by relating

seasonal rainfall anomalies to climate anomalies associated with the predominant Walker circulation, in-

cluding sea surface temperatures (SST), geopotential heights, zonal and meridional winds, and vertical ve-

locities. The underlying teleconnections are examined using a regularized regression model that shows two

periods of high model skill (0–3-month lead and 7–9-month lead) with similar spatial patterns of predict-

ability.We observe large-scale circulation anomalies consistentwith theWalker circulation at short lead times

(0–3 months) and dipoles of SST and height anomalies over the Mascarene high region at longer lead times

(7–9 months). These two patterns are linked in time by anticyclonic winds in the dipole region associated

with a perturbedmeridional circulation (4–6-month lead). Overall, these results suggest that there is potential

to extend forecast lead times beyond a few months for drought impact mitigation applications.

1. Introduction

Food security has been and continues to be a major

challenge in eastern Africa. This region is particularly

vulnerable to extreme weather events like droughts and

floods, because the regional economy and food pro-

duction are largely dependent on rainfed agriculture. As

an example, the 2011–12 drought caused a disastrous

food crisis that impacted more than 13 million people

in theHorn of Africa, killing between 50 000 and 100 000

people (Hillier and Dempsey 2012). These impacts

perpetuate a cycle of poverty (Barnett et al. 2008) and

highlight the critical need for improved climate resil-

iency in the region. Toward this end, this study seeks

to improve seasonal predictions of rainfall in East

Africa, with a particular focus on extended lead times

(.6 months), to enable early warning systems and

mitigative actions that can help reduce the impacts of

major droughts and floods.

Eastern African rainfall seasonality is bimodal, with

two distinct rainy periods termed the ‘‘long rains’’

(March–May) and the ‘‘short rains’’ [October–December

(OND) or October–November (ON)]. Interannual vari-

ability of rainfall from the two seasons is relatively in-

dependent (Clark et al. 2003), with higher variability in

the short rains but more total rainfall during the long rain

season (Mutai et al. 1998). Further, interannual variabil-

ity in the short rains is more closely related to external

forcing (Hastenrath et al. 1993, 2004). This motivates

our focus on improving the predictability of the East

African short rains (EASR) in the study presented here.

There is a well-established teleconnection between

EASR and forcing from large-scale circulation over the
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Indian Ocean basin. Under normal conditions, the short

rains are influenced by a Walker circulation cell char-

acterized by surface westerlies over the Indian Ocean,

ascending air over Indonesia, upper-level easterlies, and

descending air over East Africa (Hastenrath 2007).

Intensification of this circulation can result in drier

conditions in East Africa. This cell, and by extension

East African rainfall, can be modulated by underly-

ing sea surface temperature anomalies (SSTAs) in the

Indian Ocean. Saji et al. (1999) related tropical East

African rainfall anomalies to the Indian Ocean dipole

(IOD), a gradient in SSTAs with positive events defined

by warm waters off the coast of East Africa and cold

waters near Indonesia. Black et al. (2003) identified a

similar relationship but found it to be strongly nonlinear,

with rainfall anomalies only associated with extreme and

persistent SSTA events that reverse the normal zonal

SST gradient for several months. Under these situations,

strong easterly winds in the northern-central Indian

Ocean weaken the westerly surface flow that normally

transports moisture away from East Africa. The anom-

alous easterlies can even reverse the full Walker cell,

enhancing convergence and convection over East Africa

and leading to greater rainfall in that region during

boreal autumn.

The dynamical pathways were further explored by

Ummenhofer et al. (2009), who used ensemble simula-

tions to show that the warm western SST pole of the IOD

has a larger role than the eastern cold pole in promoting

stronger easterly winds from the Indian Ocean and

moisture convergence over East Africa. Bahaga et al.

(2015) also confirmed the dominant role of the western

pole of the IOD using AGCM simulations, which dem-

onstrated that the warmwestern pole initiated aGill-type

response. In Hastenrath et al. (2011), the important role

of upper-level atmospheric motion was addressed: the

summer warming and high stand of upper-tropospheric

topography over South Asia enables strong upper-

tropospheric easterlies over the northern-central Indian

Ocean in the following boreal autumn, while lack of

such a mechanism in boreal spring leads to less predict-

ability of the long rains. Amore recent study byNicholson

(2015) utilizing a 139-year rainfall record showed that the

links between theWalker cell and the East African short

rains were significantly weaker during certain historical

periods (e.g., 1920–60) and stressed the time depen-

dence of the links. The nonstationary correlation be-

tween Indian Ocean SSTs (e.g., IOD) and EASR was

further investigated by Bahaga et al. (2019), which

suggests that more interannual variability of the EASR

was explained by the Indian Ocean SSTs in recent years.

