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A B S T R A C T

This paper evaluates likelihood function forms for Bayesian inference of point-source gas emissions using a
mobile sensor. Whereas Bayesian inference has been successfully used to estimate emission rates from time-
averaged concentration data measured by stationary sensors, data collected by mobile sensors do not represent
ensemble or time-averaged conditions. To examine the potential impact of this contrast, controlled release ex-
periments were conducted with a mobile sensor measuring concentrations repeatedly along transverse cross
sections of the downwind plumes. Experiments were conducted with measurements made at different downwind
distances, different sensor heights, and with different obstacle states. An examination is made between two
commonly-used likelihood functions, the Gaussian and the log-normal. For experiments conducted in the ab-
sence of obstacles, the Bayesian estimates using the log-normal likelihood function yield a much smaller bias
than those based on the Gaussian likelihood function. This finding is consistent with the non-Gaussian nature of
concentration fluctuations near a point-source. For experiments conducted in the presence of obstacles, the
Bayesian inference based on the Gaussian likelihood function exhibits a better performance. This can be ex-
plained by the enhanced turbulent mixing due to the obstacle-introduced wake eddies. Overall, we find that the
selection of the likelihood function can be physically related to the underlying conditions, and the proper se-
lection is critical to ensure the performance of the Bayesian inference for source characterization using mobile
sensing data.

1. Introduction

Mobile sampling of air quality is becoming popular as it efficiently
offers coverage of an extended area of interest. Sensors have been
mounted on ground vehicles to map air quality variables such as par-
ticulate matter, carbon dioxide, and carbon monoxide (Devarakonda
et al., 2013; Marjovi et al., 2015; Apte et al., 2017; Lee et al., 2017) in
urban areas, and mounted on aerial platforms to characterize com-
bustion from open area sources (Aurell et al., 2011; Zhou et al., 2017).
Due to the potentially high spatial resolution of the mobile sensing data,
researchers are able to explore the link between human exposure to
traffic-related air pollution and adverse health effects at community
level (Alexeeff et al., 2018).

With the recent expansion of natural gas production, there is
heightened interest in estimating fugitive methane emission rates from
point sources. A good example is the recent effort to develop innovative
technologies and algorithms to cost-effectively detect methane

emissions from oil and gas well pads (with a typical size of 10m by
10m), so as to target mitigation efforts (ARPA-E, 2015). In fact, fugitive
natural gas emissions can jeopardize potential advantage of natural gas
over coal with respect to greenhouse gas forcing per unit energy pro-
duced. (Alvarez et al., 2012). Motivated by concern for potential leaks
in natural gas distribution systems, mobile sensing has been used along
roadways to measure elevated methane levels (Phillips et al., 2013;
Jackson et al., 2014; von Fischer et al., 2017), however, these efforts
have primarily concluded with concentration mapping with no rigorous
source characterization or leak localization. Several studies have used
mobile sensing to estimate fugitive methane emissions from natural gas
production sites (Yacovitch et al., 2015; Lan et al., 2015; Rella et al.,
2015; Albertson et al., 2016). However, the estimated uncertainty re-
ported by some studies has not been rigorously tied to the prevailing
experimental conditions, but rather referenced to accuracy found in
prior controlled release experiments conducted under different experi-
mental conditions. Ideally, a mobile sensing method should provide
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emission estimation with a reported uncertainty defined in terms of the
actual sampling conditions (e.g. wind speed, atmospheric stability, and
site complexity) as well as the instrumental characteristics (e.g. accu-
racy, precision, detection limit, and time-resolution), as needed to un-
derstand the value of potential additional measurements to reduce es-
timation uncertainty. Similarly, measurement efforts could then be
designed based on relevant variables, so as to achieve the desired level
of accuracy (Cai and Ferrari, 2009; Zhang et al., 2009). A recent effort
proposed a information-driven algorithm that optimizes sensor paths to
minimize the overall source estimation uncertainty (Albertson et al.,
2016).

Source characterization using downwind measurements (either by
stationary or mobile sensors) is essentially an inverse problem, with
uncertainties stemming from both the plume dispersion model and the
sensor data (Rao, 2005). Bayesian tools provide a logical way to in-
corporate both model and data uncertainties into source inference, thus
allowing a rigorous quantification of the estimation uncertainty. Such
an approach has been applied to estimate point source emission rates
using downwind fixed (stationary) sensors (Keats et al., 2007; Yee and
Flesch, 2010; Yee, 2012; Humphries et al., 2012), typically using time-
averaged gas concentrations (e.g. averaged over 20–30min). In con-
trast, a mobile sensor can traverse a plume in less than several seconds,
thus providing more of an instantaneous picture of the plume.
Albertson et al. (2016) applied a recursive Bayesian method to estimate
point-source emissions using mobile sensor data. They used a Gaussian
likelihood function, assuming the errors from both model and data are
normally distributed, similar to those studies using ensemble-averaged
data (e.g. Yee, 2012). The applicability of the Gaussian assumption (i.e.
under what conditions it will hold/fail) remains to be examined ex-
perimentally or supported theoretically, for that matter. Logically, the
form of the likelihood function is related to the concentration dis-
tribution, and the Gaussian likelihood function may fail close to the
source where the concentrations often exhibit a marked non-Gaussian
distribution (Csanady, 1973; Fackrell and Robins, 1982; Yee et al.,
1993).

In this paper, we evaluate and compare the performance of Bayesian
inference with two mostly used likelihood functions (the Gaussian and
the log-normal), using data collected by a mobile sensor downwind
from a controlled point-source emission. First, an instantaneous plume
dispersion formulation is developed to guide the analysis, and then data
collected from a series of controlled release experiments are used to
evaluate the candidate approaches.

2. Technical background

Most point-source characterization approaches are based on time-
averaged measurements. However, here it is necessary to introduce a
formulation for the instantaneous plume to support the analysis of the
mobile sensor data and the associated uncertainty. This formulation is
valid for passive scalars, which are diffusive contaminants with low
concentrations such that they pose no dynamical effects (i.e. via
buoyancy) on the fluid flow (Warhaft, 2000).

