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Introduction
Natural gas (NG) is considered an attractive “bridge fuel” 
towards clean energy due to its potential lower green-
house gas (GHG) emissions compared with other fossil 
fuels (e.g. coal) (Alvarez et al., 2012). However, NG is the 
largest industrial source of anthropogenic emission of 
methane, a potent GHG with a global warming potential 
(GWP) of 86 and 34 on a time horizon of 20 years and 
100 years including carbon-climate feedback, respectively 
(Stocker, 2014). Leakage of NG can happen anywhere 
along the value chain from production to end-use, reduc-
ing its potential short- to medium-term GHG advantage 
over competing fossil fuels. A study proposed a tipping 

point of 3.2% (2.7% using revised GWPs (Stocker, 2014)) 
loss of NG along the NG value chain, beyond which NG-
based electrical generation will cause more net warming 
for some period of time than would using coal for power 
generation in the U.S. (Alvarez et al., 2012). Many studies 
have focused on characterizing methane emissions from 
production (Allen et al., 2013), and gathering, processing, 
and distribution (Lamb et al., 2015; Marchese et al., 2015; 
Mitchell et al., 2015) along the NG value chain. Some stud-
ies sought to estimate methane emissions (e.g. pipeline 
leaks) in metropolitan areas, which is dominated by local 
distribution and residential/commercial use of NG (Lamb 
et al., 2016; McKain et al., 2015; von Fischer et al., 2017). 
In contrast, methane emissions from industrial consum-
ers of NG are largely unexplored. One rare example is a 
recent effort to quantify methane emissions from NG-
fired power plants and oil refineries (Lavoie et al., 2017).

The ammonia fertilizer industry is a major industrial 
consumer of NG, which is used as feedstock and energy 
source to produce ammonia and some upgraded prod-
ucts (e.g. urea) (Elvers et al., 1989). In 2015, the U.S. gross 
production capacity of ammonia (including ammonia as a 
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feedstock for upgraded products) was >12,000 Gigagram 
per year (Gg NH3/yr) (United States Geological Survey, 
2017). Due to stable low NG prices resulting from the U.S. 
shale gas boom, the U.S. ammonia production capacity 
is expected to increase in the next several years (United 
States Geological Survey, 2017). Consequently, a large 
amount of NG is and will continue to be consumed in 
the production of ammonia fertilizer. According to the 
Manufacturing Energy Consumption Survey (MECS) con-
ducted by the Energy Information Administration (EIA) 
(Energy Information Administration, 2017), 383 trillion 
British thermal units (BTU) of NG (approximately 7,700 
Gg of NG) was consumed by the U.S. ammonia fertilizer 
industry in 2014. Ammonia fertilizer plants are large GHG 
emissions sources mainly because CO2 is a major byprod-
uct of ammonia production. However, there is less under-
standing of methane emissions despite the large amount 
of NG consumption by this industry.

In this study, we evaluate the scale of methane emissions 
from the U.S. NG-based ammonia fertilizer industry. Since 
ammonia fertilizer plants are dispersed all over the U.S., a 
mobile sensing approach was adopted to be able to quickly 
cover a representative number of plants. Using data col-
lected with a mobile sensor, a Bayesian approach was used 
to characterize methane emissions from the plants sur-
veyed. These estimates were up-scaled to infer methane 
emissions from the U.S. ammonia fertilizer industry.

Material and Methods
Field experiments
Two sampling campaigns were conducted, the first from 
Jun. 16th to 19th, 2015, and the second from Sep. 12th to 
29th, 2016. Three and eight ammonia fertilizer plants were 

sampled, respectively, during the two campaigns. Two of 
the three plants sampled in the first campaign were re-
visited in the second campaign. As shown in Figure 1, the 
plants surveyed were mostly located in the mid-western 
U.S. surrounded by relatively flat terrain, resulting in few 
obstacles impacting plume transport. The downwind 
measurements were conducted without notifying plant 
operators with intent of encountering routine plant oper-
ation. Water vapor from cooling towers and effluent flares 
were observed when sampling all the plants, suggesting 
that they were in production.

Useful data were collected along downwind roads at 
six of the nine plants sampled, all during the second field 
campaign in 2016. These six plants represent >25% of the 
total of 23 NG-based ammonia fertilizer plants in the U.S. 
that were operating in 2015–2016. No useful data were 
obtained at the other three plants (two were visited dur-
ing both campaigns) due to poor meteorological and road 
conditions, and hence were not included in the analysis. 
The data quality control protocol ruled out some data 
from the six plants surveyed (Supplemental materials Text 
S1). Key characteristics and sampling conditions related to 
the six plants that were successfully surveyed are summa-
rized in Table 1.