Many studies have demonstrated the potential for

seasonal prediction of the EASR based on the above

teleconnection patterns (Mutai et al. 1998; Hastenrath

et al. 2004; Behera et al. 2005; Nicholson 2014; Walker

et al. 2019). Much of the prediction skill appears linked

to dynamics internal to the Indian Ocean, and in par-

ticular, measures of the Walker cell across the Indian

Ocean. While there is some predictability associated

with dynamical fields, the east–west SSTA gradient

provides superior prediction skill up to three months

lead time. Mutai et al. (1998) developed a regression

model using the July–September and OND principal

components associated with ‘‘varimax’’-rotated empiri-

cal orthogonal functions (EOFs) of the global SSTs,

which yielded correlation coefficients r of [0.56–0.78] in

the testing period at a lead time of 1 month. Hastenrath

et al. (2004) used a stepwise regression model with

multiple predictors that are measures of the Walker cell

(e.g., surface and upper-level zonal winds, vertical air

motion, SST gradient, and pressure difference), and

produced cross-validated correlation coefficients within

the range of [0.02, 0.74] at a lead time of 1 month.

Nicholson (2014) used a similar regression framework

and achieved cross-validated r scores of 0.7 at a lead

time of 2 months primarily using atmospheric predic-

tors, and r scores within [0.6, 0.71] at a lead time of

5 months using mainly SST predictors. Other work

(Behera et al. 2005; Tierney et al. 2013) also suggests

that ENSO plays a limited role in controlling modula-

tions in the Walker cell over the Indian Ocean, and thus

has less value for seasonal forecast development com-

pared to direct observations of the Indian basin circu-

lation. Also, Bahaga et al. (2019) disentangled the IOD

and ENSO influence on the EASR, showing that the

ENSO influence is mediated by an in-phase occur-

rence of IOD.

To the best of our knowledge, the longest lead times of

skillful seasonal forecasts have been limited to around

3–5 months. These lead times are related to measures of

theWalker cell used in forecast development, which are

first observed as SSTAs over the eastern Indian Ocean

that develop in June (Tozuka et al. 2016). These lead

times, while useful, may not be long enough to enable

decision makers to effectively execute mitigative ac-

tions. For example, if water managers knew that there

was a high likelihood of drought in the short rains prior

to or during the previous long rain season (6–8-month

lead), they could prepare by reducing the allocation of

water supplies provided by the long rains to mitigate

water shortages later in the year. Similarly, long lead

times are needed for use in cropping decisions. This

motivates the question of whether we can extend sea-

sonal forecast lead times of the East African short rains

by focusing on large-scale climate processes that trigger

subsequent perturbations in the Walker cell.
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We posit that a focus on the Mascarene high and

its relationship to interannual variability of EASR

presents a promising approach for this extension. The

Mascarene high (MH) is a semipermanent subtropical

ridge in the Southern Hemisphere off the coast of

Madagascar and has been shown to have great impacts

on variability of the Asian Monsoon (Turner and

Annamalai 2012; Xue et al. 2004). Black et al. (2003)

proposed that anomalies in the MH could initiate a

perturbed meridional circulation cell, that in turn

could influence the Walker circulation and by exten-

sion EASR. The link between the MH and EASR

was further studied by Manatsa et al. (2014), who

used correlation and composite analyses for flood and

drought events based on observations and reanalysis

data to explore the connection and found that EASR

variability is strongly linked to the zonal displacement

of theMH.When theMH eastern ridge is anomalously

displaced to the west, the southeast trade winds over

the southern Indian Ocean strengthen, which alters

the SST pattern and leads to suppressed convection

over East Africa. Conversely, when the MH eastern

ridge is anomalously displaced to the east, the south-

east trade winds over the southern Indian Ocean

weaken, which again alters the SST pattern and leads

to enhanced convection over East Africa. However,

the seasonally lagged relationship between anomalies

in the MH, the Walker circulation, and EASR has not

been sufficiently studied to determine whether there is

potential to extend forecast lead times of EASR.

This important research gap is a major motivation of

this paper.