2.1. An instantaneous view of plume transport

Consider a local coordinate system with a steady state, point-source
located at the origin O (Fig. 1). u, v, and w [m/s] are defined as the wind
velocity components in x, y, and z directions, respectively. A control
volume is defined, from O to a downwind vertical plane xm, ymin to ymax
laterally, and zmin to zmax vertically, to encompass the entire plume
upwind of the mobile sensor (Fig. 1). From conservation of mass, the
emission rate (mass per time), Q0, can be expressed as:

= +Q F x t dS t
dt

( , ) ( ) ,m0 (1)

where S t( ) is total mass of the emitted gas in the control volume, t is

time, and F x t( , )m is the mass flow rate exiting of the control volume.
Provided that the control volume is defined such that no mass exits
anywhere other than the downstream face, then
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where c is the mass concentration of the passive scalar [g/m3]. Note
that molecular diffusion is ignored given the large Reynolds numbers
typically observed in the atmospheric boundary layer (Stull, 1988).

It is instructive to define a normalized distribution of the mass
concentrations (D, [m−2]) and a plume-weighted advection velocity
(ue, [m/s]) at the exit face x y z( , , )m as
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By substituting Equation (3a) into (3b) and using Equation (2), we
can rewrite u x t( , )e m as:
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With Equation (4) and Equation (1), the mass concentrations trajectory
when traversing the plume (c x y z t( , , , )m ) can be related to the other
important variables as:

=c x y z t Q dS t dt
u x t

D x y z t( , , , ) ( )/
( , )

( , , , )m
e m

m
0

(5)

In practice, u x t( , )e m can be approximated with nearby meteor-
ological measurements, adjusted as needed by height difference
through the vertical scaling of the wind profile based on the Monin
Obukhov Similarity Theory (MOST) (Obukhov, 1971), as detailed in
Appendix A. Accordingly, we replace u x t( , )e m by u x t x t( , ) ( , )e

M
m u m , so

that x t( , )u m accounts for the ratio between the actual u x t( , )e m and the
approximated u x t( , )e

M
m . The superscript M stands for model estimated

quantities. Similarly, we introduce =x t( , ) 1S m Q
dS t

dt
1 ( )
0

to represent
the non-steadiness in the mass stored in the control volume, normalized
by Q0. With these non-stationary terms, Equation (5) becomes:

=c x y z t Q
u x t

x t
x t

D x y z t( , , , )
( , )

( , )
( , )

( , , , ),m
e
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m

S m
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(6)

which describes the instantaneous plume transport while sharing an
underlying form with other commonly used models based on the en-
semble-averaged view (Horst and Weil, 1992). The main difference is
the time dependence of the function D to represent the stochastic nature
of the turbulent plume, and the presence of x t( , )u m and x t( , )S m to
account for non-stationarity in wind speed and storage in the control

Fig. 1. A control volume containing an emission source (located at O) with a
mass flow rate of Q0, and a cross-plane view of the plume mass flow rate at
downwind distance xm.
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volume.
D x y z t( , , , )m is a random variable capturing plume movement in

time as well as in the y and z dimensions, as it responds to the in-
stantaneous turbulent velocity components in the y and z directions,
which would scale with the respective standard deviations of velocity
components ( v and w). It is well-understood that w can be described
well by local scaling based on MOST (Kaimal and Finnigan, 1994).
However, v is affected by random large scale motions in the atmo-
sphere, which cannot be described accurately by local scaling laws
(Lumley and Panofsky, 1964). Consequently, we can deduce that a
greater degree of randomness exists in y than in z direction for
D x y z t( , , , )m .

This observation motivates the idea of integrating both sides of
Equation (6) over y (i.e. across the plume), such that the uncertainty
associated with lateral plume dispersion can be effectively removed
(Albertson et al., 2016).

=c x z t Q
u x t

x t
x t

D x z t( , , )
( , )

( , )
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( , , ),y m
e
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m

S m
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where =c x z t c x y z t dy( , , ) ( , , , )y m y
y

mmin
max is the cross-plume integrated

mass concentrations [g/m2]. In practice, the sensor path is typically con-
straint by roadways and is not always perpendicular to the wind direction.
When the road segments and the wind direction are not perpendicular (i.e.
the acute angle between them is r), c x z t( , , )y m can be estimated by nu-
merical integration of the mass concentrations along the path based on
trigonometry ( =c x z t c x y z t tV( , , ) ( , , , ) sin( )y m y

y
m rmin

max , where t is
the sensor acquisition time step and V is the vehicle speed).

=D x z t D x y z t dy( , , ) ( , , , )y m y
y

mmin
max is a reflection of the vertical profile

of mass concentrations at xm, which is a random variable mainly driven by
the stochastic nature of the vertical transport dynamics in the turbulent
flow.

Given the stochastic nature of x t( , )S m , x t( , )u m , and D x z t( , , )y m , it
is useful to introduce a fluctuating =D x z t D x z t( , , ) ( , , )y e m

x t
x t y m,

( , )
( , )

S m
u m

to
account for all stochasticity in c x z t( , , )y m and to submit itself to em-
pirical analysis. Thus we rewrite Equation (7) as:
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Equation (8) becomes the descriptive equation for instantaneous
plume transport after cross-plume integration. It can be used in a for-
ward manner to estimate the downwind cross-plume integrated mass
concentrations c x z t( , , )y m given emission rate Q0, or in a inverse
manner to infer Q0 based on measured c x z t( , , )y m . Since most models
can only approximate the ensemble-averaged D x z t( , , )y e m, , we apply
Bayesian inference to account for the fluctuation of D x z t( , , )y e m, from
its ensemble mean (detailed in the following section). For simplicity of
notation, xm, z, and t will be dropped hereafter.

2.2. Bayesian inference

Following Bayes's rule, the posterior probability distribu-
tion (p Q c( | )y ) of the emission rate Q given the observation of cy is
(Yee, 2008; Albertson et al., 2016):

=p Q c
p Q p c Q

p c
( | )

( ) ( | )
( )

,y
y

y (9)

where p Q c( | )y , p Q( ), , and p c( )y are probability density functions
(PDFs). p Q( ) is the prior, is the likelihood function, and the p c( )y is the
evidence term that ensures p Q c( | )y integrates to unity.

Prior to the proposed sampling activities, past measurements of si-
milar facilities (e.g. Brantley et al., 2014) may be used to formulate
p Q( ). Assuming that the prior knowledge of Q is limited to its lower and
upper bounds (i.e. Qmin and Qmax, respectively), a uniform prior is
adopted (Yee, 2007, 2008), which is usually considered as sufficiently
uninformative based on the principle of maximum entropy (Jaynes,

1968). After the first sensor pass, we follow a recursive approach that
takes the posterior PDF (p Q c( | )y ) derived after the previous pass to be
the prior PDF of the next pass (Albertson et al., 2016).

= =
= >

p Q Q Q j
p Q p Q c j

( ) 1/( ) 1
( ) ( | ) 1,max min

y j 1 (10)

where j is a counter for successive sensor passes.
All the information provided by the measurement cy about the un-

known Q should be contained in the likelihood function (), which de-
scribes the probability of observing cy given Q (Jaynes, 2003). Most
studies adopted a Gaussian form of likelihood function (Keats et al.,
2007; Yee, 2008; Yee and Flesch, 2010; Albertson et al., 2016), and the
selection is based on the argument that the underlying distribution of
the measurement is unknown and the principle of maximum entropy
supports the application of the Gaussian distribution (Jaynes, 2003).
When moving close to the source, however, plumes are mainly driven
by meandering of the wind, thus gas concentrations often exhibit a non-
Gaussian distribution with non-zero skewness and strong intermittency.
For example, the exponential distribution was found to fit data col-
lected in wind tunnel (Fackrell and Robins, 1982), as well as outdoor
tracer release experiments with a downwind distance from 50 to 100m
(Mylne and Mason, 1991). Meanwhile, Yee et al. (1993) suggested a
log-normal distribution for gas concentrations collected in their short-
range experiments (i.e. downwind distance at 25 and 50m), and a
gamma distribution for long-range experiments (i.e. downwind distance
at 80 and 100m). With the presence of an obstacle array, Davidson
et al. (1995) recommended a clipped normal distribution for gas con-
centrations measured within the array.

Note that the above-mentioned distributions were observed with
stationary sensors; the distribution of path-integrated mass concentra-
tions (cy) is less explored. We propose to consider the widely-used
Gaussian distribution as a candidate likelihood function, and as an al-
ternative to allow non-zero skewness of cy, we consider the log-normal
distribution inspired by Yee et al. (1993).
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where =c Q D( )y
M Q

u y
M

e
M is a model estimated value at some considered

candidate Q. Dy
M is the estimated value of Dy e, based on a Lagrangian

Stochastic Model (LSM). The LSM describes plume dispersion in a tur-
bulent flow by modeling the paths of fluid particles driven by the
random velocity field, which can be modeled by the generalized Lan-
gevin equation (Wilson and Sawford, 1996). By imposing the so-called
well-mixed condition, we adopt Thomson's simplest solution for sta-
tistically stationary and horizontally homogeneous turbulence
(Thomson, 1987). The inputs of the LSM are the meteorological mea-
surements (i.e. friction velocity, surface roughness, standard deviation
of u and w, and Obukhov length) and the estimated distance between
the emission source and the sensor. Details of the LSM are reported in
Appendix B.

e
G and e

LN are the error (i.e. uncertainty) scale parameters, which
can be estimated for the observed data:

=

=

=

=
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where N is the number of passes per experiment.
Both e

G and e
LN are estimated from the controlled release experi-

ments and are known as prior for the Bayesian inference. When the
error scale parameters are not known, they can be estimated using the
error propagation method (Rao, 2005; Zhou et al., 2019). More
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specifically, the error scale parameters are: + +S M D
2 2 2 , where S

2

represents error due to the stochastic nature of atmospheric plume
dispersion, M

2 is related to the simplification of the plume dispersion
model, and D

2 includes errors from the model input data. Here we as-
sume that these errors are uncorrelated and random (Rao, 2005). The
parameterization of S, M , and D will depend on the local meteor-
ological conditions, the dispersion model, as well as the measurement
data quality. A good example is shown in the Supplemental Materials of
Zhou et al. (2019).

The selection of the likelihood function (Equation (11)) should de-
pend on the distribution of c c Q( )y y

M
0 or c c Qln( ) ln( ( ))y y

M
0 , which

includes uncertainties from both the measurement and the model. Data
used to inform the analysis are reported in the Results and Discussion
section (Fig. 3).

Equation (9) has no analytical solution therefore is solved numeri-
cally. We first discretize Q from Qmin to Qmax with a uniform Q, re-
sulting in a series of candidate Q values to be considered. A small Q is
used, i.e. =Q Q Q( )/10000max min , to reduce the discretization error.
With a measurement of cy, the prior (p Q( )) and the likelihood function
() can be evaluated for each candidate Q using Equations (10) and (11),
respectively. After evaluating all candidate Q values, the evidence term
can be calculated using numerical integration:

=p c p Q p c Q Q( ) ( ) ( | )y Q
Q

ymin
max . After estimating all these terms (i.e.

prior, likelihood, and the evidence), we can calculate the posterior
using Equation (9), evaluated at each candidate Q value. After making
an additional mobile pass, the posterior is updated by re-applying the
above-mentioned numerical procedure. A new prior (i.e. the posterior
derived after the previous mobile pass, as shown in Equation (10)) will
be used, and the likelihood function will be evaluated using a newly
measured cy.

After the jth pass, the emission rate and the associated uncertainty
can be estimated from the posterior PDF p Q c( | )y j. For example, the
emission rate can be calculated as the mean, median, or mode of the
posterior PDF p Q c( | )y j. Considering that a uninformative was adopted,
and the median and mean are heavily affected by the prior in the early
stage of analysis, we use the mode of the posterior PDF p Q c( | )y j to
represent the estimated emission rate in this study:

=E p Q carg max ( | ) .j
Q

Q
y j (13)

After performing additional mobile passes, the effects of the prior
will be gradually reduced and the difference among the mean, median,
and mode of p Q c( | )y j will become small. When an informative prior can
be derived from the past experiments, the mean or median of the
posterior PDF p Q c( | )y j may be better incorporate the prior information.

Meanwhile, the associated uncertainty of the emission rate estima-
tion is often calculated as the standard deviation ( j

Q) of p Q c( | )y :

= ×Q Q p Q c dQ( ) ( ) ( | ) ,j
Q

j y j
2 2

(14)

where = ×Q Q p Q c dQ( | )j y j is the expectation of the posterior PDF.