In this study, we first explore potential predictors

from a predictor pool consisting of multiple climate

fields over the Indian Ocean using a regularized re-

gression model. Instead of only using spatially averaged

rainfall as the predictand, the regression analysis is re-

peated for rainfall at every grid cell to examine spatial

variability of the predictive skill. Then, regression co-

efficient maps are compared with Indian Ocean basin

composites prior to historical extreme EASR events to

better understand the predictive signals being identified

by the regression models. Using a cross-validated pro-

cedure and additional lead–lag analyses on large-scale

climate fields, we assess the robustness of the regression

models and the resulting insights. On the basis of these

results, we propose a theory on the potential for ex-

tended predictability of EASR.

2. Data

Monthly rainfall data between 1981 and 2017 are

collected from the Climate Hazards Group Infrared

Precipitation with Station data (CHIRPS) (Funk et al.

2015) for their fine spatial resolution and relatively long

temporal coverage. The gridded rainfall data incorpo-

rate satellite imagery (0.058 3 0.058 resolution) and

in situ station data and are reinterpolated to grids of 0.58
in this study. The CHIRPS rainfall performed very well

when compared with in situ observations, likely because

of its direct inclusion of rain gauge data and microwave

images during calibration (Kimani et al. 2017). This

study focuses on the equatorial East African region

(land area in 58S–58N, 338–478E), similar to the short

rains area used in Bahaga et al. (2019). This region has a

well-defined rainfall regime with consistent, bimodal

seasonality (Yang et al. 2015). Average rainfall between

October and November is used to characterize the short

rains in this study. Previous studies of the short rain

season have either used rainfall over the OND (Mutai

et al. 1998; Clark et al. 2003; Bahaga et al. 2019) or

ON (Hastenrath et al. 2004, 1993; Behera et al. 2005;

Nicholson 2015) period to represent the short rains. Our

preliminary analysis (Fig. S1 in the online supplemen-

tal material) suggested that predictability was slightly

higher for theON rainfall than for theOND rainfall, and

when regressions were built separately using October,

November, and December rainfall there was little con-

nection between December rainfall and large-scale cli-

mate fields. Therefore, we selected ON rainfall as our

short rain index to better isolate the predictive signal.

The distribution of the EASR is highly skewed, which

can overly emphasize a few extreme wet events in sta-

tistical analysis of the data. Therefore, the standardized

precipitation index (SPI) is used on the basis of a fitted

gamma distribution (McKee et al. 1993). The EASR

series at all grid cells were first averaged and then the

SPI was calculated using the spatial average. Extreme

events are defined as the events with absolute values of

SPIs larger than 1 as based on the spatial-averaged

EASR SPI, which is shown in Fig. 1.

The monthly gridded SSTs (18 latitude by 18 longi-
tude) over 1980–2017 are collected from the Hadley

Centre Sea Ice and Sea Surface Temperature dataset

(Rayner et al. 2003). Only SSTs in the Indian Ocean

basin are used here since previous studies suggest the

influence of SSTs on the EASR is ‘‘local’’ (Ummenhofer

et al. 2009; Bahaga et al. 2015). The Indian Ocean basin

domain is based on the ocean boundary definition from

the National Oceanic and Atmospheric Administration

(https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/

woce-uot/summary/bound.htm). Several other climate

fields (2.58 3 2.58 resolution) over the region of 658S–
358N, 208–1508E are also taken from the NCEP–NCAR

Reanalysis II product over the period from January

1980 to December 2017, including 850-hPa geopotential
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height (hereinafter height or HGT), 850-hPa (low) and

200-hPa (upper) zonal/meridional winds (u/y winds),

and 500-hPa vertical motion in the atmosphere (omega).

Standardized anomalies are computed for all variables

except rainfall by first subtracting the monthly clima-

tology and then dividing by the local standard deviation

to reduce the effects of the dominant seasonal cycle and

varying amplitudes at different latitudes. This step is

done locally at each grid cell.

3. Methods

Linear models between the EASR SPI and several

gridded climate variables (SST, height, u/y wind, and

omega anomalies) at different lead times are developed

using elastic net regression (Zou and Hastie 2005).

Elastic net is a penalized regression that is a balance

between ridge (Hoerl and Kennard 1970) and the Least

Absolute Shrinkage and Selection Operator (LASSO;

Tibshirani 1996) regression and promotes group selec-

tion, that is, the inclusion or exclusion of groups of

strongly correlated variables in the model. This ap-

proach helps manage collinearity and avoid overfitting

by selecting predictors among a large candidate set but

retains groups of potentially important predictors instead

of arbitrarily assigning the effect to a single variable

(i.e., LASSO regression). A general form is given by

(a,b)5 argmin

2
4 1

2N
�
N

i

 
y
i
2a2�

j

b
j
x
i2t,j

!2

2lP(b)
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where the penalty term P(b) is given by

P(b)5
12 k

2
�
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b2
j 1 k�
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jb
j
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Here, yi is the EASR SPI at time i, xi2t,j is the value of a

climate variable at grid cell j at time i 2 t, (a, b) are the

estimated regression coefficient, and l is a nonnegative

regularization parameter. The parameter k controls the

balance between ridge and LASSO penalties and is set

to 0.01 in this study after preliminary testing of model

performance with different k values. Models with dif-

ferent values of k (i.e., 1, 0.1, 0.01) yield similar model

skill, and a smaller k is used for better visualization

(models with larger k would assign effects to very few

predictors, leading to very sparse coefficient maps). On

the basis of this parameterization, the model selects

several groups of gridded climate variables from the

original data fields that are representative of the larger

spatial patterns of climate related to the short rains.

The hyperparameter l is typically chosen using a

J-fold cross validation (CV) basd on the training data

(Tibshirani 1996; Breiman and Spector 1992). However,

to repeat the CV for every climate variable and every

lead time is not feasible given the computation expense.

In addition, a constant l helps ensure the degree of

shrinkage is the same across each variable and lead time,

making it easier to compare the results. Therefore, for

each of the climate variables we fix the value of l for all

lead times. We first select l using a 10-fold cross vali-

dation for 0 lead time based on all of the data between

1981 and 2017. This step is repeated separately 100 times

for each climate variable to account for variability in-

troduced through the random selection of fold. The

values of l are then collected and the median values are

selected and used in the following analysis. We note that

sensitivity tests suggest that the regression model has

low sensitivity to the value of l.

With the hyperparameters (i.e., k and l) determined,

the models are fitted and tested 200 times using shuffled

data, where in each iteration 27 randomly selected years

are used for model training and the remaining 10 years

are used for model testing. This cross-validation proce-

dure is used to assess the robustness of regression model

results. The spatial-averaged EASR SPI is used as the

FIG. 1. The spatial-averaged EASR SPI series from 1981 to 2017.
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predictand and the analysis in this step is conducted

separately for each individual climate variable using the

corresponding ls. Also, to account for spatial variability

of the predictability, the regression is repeated using SPI

at every grid by fitting the model using only SST as the

predictor. These models are only fitted over 1981–2009

and tested over 2008–17. All results are evaluated in

terms of the distribution of model skill, reported

as the Spearman’s correlation coefficient (CC). The

statistical significance of the regression coefficients is

not straightforward to calculate using a regularized

regression and so is not reported (Javanmard and

Montanari 2014).

The elastic net regression will lead to a small number

of selected grid cells for a subset of climate predictors

that are most related to the EASR at different lead

times. The spatial patterns of these selected climate

predictors are also compared against climate composites

to ensure the models are consistent with those com-

posite patterns. According to our definition of EASR

extremes, there are six wet extreme events (1982, 1994,

1997, 2006, 2011, and 2015) and five dry extreme events

(1981, 1983, 1998, 2005, 2010) in the 1981–2017 record.

We composite SST, height, u/y wind, and omega anom-

alies 0–12months prior to these extreme dry and extreme

wet events. We examine composites on the difference

between wet and dry events and separately for each

type of event, to consider asymmetric controls on wet

and dry events that are driven by different processes

(Black et al. 2003; Nicholson 2015). A bootstrapping

significance test is applied in the composite analysis,

in which 1000 composite means of six randomly se-

lected years (for the wet composite) and five randomly

selected years (for the dry composite) are collected and

their difference are calculated (i.e., 1000 composite

differences). On the basis of these bootstrapped com-

posites, only the results that are statistically significant

at the 90% level are shown.

Last, a lead–lag correlation analysis is conducted to

further examine the patterns found in the regression and

composite analyses. We define indices of large-scale

climate fields for several of our covariates in key regions

of the Indian Ocean basin identified in the previous an-

alyses, and then examine the lead–lag correlations of

these indices with each other and with other indices from

previous studies used to characterize the Walker circu-

lation. The goal of this analysis is to help develop a better

understanding of the causal chain of climate processes

that lead to long-lead predictability of the EASR.

4. Results and discussions

a. Model skill with shuffled data using spatially
averaged SPI

Regression model skill for the testing period using

shuffled data is shown in Fig. 2. For all climate variables,

consistent decreasing trends in accuracy are observed

for out-of-sample predictions as lead time increases

from 0 to 5/6 months, with median CC values above or

around p 5 0.1 significance for concurrent (lag 0) pre-

dictions to around zero skill at a lead time of 6 months.