2.3. Model performance assessment

After the final pass (N th), the accuracy of the estimated emission
rate (EN

Q) can be assessed against the controlled release rate (Q0), e.g.
the relative error =R E Q Q( )/N

Q
0 0. However, quantitative assessment

of the accuracy of the modeled uncertainty ( N
Q) is not well defined in

the literature. It is most common to simply check whether Q0 is within
the range of ±EN

Q
N
Q by visual inspection (Yee, 2008, 2012; Humphries

et al., 2012; Keats et al., 2007). Among other reasons, this may mis-
takenly favor methods that tend to overestimate uncertainty, such that

±EN
Q

N
Q is wide enough to include Q0.

To overcome this problem, we propose a method to infer the ac-
curacy of N

Q by assessing the posterior PDF, p Q c( | )y . We first estimate
the empirical distribution of the relative error, =p R Q E Q( ) ( )/e N

Q
0 0,

obtained from experiments conducted under similar experimental
conditions (e.g. similar obstacle condition). The distribution of modeled
relative error, p R( )m , can be readily derived from the posterior PDF
p Q c( | )y by substituting Q with =R Q E E( )/m N

Q
N
Q. Rm becomes the re-

lative error of Q from the estimated emission rate EN
Q, and the newly

constructed p R( )m represents the PDF of modeled relative error. The
distribution of the averaged Rm from experiments under similar con-
ditions, denoted as p R( )m , was derived to represent the modeled re-
lative error under those conditions.

Ideally, p R( )m should follow p R( )e closely, and the agreement be-
tween them can be assessed by the p-value from the Kolmogorov-
Smirnov (KS) test (Massey, 1951). Since p R( )m is directly derived from
the posterior PDF, p Q c( | )y , its shape is mostly controlled by N

Q.
Therefore, we consider the p-value from the KS test to be a good in-
dicator of the accuracy of N

Q.

3. Experiments

Controlled methane release experiments were conducted at the
McGovern soccer training field of Cornell University (Game Farm Rd,
Ithaca, NY. USA) during the middle of June and early August 2016. The
site was covered with short grass (~5 cm) and located in a relatively
open field: ~500m from a residential area in the west, ~150m from a
small forest in the north, and around ~400m (500m) from roads on the
east (south) side. A point-source emission of methane (99.9% pure gas)
was controlled by a mass flow controller (SmartTrak 100 from Sierra
Instruments Inc., Monterey, CA, USA), with a mass-flow rate accuracy
of ± 1%. The height of the release was similar to the height of grass
(~5 cm). Two small towers were set-up on the east and west side of the
field to measure local meteorological conditions. On each tower, a 3D
sonic anemometer (CSAT-3, Campbell Scientific Inc., Logan, UT, USA)
was installed to measure the three components of the wind velocity and
air temperature at 10 Hz. The heights of the 3D sonic anemometers
were 2.24m and 2.21m in the experiments conducted in June, and
2.49m and 2.31m in the experiments conducted in August. For ex-
periments conducted in June, no local obstacles were present between
emission source and sensor, and the field was quite open. This is de-
signed to mimic emissions from an isolated wellhead (e.g. from the
lower-level valves that are close to the ground). For experiments con-
ducted in August, a 1.4 m high barrier (windbreak) was established in a
circle around the methane source. The radius of the circle was ~ 3m,
and the source was placed in the center of the circle. This is to ap-
proximate a emission source surrounded by other low-level structures,
for example, a wellhead located in a densely organized well pad or a
pipeline within a small natural gas metering station.

A mobile measurement platform (MMP) was configured with a
precise GPS unit (Trimble Geo 7X handheld from Trimble Inc.,
Sunnyvale, CA, USA) to track its position at a sampling frequency of
1 Hz. The GPS unit has an accuracy of 5 15 cm for> 97% data points
after post-processing. The MMP was equipped with two methane ana-
lyzers: a Picarro G2204 cavity ring-down spectrometer (Picarro, Inc.,
Santa Clara, CA, USA) and a LI-COR LI-7700 open-path methane ana-
lyzer (LI-COR Biosciences, Lincoln, NE, USA). Both analyzers output
methane mixing ratios in the unit of parts per million (ppm). The
Picarro and the LI-COR analyzers were operated at a frequency of 1 Hz
and 10 Hz, respectively. The inlet of the Picarro analyzer was attached
to the MMP front at a height of 0.3m, and the LI-COR analyzer was
positioned at a height of 1.3m with its path oriented horizontally. A
multi-point calibration was performed before the experiment for the
Picarro analyzer, and the calibration curve (slope 1.03 and intercept
−0.04 ppm) was applied to process the raw data. The LI-COR analyzer
was calibrated by the manufacturer less than a month before the ex-
periment, and is designed with an open-path configuration for long-
term monitoring without regular re-calibration. The time delay due to
flow in the sampling line of the Picarro analyzer was measured, and the
Picarro data were adjusted accordingly to be compatible with the LI-
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COR data. An inter-comparison between the Picarro and Licor analyzers
is performed by concurrently measuring the ambient methane mixing
ratios prior to the controlled release experiments (cp, in ppm). In
Table 1, we report the time-averaged cp over a span of about 5min,
denoted as cp . Despite small daily variability, cp reported by the two
analyzers are in good agreement.

A conversion factor is applied to translate the above-ambient mixing
ratios (ca, in ppm) into mass concentration c (in g/m3) in Equation (2),
considering the molecular weight of methane (16.04 g/mol) and the air
temperature that affects the molar volume of gas. The above-ambient
mixing ratios (ca) is calculated as: =c c ca r b, where cr is the raw
methane mixing ratios measured by the analyzers and cb is the ambient
methane mixing ratios. cb was estimated as the 5th percentile of the
ranked time series of cr (Brantley et al., 2014; Foster-Wittig et al.,
2015). The estimated cb is compared to the measured methane mixing
ratios prior to the experiments (cp) and the difference is minimal
(< 2%), suggesting that the determination of cb is robust.

Stake flags are placed in three circles that are centered at the source
with radius of 10, 20, and 30m, respectively. Repeated passes were
conducted along these circles such that sensor paths are almost per-
pendicular to the wind direction. The averaged travel speed is very low
(around 2m/s) in order to better capture the plume structure. Data was
aggregated within 30min periods, during which the meteorological
parameters, such as the Obukhov length (L) and the friction velocity
(u*) were derived from data collected by the two met towers. We con-
sider the set of passes during a single 30-min period to be a single ex-
periment.