We note the level of skill exhibited by the elastic net

regression at lead times of 0–6 months is similar to that

from the multiple linear regression by Nicholson (2014).

Interestingly though, at longer leads (6–10 months) and

FIG. 2. Model skill, shown here as a Spearman correlation between model predictions and observations, as a function of lead time for the

testing period using shuffled spatially averaged EASR SPI. The model predictors are anomalies of (a) SST, (b) 850-hPa HGT, (c) 500-hPa

omega, (d) 850-hPa u wind, (e) 200-hPa u wind, (f) 850-hPa y wind, and (g) 200-hPa y wind. The 25th–75th-percentile ranges are plotted as

green lines; themedianCCs are shownwith red diamonds. The horizontal black dashed lines indicate the one-tailed p5 0.1 significance level.
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for some climate predictors, out-of-sample prediction

performance increases to levels comparable to lead

times of 0–2 months, before dropping again to non-

significant levels at lead times of 11–12 months. When

SSTAs are used as predictors and at a lead time of

8 months, even the 25th percentile of prediction skill is

above the 0.1 significance level. At a lead time of

10 months, the median CCs are around the significance

level formodels using height, omega, and 200-hPa uwind;

at a lead time of 12months, themedianCCs are above the

significance level for models using height and omega.

b. Spatial variability of predictive skill

Spatial variability of the predictive skill is examined

by repeating the regression analysis for SPI at each grid

cell. Only SST is used as the predictor, and the data are

not shuffled in this analysis. Model skill as a function of

lead time is shown in Fig. 3. Consistent patterns are

observed: at lead times of 0–5 months, model skill drops

from above the 0.1 significant level to around zero skill;

at a lead time of 8 months, model skill rises above that

observed at a 0 lead. Tomake visualization of the results

easier, we divide the lead times into ranges roughly

based on behavior of the prediction skill: 1) S1: lead

times of 0–3 months; 2) S2: lead time of 4–6 months;

3) S3: lead times of 7–9 months; and 4) S4: lead times of

10–12 months. Prediction skill maps for our study area

during the 4 seasonal lead times are shown in Fig. 4.

During S1 and S3, at most grid cells (83% and 80% for

S1 and S3, respectively), significant prediction skill

is observed for least one month within the season.

However, only 54% and 62% of the grid cells are found

to have significant prediction skill during S2 and S4,

respectively. More grid cells with significant prediction

skill are distributed along the coast for S4 and farther

inland for S2. Similar spatial patterns are observed for

S1 and S3, in which only some grid cells around the

central region are found to not have significant predic-

tion skill. The gap region with relatively poor predictive

skill overlaps with the eastern part of the East African

Highlands. While the poor predictive skill could be

physically based, we cannot rule out the possibility that

it is resulted from the elevation-associated bias in the

rainfall data (Kimani et al. 2017). We do note that

consistent patterns of predictive skill were observed

when the analysis was repeated using rainfall from

the Global Precipitation Climatology Project (GPCP)

(Fig. S2 of the online supplemental material).

c. Comparison between climate composites and
regression predictor patterns

The predictive skill at lead times of 7–9 months is

notable because the anomalous Walker circulation has

not yet been initiated (Tozuka et al. 2016), suggesting

there is some other mechanism besides the tropical

Walker cell acting as a source of predictability. To better

understand this source and determine how it propagates

into shorter lead times, spatial distributions of regres-

sion coefficients for each period are examined in Figs. 5

and 6. The coefficients are fitted using the full series of

the spatially averaged ESAR SPI between 1981 and

2017 and the regression analysis is done individually for

each climate variable. Results from the u wind and

ywindmodels are combined to produce coefficient maps

for lower (850 hPa) and upper (200 hPa) winds. The

coefficients represent sparse selection of predictor var-

iables under elastic net regression from the large can-

didate set for the entire domain and highlight those

regions that provide the best source of predictability at

different lead times. It is worth mentioning here that the

regularization procedure is designed to select only a

small subset of grid cells to be included in the final model

as a way to control for collinearity among the full co-

variate set. Therefore, the set of regression coefficients

can be used to identify ‘‘hot spots’’ where a certain cli-

mate variable most strongly contributes to the telecon-

nection, but the coefficients should not be interpreted as

representing the true spatial extent of significant rela-

tionships between the climate fields and EASR. Hence,

the coefficient maps are compared with composite maps

(Figs. 7 and 8) of wet–dry years that include no regula-

rization and therefore present the teleconnection pat-

terns more continuously.

During S4, negative (cold) SST coefficients are ob-

served off the coast of the Horn of Africa while positive

(warm) SST coefficients are observed near the Sumatra

region, resembling a negative-phase Walker circulation

(Fig. 5d). Other characteristics of this negative phase are

also observed: positive (subsiding) omega coefficients

are observed over East Africa (Fig. 5l) and westerlies

FIG. 3. Similar to Fig. 2, but showing the distribution of regres-

sion model skill at each EASR SPI grid cell. The model is fit to SST

data between 1981 and 2007, and correlation coefficients are shown

for the testing period (2008–17).
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are observed over the tropical Indian Ocean for the

850hPa winds (Fig. 6d). All these factors contribute to

less convection over East Africa and less transport of

water vapor from ocean to land, which result in a drier

short rain event. This suggests that dry short rain seasons

tend to precede wetter seasons in the following year,

which is supported by the negative autocorrelation of

the EASR SPI at a 1-year lead time (Spearman’s rank

correlation yields 20.47 for 36 samples; one-tailed

p , 0.005).

Range S3 has notably high prediction skill observed

before the initiation of the perturbed Walker circula-

tion. In the SST coefficient map (Fig. 5c), clusters of

positive (warm) coefficients are observed around the

Mascarene high area over the southern Indian Ocean

and negative (cold) coefficients are sparsely distributed

over the central and northern Indian Ocean. Positive

height coefficients are also observed in areas slightly

farther to the north (Fig. 5g). During S2, the model

ceases to select SST predictors, as the SSTA and height

features associated with the perturbed MH fades out

and the modulated Walker cell is not fully developed

(Fig. 5b). Instead, the model emphasizes southerlies

around the eastern Indian Ocean near the Sumatra re-

gion for 850hPa winds (Fig. 6b). A plausible explanation

for the drop inmodel skill during the transition period of

S2 is that the climate variables chosen by the model (i.e.,

winds) are noisy, both in terms of measurement (i.e.,

reanalysis model) error and possibly with respect to

geographic location, and therefore are more difficult

for the regression model to use when predicting EASR.

Patterns of coefficients during S1 are very consistent and

well described by theWalker circulation theory: positive

(warm) SST coefficients (Fig. 5a) and negative (uplift-

ing) omega coefficients (Fig. 5i) are observed in the

western basin and opposite coefficients for the eastern

basin; negative coefficients are observed over the trop-

ical Indian Ocean for low-level winds (Fig. 6a). The

eastern Indian Ocean is dominated by positive height

coefficients (Fig. 5e). Another relevant point is that

the southerlies for low-level winds around the eastern

Indian Ocean persists from S2 to S1 (Figs. 6b,a).

FIG. 4. Maps of the best intraseason prediction skill for different lead-time ranges. The regression analysis is conducted for periods

of (a) S1 (lead times 5 0–3 months), (b) S2 (lead times 5 4–6 months), (c) S3 (lead times 5 7–9 months), and (d) S4 (lead times 5
10–12months), and the best intraseason skill is defined as the highest CC score for the testing period within the corresponding season. The

grid cells with significant prediction skill (one-tailed p 5 0.1) are marked with dots.
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We note that, for all seasons, regression coefficients

for omega are noisy (Figs. 5i–l) and predictive skill using

this variable is erratic (Fig. 2c). Additional analysis (not

shown) suggests these effects are a result of the spatial

heterogeneity in the omega field, which can lead to in-

stability in the regression model fit and predictions

(as compared to smoother fields like SST and HGT).

Results from the composite analysis for the difference

between historical extreme wet and dry events are

shown in Figs. 7 and 8. These are consistent with the

patterns seen in the individual coefficient maps but aid

in highlighting the important features. During the pre-

vious short rain season (S4; Figs. 7d and 8d), anomalous

tropical westerlies at low levels and easterlies at high

levels are observed and associated with a tropical Indian

Ocean SSTA gradient, with cold waters in the west

and warm anomalies in the eastern Indian Ocean.

The Sumatra region is dominated by negative omega

anomalies, or enhanced uplifting, which is consistent

with the local warm-water pool and negative height

anomalies at that time. The low-level pressure gradient

and uplifting over Sumatra are also associated with

anomalous surface westerlies that advect moist air away

from East Africa, reducing the short rains.

During S3 (Figs. 7c and 8c), a second dipole of SST

anomalies appears over the central and southern Indian

Ocean southeast of Madagascar (the Mascarene high

area). A similar dipole pattern of height is observed. The

warm SST pole is also dominated by anomalously pos-

itive height with a low-level anticyclonic wind pattern

forming around it. During S2 (Figs. 7b and 8b), the di-

pole of SST dissipates, and cold water continues to ac-

cumulate over the tropical eastern Indian Ocean.