3.1. Data quality control

A total of 36 experiments were conducted, half of which with the
obstacle present. Twelve experiments were conducted at each sensor-to-
source distance (xm of 10, 20, and 30m). Two data quality require-
ments were established to filter out unacceptable experimental condi-
tions. The first one admitted only experiments conducted under neutral
or unstable atmospheric condition, thus excluding four experiments
conducted under stable atmospheric condition. The second one ex-
cluded two experiments conducted under low wind ( <u 1.0 m/s) and
high turbulent intensity ( >I 0.5u ) conditions. Additionally, one ex-
periment was excluded due to battery failure and data loss.
Consequently, 29 experiments are available for further analysis, and
their experimental conditions are summarized in Table 2. Meteor-
ological conditions measured by the two towers were very similar due
to their close proximity. Therefore, only the meteorological conditions
reported by the west side of the tower, which is closer to the emission
source, are reported in Table 2 and used in the analysis.

4. Results and Discussion

Before looking across all the experiments, we explore one experi-
ment (ID # is 8 in Table 2) as an example. The above-ambient methane

mixing ratio (ca) measured along two sensor passes are plotted in Fig. 2.
The plume position differs between passes due to the meandering of the
wind. Also, mixing ratios measured by sensors located at different
heights show different shapes. This is mainly caused by the vertical
structure of the instantaneous plume, as well as the difference in sam-
pling frequencies for the two analyzers (i.e. 10 Hz and 1 Hz for the Licor
and Picarro analyzers that are installed at 1.3m and 0.3m, respec-
tively).

The cross-plume integrated mass concentrations, cy, is calculated by
numerically integrating the geo-referenced mass concentrations along
each pass. Then, we plot the distribution of c c Q( )y y

M , represented as
the probability mass function (PMP), for experiments conducted under
similar conditions (e.g., similar sensor-to-source distance and obstacles)
in Fig. 3. The PMF is fitted using both Gaussain and log-normal func-
tions, and the p-value based on the KS test is calculated between the
PMF and the best-fit curves. The results obtained at zm =0.3m are
similar thus not shown here.

Without the presence of obstacles, the distributions of c c Q( )y y
M

0
exhibit a non-Gaussian shape with a long tail, and the skewness be-
coming less pronounced with a greater sensor-to-source distances (xm).
This is supported by the better fitting capability using a non-Gaussian
curve (e.g. log-normal) than a Gaussian, with a larger p-value obtained
from applying the KS test (Fig. 3a, c, and e). This is attributed to the
plume becoming better mixed by turbulence over the longer travel
distance, which effectively reduces the skewness of c c Q( )y y

M
0 . On the

other hand, the presence of obstacles continuously injects wake eddies
that strongly mixed the plume and reduced the variability of
c c Q( )y y

M
0 (Davidson et al., 1995, 1996). The distributions of

c c Q( )y y
M

0 in the presence of obstacles more closely resemble a
Gaussian distribution than a non-Gaussian, except for the case with

=x 20m m (Fig. 3b, d, and f). As shown in Equation (11), the dis-
tributions of (c c Q( )y y

M ) should determine the form of the likelihood
function and the error scale parameter ( e). These observations moti-
vate and intuitively inform the selection of different likelihood func-
tions for Bayesian inference, which will be supported by further ana-
lysis detailed in the following sections.

4.1. Emission rate estimation using Bayesian inference

We first show emission rate estimation for one experiment
(Experiment ID is 8 in Table 2) using both log-normal and Gaussian
likelihood functions, as an example (Fig. 4). The lower and upper
bounds of Q, denoted asQmin andQmax in Equation (10), are specified as
0 and 2.0 g/s. Qmin is indeed the lower bound since Q 0. Qmax is de-
termined by trail-and-error such that the tail of the derived posterior
PDF (p Q c( | )y ) is close to zero. Using a larger Qmax will not affect the
accuracy of the Bayesian inference, but it is unnecessary and will in-
crease the computational demand for the Bayesian inference. As shown
in Fig. 4, the p Q c( | )y is fairly small at =Q 0.3 g/s, suggesting the de-
termination of Qmax =2.0 g/s is effective. For both log-normal and
Gaussian likelihood functions, the p Q c( | )y tends to “sharpen” with ad-
ditional sensor passes, from a relatively broad PDF (representing a large
uncertainty of Q) to a more narrow PDF (representing a low uncertainty
of Q). Fig. 4a shows that the posterior PDF with a log-normal likelihood
function becomes fairly symmetrical (skewness< 0.5) after the final
pass, suggesting that standard deviation is a good measure for the es-
timation uncertainty. Comparing against the controlled emission rate
(Q0), the utilization of the log-normal likelihood function successfully
enables the mode of p Q c( | )y to approachQ0. In contrast, the mode of the
PDF using Gaussian likelihood function overestimates Q0.

After examining the example case, we evaluate across all the ex-
periments. For each experiment, two results obtained using the sensor
located at zm of 1.3m and 0.3m are color coded in red and black, re-
spectively (Fig. 5). After the final sensor pass (the N th pass), we plot

±EN
Q

N
Q against Q0 for all experiments (Fig. 5), with EN

Q and N
Q esti-

mated using Equation (13) and (14) respectively. Overall, the

Table 1
A summary of sampling day of year (DOY), and the time-averaged ambient
methane mixing ratios measured prior to the experiments (cp ) by both Picarro
and Licor analyzers.

DOY Licor cp [ppm] Picarro cp [ppm]

169 1.99 1.97
171 1.97 1.94
214 2.00 2.00
215 2.03 2.02
216 1.99 1.99
217 2.02 2.03
218 1.97 1.98
219 2.00 2.03
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estimation uncertainty ( N
Q) is smaller for experiments conducted in the

presence of obstacles than under unobstructed conditions for the same
inference method. This is mainly caused by the reduced spread of
c c Q( )y y

M
0 (Fig. 3), which leads to a reduced N

Q for experiments
conducted in the presence of obstacles.