During S1 (Figs. 7a and 8a), the anomalous easterly

winds at low levels on the northern extent of the anti-

cyclone reach the equator and strengthen. Over this

same timeframe, cold water keeps accumulating over

the tropical eastern Indian Ocean near the Sumatra

FIG. 7. Composite maps for the difference between historical extreme wet and dry events for SST (shading), 850-hPa HGT (contours),

and 850-hPa winds (arrows) for (a) S1, (b) S2, (c) S3, and (d) S4. Results are only shown if significant when compared with a bootstrapped

90% confidence interval.
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region, with mild, warm SSTAs in the western basin.

Anomalously positive height anomalies dominate the

tropical eastern Indian Ocean around Sumatra prior to

the short rain season. Positive omega anomalies (sub-

siding air) are also observed over Sumatra while nega-

tive omega anomalies (uplifting air) are observed over

the Horn of Africa. At high levels, the tropical region is

dominated by anomalous westerlies. These anomalous

conditions are all consistent with perturbations to the

Walker circulation that have been proposed previously

as controlling factors for the short rains and useful

measures for seasonal forecast development (Mutai

et al. 1998; Hastenrath et al. 2004; Behera et al. 2005;

Nicholson 2014).

Similar composite maps are also examined for wet ex-

treme and dry extreme composites separately (Figs. S3–S6

in the online supplemental material). Overall, the av-

erage structures of the wettest and driest seasons ap-

pear relatively symmetric and represent opposite phases

of the ‘‘wet–dry’’ composite maps. Some noticeable

differences are that in the wet-only events, the dipole of

SSTAs is muchmore significant than that in the dry-only

events, when the SSTAs over the Mascarene high area

are relatively muted. In general, the long-lead progres-

sions averaged over wet and dry short rain seasons tend

to mirror each other.

From the analysis given above, extreme short rain

events appear to be associated with dipoles of SST and

height anomalies and an anticyclone-like wind pattern

at long lead times (S3, 7–9 months in advance). We in-

terpret the dipole of SST and height anomalies that

peak during S3 as the manifestation of an intensified

Mascarene high. The eastern branch of that circulation

advects cold water to the eastern Indian Ocean near

Sumatra from high latitudes, while the western branch

of the low-level high advects equatorial warm water

farther south. As the dipole mode dissipates during S2,

we draw on the theory proposed by Black et al. (2003)

to explain how processes maintain or even enhance

the cold-water pool over the eastern Indian Ocean.

FIG. 8. As in Fig. 7, but for 500-hPa omega (shading), 850-hPa HGT (contours), and 200-hPa winds (arrows).

JUNE 2020 PENG ET AL . 1087

Brought to you by CORNELL UNIVERSITY | Unauthenticated | Downloaded 08/24/21 08:59 PM UTC



We hypothesize that the local cold-water pool in that

region modulates the Hadley circulation, perturbing

meridional winds at a larger scale. This perturbed me-

ridional circulation induces anomalous southerlies that

keep transporting cold water to the eastern Indian

Ocean from high latitudes. This process is also consis-

tent with our observations during S2 and S1 when

anomalous southerlies are observed over the eastern

tropical Indian Ocean in the wet–dry composites, along

with subsiding air over Australia near 308S. The en-

hanced cold pool around Sumatra then exerts a posi-

tive feedback to the anomalous Walker circulation,

which provides the strongest source of predictability

for the short rains 0–3 months (S1) in advance.

d. The lead–lag analysis between large-scale
climate indices

To further test the proposed causal chain, three indi-

ces are defined based on key features of the regression

coefficient maps and climate composites from the ana-

lyses above (Fig. 9). These include a long-lead SST di-

pole index (SL), a long-lead pressure dipole index (HL),

and a long-lead meridional wind index (VL). The SL is

defined as the difference between spatially averaged

SSTs in two regions: 508–358S, 408–808E (SLp) and 08–
208N, 508–1008E (SLn). The HL is defined as the differ-

ence between spatially averaged 850-hPa geopotential

heights in those same two regions. The SL and HL are

used to represent dipoles in SSTs and heights that

emerge with an anomalous Mascarene high during S3.

The VL is defined as the spatially averaged 850-hPa

meridional wind in the region 158S–58N, 908–1008E (VL)

and is used to quantify anomalous southerlies that

transport cold water from higher latitudes during S2–S1.

As a measure of the Walker circulation during S1, a

short-lead SST dipole index (SS) based on Hastenrath

et al. (2004) is defined as the difference between aver-

aged SSTs in 58S–108N, 458–558E (SSp) and 158S–58S,
908–1108E (SSn).

Figure 10 shows the lead–lag correlations of these

different climate indices. Here, correlations in the upper

left or lower right are associated with situations in which

the index on the vertical-axis leads or lags, respec-

tively, the index on the horizontal axis. Figure 10a

demonstrates a strong statistical coupling between the

Mascarene high–related dipole in SSTs (SL) and heights

(HL) at lead times between 6 and 10 months prior to the

short rains. The correlations indicate that anomalies

in heights precede those in SSTs by between 1 and

3 months, suggesting that the SST anomalies are forced

by atmospheric anomalies. The comparison between SL

andVL in Fig. 10b highlights that the long-lead dipole in

SSTs for much of the year preceding the short rains, but

especially at a lag of 7–10months (December–March), is

related to anomalous southerly winds in August and

May (2 and 5 months prior to the start of the short rains,

respectively). Figure 10c then shows that those southerly

winds exhibit strong concurrent or slightly lagged rela-

tionships with the SS that provides a measure of the

anomalous Walker cell. This is consistent with the the-

ory that the Walker circulation is enhanced during S1

by persistent southerlies transporting cold water from

higher latitudes to the eastern tropical Indian Ocean.

We also see that the SS and VL indices are correlated in

August and May (for VL leading SS and vice versa),

suggesting a link between the southerly winds and the

enhanced Walker cell during the transitional S2 season.

We also note that the long-lead SL index is highly cor-

related with the short-lead SS index, with the correlation

reaching 0.58 when the SL index leads the SS index by

8 months (not shown).

5. Conclusions

In short, we propose a causal chain of physical pro-

cesses that explains the high predictive skill of EASR

anomalies at lead times of 7–9 months (S3) (explained

here for wet events):

1) A strengthened Mascarene high first appears and

forms dipoles of SST and height anomalies during

lead times of 7–9 months (Figs. 5c,g and 7c).

2) The associated dipole mode triggers an anticyclone-

like wind anomaly that advects cold water to the

FIG. 9. Regions used to define large-scale climate indices used in

the lead–lag analysis, including the long-lead SST dipole index

(SLp and SLn), the long-lead height dipole index (HLp and HLn),

the long-lead meridional wind index (VL), and the short-lead SST

dipole index (SSp and SSn).
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eastern Indian Ocean region from high latitudes

during lead times of 4–6 months (Figs. 6b,c and 7b,c).

3) The cold water over the eastern Indian Ocean

perturbs the local Hadley circulation, which further

perturbs the meridional circulation at larger scales,

enhancing the cold-water pool at lead times of

4–6 months (Black et al. 2003).

4) The cold-water pool modulates the Walker circu-

lation by inducing anomalous easterlies, bringing

moist air to land, and enhancing uplift and convec-

tion over East Africa at lead times of 0–3 months

(Figs. 6a and 7a).

These patterns are identified by a regularized regres-

sion model, in which high predictive skill is observed

for lead times of 0–3 months (S1) and lead times of

7–9 months (S3). Maps of regression coefficients show

that certain groups of predictors were selected for those

two lead times: at lead times of 0–3 months (S1), the

model selected cold water over the Sumatra region and

anomalous easterlies at 850 hPa, while at lead times of

7–9months (S3), themodel selected the dipole of SSTAs

with a warm pole over the Mascarene high area and a

cold pole over the northern and central Indian Ocean.

Consistent patterns are also observed in the composite

analysis, in which large-scale climate fields prior to his-

torical extremes are examined and compared. A set of

lead–lag analyses also supported the proposed causal

chain. Our findings of high predictability at lead times of

7–9 months suggest that there is significant potential to

extend lead times in forecast models for East Africa,

which could prove valuable for water management in

the region.

While the results of this empirical study are promising,

this study was limited to 37 years of observations. There

is evidence that teleconnection between the Indian

Ocean and EASR are nonstationary (Nicholson 2015;

Bahaga et al. 2019). Therefore, further analysis using

general circulation model (GCM)-based experiments is

needed to confirm the dynamic pathways linking the two

stages of high predictability and different climate fields.

Such an experiment would require a modeling exercise

that activates or suppresses SST and pressure anomalies

associated with the Mascarene high, and then deter-

mines whether the activation of Mascarene high anom-

alies in the model are associated with the dynamic

pathways in the Indian Ocean basin we identify in this

study. This effort is left for future work.
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