For experiments conducted under unobstructed conditions, Q0 is
within ±EN

Q
N
Q for most experiments with the implementation of the

log-normal likelihood function (Fig. 5a). The averaged EN
Q across all

experiments is 0.084 g/s, which is only 1% higher than Q0 (0.083 g/s)
and suggests a good performance of the Bayesian inference using the

log-normal likelihood function. The application of the Bayesian in-
ference with the Gaussian likelihood function resulted in an averaged
EN

Q of 0.12 g/s, which is more than 40% higher than Q0 (0.083 g/s) as
shown in Fig. 5c.

For experiments conducted in the presence of obstacles, EN
Q derived

from the two methods closely match Q0. Using Bayesian inference with
the log-normal likelihood function, the averaged EN

Q across all experi-
ments is 0.076 g/s, which is 8% lower than Q0 (0.083 g/s). In contrast,
EN

Q estimated by the Gaussian-based Bayesian inference slightly over-
estimate Q0 at 0.086 g/s, which is 4% higher than Q0 (0.083 g/s).

Table 2
A summary of experimental conditions, including the identification number (ID), the presence of obstacles, approximate sensor-to-source distance (xm), the number
of passes per experiment (N), and sampling day of year (DOY), and meteorological conditions measured by a nearby met tower, including the mean and standard
deviation of streamwise velocity (u and u), turbulent intensity (Iu), friction velocity (u*), mean wind direction ( m) clockwise from the north, sensible heat flux (H),
and atmospheric stability (z L/ ). All meteorological variables are derived from data collected during each experiment (~30min).

ID obstacle xm [m] N DOY u [m/s] u [m/s] Iu [-] u* [m/s] m [deg] H [W/m2] z L/ [-]

1 N 30 22 169 2.65 0.97 0.30 0.24 300 211.54 −0.34
2 N 20 17 169 2.51 0.92 0.32 0.21 293 196.86 −0.51
3 N 10 23 169 1.71 1.26 0.43 0.24 38 205.50 −0.34
4 N 30 18 169 2.55 1.12 0.33 0.23 72 167.32 −0.32
5 N 20 15 169 1.51 0.86 0.45 0.21 22 85.67 −0.21
6 N 10 24 169 1.98 1.13 0.40 0.13 48 129.82 −1.38
7 N 10 19 171 1.92 1.01 0.40 0.20 304 212.38 −0.57
8 N 20 14 214 1.15 0.63 0.53 0.16 42 38.28 −0.24
9 N 10 16 214 1.29 0.91 0.52 0.24 349 13.08 −0.06
10 N 30 16 215 2.36 0.78 0.32 0.20 309 66.12 −0.22
11 N 20 22 215 1.44 1.01 0.48 0.23 324 141.93 −0.31
12 N 30 16 215 1.80 1.09 0.43 0.23 73 17.23 −0.04
13 Y 20 20 216 2.19 0.53 0.30 0.15 151 10.50 −0.08
14 Y 10 20 216 2.82 0.84 0.28 0.22 170 37.55 −0.09
15 Y 30 18 217 2.94 0.98 0.28 0.18 147 77.67 −0.32
16 Y 20 20 217 2.72 1.06 0.31 0.23 149 148.97 −0.31
17 Y 10 18 217 2.49 0.98 0.33 0.29 172 138.13 −0.14
18 Y 30 14 217 2.72 1.15 0.31 0.24 152 161.21 −0.30
19 Y 20 19 217 2.95 1.08 0.29 0.22 146 171.01 −0.41
20 Y 10 19 217 2.48 0.97 0.33 0.21 159 159.46 −0.46
21 Y 30 15 218 3.41 1.34 0.28 0.37 204 219.77 −0.11
22 Y 20 16 218 3.70 1.27 0.26 0.36 211 223.92 −0.12
23 Y 10 15 218 3.82 1.33 0.26 0.38 212 207.86 −0.10
24 Y 30 20 218 4.18 1.31 0.24 0.36 194 171.36 −0.09
25 Y 20 16 218 4.31 1.31 0.24 0.37 184 173.08 −0.08
26 Y 10 14 218 3.99 1.23 0.25 0.40 179 129.53 −0.05
27 Y 30 16 219 2.25 1.01 0.35 0.27 320 118.53 −0.16
28 Y 20 15 219 2.75 1.04 0.30 0.16 318 125.83 −0.77
29 Y 10 14 219 2.29 1.04 0.35 0.20 315 140.29 −0.47

Fig. 2. An example (ID # is 8) of above-ambient methane mixing ratios measured at two different sensor heights (zm) over two passes. The corresponding wind
directions for the first ( 1) and the second pass ( 2) are shown as a red and a black arrow, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

X. Zhou, et al. Atmospheric Environment 218 (2019) 116981

6



To evaluate the accuracy of model uncertainty (p R( )m ) derived from
different models, we estimate the cumulative density function (CDF) of
p R( )e and p R( )m based on the log-normal and Gaussian likelihood
functions (Fig. 6). A p-value based on the Kolmogorov-Smirnov test is
calculated between the empirical and the modeled relative errors. For
experiments conducted under unobstructed conditions (Fig. 6a and c),
Bayesian inference using the log-normal likelihood function shows a
much better performance than that using the Gaussian likelihood
function ( =p 0.43 versus <p 0.01). For experiments conducted in the
presence of obstacles, the performance of Bayesian inference using the

Gaussian likelihood function ( =p 0.13) clearly outperforms the log-
normal likelihood function ( <p 0.01), as shown in Fig. 6b and d.

Overall, it is clear that the appropriate likelihood function ensure
the performance of the Bayesian inference. More specifically, these
results suggest that the implementation of a log-normal likelihood
function is suitable for near-source unobstructed conditions, while a
Gaussian likelihood function is desirable in the presence of obstacles,
for the Bayesian inference of characterizing point-source emission in
the near-field using a mobile sensor.

Fig. 3. The probability mass function (PMF) of the difference between the measured (cy) and modeled (c Q( )y
M

0 ) cross-plume integrated mass concentrations with
source-to-sensor distance (xm) of 10m (a and b), 20m (c and d), and 30m (e and f). The red and black dash lines are Gaussain and log-normal fit curves for the PMF,
respectively. A p-value based on the Kolmogorov-Smirnov test is calculated between the PMF and the best-fit Gaussian (pG) and log-normal (pLN ) curves. Experiments
conducted in the absence of obstacles are showing on the left column (a, c, and e), and experiments conducted in the presence of obstacles are showing on the right
column (b, d, and f). Note that all the results are collected at a sensor height (zm) of 1.3 m. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 4. The posterior PDF (p Q c( | )y ) derived from the Bayesian inference using (a): log-normal and (b): Gaussian likelihood function. From left to right, results are
shown after each sensor pass (a total of 14). The controlled release rate (Q0) is shown with a black dash line. This corresponds to Experiment ID of 8 (no obstacles) and
zm of 0.3m.
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4.2. Assessment of the effects of sensor-to-source distance, sensor height,
and wind speed on source characterization

Here, we examine the effects of different experimental conditions,
such as downwind distance (xm), sensor height (zm), and wind speed

(u ), on the accuracy of source characterization. The effect of obstacles
has been shown, therefore all results will be presented separately, with
and without the presence of obstacles. For example, to highlight the
effect of downwind distance, we averaged EN

Q (denoted as EN
Q ) over

experiments sharing the same xm.
As shown in Fig. 7a, we find that the sensor-to-source distance (xm)

is an important factor in determining source characterization perfor-
mance for experiments conducted under unobstructed conditions.
Current literature often favors the application of Gaussian likelihood
function for far-field applications (Albertson et al., 2016). However,
Bayesian inference based on the log-normal likelihood function shows
the best performance when x 30m m, consistent with our results of
Figs. 5 and 6. For experiments conducted with the presence of obstacles,
however, little dependence of model performance on xm is observed.

When comparing model performance using sensors of different
heights, we find that EN

Q is insensitive to zm. This is true for both the
log-normal and the Gaussian likelihood functions, with and without the
presence of obstacle (Fig. 7b and d). This demonstrates the flexibility of
the inference methods with respect to the two sensor heights.

Finally, we evaluate the effects of wind speed (u ) on the accuracy of
source characterization. As shown in Fig. 7e, we note that a stronger
wind speed can help reduce estimation bias when applying the Gaus-
sian likelihood function under unobstructed conditions. A higher wind
speed is usually coupled with a stronger plume mixing, which favors the
application of symmetric likelihood function (e.g. Gaussian). This is
similar to the effect of xm on EN

Q as shown in Fig. 7a. At low wind speed,
however, plumes are often transported by wind gust with a strong in-
termittentency, and the log-normal likelihood function demonstrates a
better performance. With the presence of obstacles, we find little cor-
relation between EN

Q and u for both the log-normal and the Gaussian
likelihood functions (Fig. 7f).

Fig. 5. After the final pass (the N th pass), the estimated emission rates± standard deviation ( ±EN
Q

N
Q) derived from Bayesian inference using the log-normal (a and b)

and Gaussian (c and d) likelihood functions. For each experiment, two results obtained using the sensor located at zm of 1.3m and 0.3m are color coded in red and
black, respectively. The black dash line is the controlled release rate (Q0). (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)

Fig. 6. The cumulative density function (CDF) of the empirical relative error
(p R( )e ) and the modeled relative error p R( )m when applying Bayesian inference
using log-normal likelihood function (a and b) and Gaussian likelihood function
(c and d). A p-value based on the Kolmogorov-Smirnov test is calculated be-
tween the empirical and the modeled relative errors.
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5. Conclusions and future work

This paper addressed the application of Bayesian inference to esti-
mating gas emission rates from point sources in the context of mobile
sensor data, which provide more of an instantaneous view of the plume
than the classic ensemble or time-averaged approaches. A series of
controlled release experiments were conducted, using mobile sensors
traversing cross-sections of the plume at different downwind distances,
both with and without the presence of obstacles. The use of Gaussian
and log-normal likelihood functions were evaluated across a range of
experimental conditions, with the motivation being that instantaneous
plume concentration distributions are known to exhibit a marked
asymmetry, especially near the source. The results showed that the
selection of the appropriate likelihood function can be guided by the
underlying plume transport and mixing conditions. The plumes mea-
sured in the near-field, without obstructions, exhibited a strong skew-
ness in the concentration fluctuations that followed the log-normal
likelihood function better than the commonly-employed Gaussian form.
On the contrary, at longer downwind distances the plume concentration
distributions showed a greater symmetry (due to the greater extent of
mixing over the travel history) and the Gaussian likelihood distribution
performed better than the log-normal form. The presence of significant
obstacles enhanced the plume mixing so as to favor the Gaussian dis-
tribution, even at shorter travel distances. Considering the high scal-
ability of mobile sensing, these results are encouraging for character-
izing dispersed point emissions over extensive regions (e.g. oil and gas
well pads in a shale basin). Future experiments under more of real-
world emission scenarios (e.g. unsteady emission rates, multiple leaks,
and more complex obstacle set-up) will be useful to expand the ap-
plicability of this method.

The current study used error scale parameters directly derived from
the controlled experiments, and provided an error prorogation method
to estimate them when the experimental data are absent. Future work
will be focused on building a look-up table for the error scale para-
meters under varying experimental conditions with controlled release
experiments, and assessing the applicability of the proposed error
prorogation method for estimating the error scale parameters. Under
some conditions, we found that the performance of the inference can be
improved using data simultaneously collected by vertically separated
sensors. Studies of the optimal sampling strategies will be beneficial for
future applications of emission sources characterization using mobile
sensing data.
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column (b, d, and f) are experiments conducted with the presence of obstacle. The black dash line is the controlled release rate (Q0).
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Appendix A. Determination of u x t( , )e
M

m based on the logarithmic wind profile

Here we introduce the estimation of u x t( , )e
M

m . In a horizontally homogeneous Atmospheric Boundary Layer, the mean streamwise velocity u
follows the logarithmic profile based on the Monin Obukhov Similarity Theory (MOST) (Kaimal and Finnigan, 1994):

=u u
k

z
z

z
L

ln ,
v

*

0 (A.1)

where u* is the friction velocity, kv is the von Karman constant (0.4), z0 is the surface roughness (1.0 cm for short grassland (Brutsaert, 2013)),
=L u T

k gw Tv
*
3

is the Obukhov length (Kaimal and Finnigan, 1994), where g is the gravitational acceleration (9.81m/s2),T is the mean air temperature

(in Kelvin), and w T is the mean covariance of the instantaneous w and T. ( )z
L is a dimensionless stability correction function (Stull, 1988):

=
+ + <+ +( )( )

z
L

L

L

4.7 , 0

2 ln 2 ln 2tan ( ) , 0
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1
2

1
2

1
2

2

(A.2)

where = z L(1 16 / )1/4.
According to Equation (3b) in the main text, u x t( , )e m is defined as the weighted plume advection velocity at the exit surface x y z( , , )m :

=u x t D x y z t u x y z t dydz( , ) ( , , , ) ( , , , ) .e m z

z

y

y
m m

min

max

min

max

(A.3)

To calculate u x t( , )e
M

m , we first replace u x y z t( , , , )m by u , which is a function of z and t. Then, D x y z t dy( , , , )y
y

mmin
max can be modeled using the

Lagrangian Stochastic Model (LSM) as D x z t( , , )y
M

m , as detailed in the following section. With these modifications, u x t( , )e
M

m can be calculated as:

=u x t D x z t udz( , ) ( , , ) .e
M

m z

z
y
M

m
min

max

(A.4)

Appendix B. Lagrangian Stochastic Model (LSM) for estimation of D x z t( , , )y
M

m

The LSM describes the plume dispersion by calculating the trajectories of marked fluid particles in 2D (longitudinal and vertical directions). The
particle positions (xp and zp) in the downwind and vertical directions are calculated as:

= +dx u u dt( ) ,p p (B.1a)

=dz w dt,p p (B.1b)

where dt is the time step. up and wp are the particle's Lagrangian velocity in the x and z directions, which follows the generalized Langevin equation
(Thomson, 1987):

= +du a dt b dW ,p u u (B.2a)

= +dw a dt b dW ,p w w (B.2b)

where dW is an incremental Wiener process with a zero mean and a variance of dt . a and b are parameters that need to satisfy Kolmogorov's
hypothesis of local isotropy in a Lagrangian frame of reference (Kolmogorov, 1941) and the well-mixed condition (Thomson, 1987). According to the
simplest solution (Thomson, 1987) and considering a flat homogeneous surface layer, a and b can be formulated as:

= +a b
A

u u w w
A z

u w u w
z

w( ) 1 ,u
u

w p p w
u

p p
u

p

2
2 2

2 2
2

(B.3a)

= + + +a b
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(B.3b)

= =b b T2/ ,u w w L (B.3c)

where =A u w2( )u w
2 2 2 , u and w are the standard deviations of the Eulerian velocity in the longitudinal and vertical directions, u w is the

Reynolds stress, and TL is the Lagrangian velocity time scale.
To solve Equations (B.1)–(B.3), vertical profiles of u , u, w, u w andTL are required. The Reynolds stress =u w u*

2 is assumed to be a constant
in the surface layer (Stull, 1988). Since measurements were available only at a single height during each experiment, the MOST was applied to
describe the vertical profiles of all wind statistics required by the LSM (u , u, w). More specifically, u is described by logarithmic wind profile
(Equation (A.1)). u and w can be described as (Hsieh and Katul, 1997):

= × = ×u z
L

u z
L

3.7 1 3 , 1.26 1 3 .u w
1/3 1/3

(B.4)

The empirical parameters 3.7 and 1.26 are estimated by fitting the measured u and w by the 3-D sonic anemometer against ( )1 3 z
L

1/3
(Figure

B.1).
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Fig. B.1. Normalized velocity standard deviations as a function of atmospheric stability. The experimental data are shown with open circles from the 3D sonic data.
The solid lines are the MOST conventional 1/3 relation (Equation (B.4)) with best-fit empirical coefficients.

In order to solve the Langevin equation, we should also estimate the Lagrangian time scale. TL can be estimated using the K theory (Duman et al.,
2014):

=T K ,L
w
2 (B.5)

where K is the diffusion coefficient (Rodean, 1996)

=K u z ,
h

*

(B.6)

and h is the stability correction (Hsieh et al., 2000)
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During a LSM run, particles’ velocity and location are stored in the x z domain. Given a point source with a unit emission rate, the predicted
mean concentration after integrating over y, denoted as Cy

LSM , can be described as (Flesch et al., 1995; Rannik et al., 2012):

=C x z t
N x w x z

( , , ) 1 1
| ( , )|

,y
LSM

p p (B.8)

where Np is the number of fluid particles. x and z are the grid spacing of the LSM in x and z directions, respectively.
The LSM predicted D x z( , )y

M
m can be calculated as:

=D x z t
C x z t

C x z t z
( , , )

( , , )
( , , )

,y
M

m
y
LSM

m

z
z

y
LSM

mmin
max

(B.9)

where x z,max max are the size of the computational domain in the x z, directions, respectively.
A computational domain of x z( , )max max = (100m, 20m) is used with the grid cell size of x z( , ) = (0.5m, 0.01m). dt is determined dyna-

mically as dt =min (0.02TL, z w t dt/ ( )) to satisfy the necessary condition of < <dt TL and to prevent a large jump in the vertical direction
(Duman et al., 2014). For each run, a total of =N 10p

6 particle are released from the source and their trajectories are calculated using the LSM. The
ground and the boundary-layer top (set to be 1 km for neutral and unstable conditions (Duman et al., 2014)) are considered as perfect reflectors, such
that a particle will be perfectly reflected back in the vertical direction and the sign of both up and wp being reversed (Duman et al., 2014). Particles
can only exit and the end of the domain when >x t x( ) max. A summary of parameters used in the LSM is shown in Table B.1.

Table B.1
A summary of parameters used in the LSM

Name Value

Number of fluid parciles (Np) 106

Computational domain size (xmax , zmax ) 100, 20 (m)
Computational grid size ( x , z) 0.5, 0.01 (m)
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Table B.1 (continued)

Name Value

Surface roughness (z0) 0.01 (m)
von Karman constant (κ) 0.4
Height of sensor (zm) 0.3, 1.3 (m)
Height of source (zs) 0.02 (m)
Friction velocity (u*) case dependent
Standard deviation of u and w ( u, w) case dependent
Obukhov length (L) case dependent

D x z t( , , )y
M

m is calculated without considering obstacle, which may be acceptable at xm =20m and 30m but will introduce errors at xm =10m.
For simplicity, we assume that D x z t( , , )y

M
m is vertically well-mixed by obstacle-injected wake eddies from ground to × z1.5 F at xm =10m, where zF

is the height of the obstacle. Therefore, < =D z z t D z t z(10, 1.5 , ) (10, , )y
M

f z
z

y
M1

1.5 0
1.5

f
f .
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