The mobile sensing approach utilizes a Google Street 
View (GSV) car equipped with a fast-response and high-
precision methane analyzer to repeatedly measure 
methane mixing ratios (c, in ppm) along public roads 
downwind of the ammonia fertilizer plants. Here, we only 
offer a brief description of some components of GSV car 
that are relevant to this field campaign, and more detail 
on the GSV car can be found elsewhere (von Fischer et al., 
2017). A Picarro cavity ringdown analyzer (Model G2301 

Figure 1: Map of NG-based ammonia fertilizer plants in the U.S. A Google Earth representation of NG-based ammo-
nia fertilizer plants in the U.S that were operating in 2015–2016. DOI: https://doi.org/10.1525/elementa.358.f1
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from Picarro Inc., Santa Clara, CA, USA) configured to sam-
ple at 1 Hz was used in the first sampling campaign, and 
a fast methane/ethane gas analyzer (Los Gatos Research, 
Inc., San Jose, CA, USA) sampling at 2 Hz was used in the 
second sampling campaign. We did not re-calibrate the 
Los Gatos Research (LGR) fast methane/ethane gas ana-
lyzer during deployment. After initial factory calibration, 
the instruments largely operate on a self-calibrating basis, 
accounting for variation in performance of the analytical 
cell using a wavelength that was not absorbed by any gases. 
Otherwise, the analysis is derived from first-principles (cell 
dimensions, pressure, temperature, and methane’s per-
molar absorptivity) (Gupta, 2012). Together, these concen-
tration measures yield methane values that are accurate 
to better than 60 ppb (Robert Provencal, LGR, personal 
communication, 04/16/2019), which is relatively small 
considering that our methane data vary from ~2.0 ppm 
(ambient level) to ~30 ppm (peak mole fraction). Though 
ethane concentration were also measured by the gas ana-
lyzer, it was not used for analysis since the concentrations 
were low and the noise was high, resulting a low signal to 
noise (SNR). The inlet of the methane analyzer was located 
at the front bumper of the GSV car (~30 cm above-ground) 
to avoid measuring exhaust of the car. Real-time location 
of the GSV car was determined by a roof-mounted GPS 
unit (Model A100 from Hemispheres GNSS, Scottsdale, 
AZ, USA) with an acquisition frequency of 1 Hz. A portable 
3-D sonic anemometer (Model 81000 from R.M. Young 
Co., Traverse City, MI, USA) was installed near each visited 
fertilizer plants in a relatively flat and open location to 
measure local meteorological conditions (Table 1). The 
height of the anemometer was ~1.5 m above the ground.

During the sampling, the GSV car first circled around 
the plant to be surveyed to map the presence of elevated 

methane mixing ratios, and to determine whether the pat-
tern of emissions was clear enough such that attribution 
of any emissions could be made based on wind direction 
(similar to triangulation). An example is shown in Figure 2, 
a well-developed methane plume was observed downwind 
of the ammonia fertilizer plant, while ambient background 
methane mixing ratios were found when sampling upwind 
of the plant. After identifying the facility-introduced plume, 
the GSV car would pass through the plume multiple times 
to make repeated samplings. Local emissions, such as 
small pipeline leaks, can be identified as small spikes in the 
data (Figure 2). In contrast, emissions from the ammonia 
plant (sampled approximately 500 to 2,000 m downwind 
as shown in Table 1) are characterized by a broad plume 
(Figure 2). In the data post-processing, elevated mix-
ing ratios due to local emissions were excluded from the 
analysis, and we focused on the broad plumes. A low-pass 
moving average filter was established based on the low fre-
quency drift of the internal sensor pressure, which is likely 
caused by partial clogging of the sensor inlet due to dust. 
The filter was later used to mask and adjust the raw mix-
ing ratio data to remove the adverse effects caused by this 
issue. The background methane mixing ratio (cb) was esti-
mated as the 5th percentile of the ranked time series of raw 
methane mixing ratios (cr) (Albertson et al., 2016; Brantley 
et al., 2014), and the above-ambient mixing ratios c = cr – 
cb. The estimated cb is very close to the ambient methane 
mixing ratios measured upwind of the plant, suggesting 
that the determination of cb is robust.

Emission characterization using a Bayesian approach
Using data collected during multiple sensor passes, a 
Bayesian approach was adopted to characterize meth-
ane emission from the ammonia fertilizer plants. This 

Table 1: A summary of information about the sampled ammonia fertilizer plants, including facility location (latitude 
and longitude), sampling date and time, number of valid mobile passes (N), plume travel distance (xs), and local mete-
orological conditions during the sampling period, such as the mean stream-wise wind velocity (u–), and the mean wind 
direction (θm) clockwise from the north. DOI: https://doi.org/10.1525/elementa.358.t1

Facility location
(Latitude, Longitude)

Date
[MM/DD/YY]

Local time
[HH:MM]

N
[-]

xs

[m]
u–

[m/s]
θm

[deg]

Verdigris, OK (36.2338, –95.7190) 09/12/16 10:42–14:48 52 1730 2.90 164

Enid, OK (36.3794, –97.7624) 09/14/16 10:24–14:33 45 350 2.80 8.7

09/15/16 10:02–12:38 48 1230 3.84 184

Dodge City, KS (37.7777, –99.9299) 09/20/16 16:16–18:58 8 2170 5.97 183

09/21/16 10:19–13:49 15 1880 5.41 196

09/22/16 10:17–12:01 14 1800 5.67 195

Beatrice, NE (40.3202, –96.8401) 09/26/16 09:47–12:04 24 590 2.50 291

Creston, IA (41.1170, –94.3551) 09/26/16 17:41–18:41 16 650 2.56 305

09/27/16 10:38–13:08 37 590 3.51 304

09/27/16 14:38–15:38 12 730 3.73 291

Fort Dodge, IA (42.4992, –94.0171) 09/28/16 13:08–15:38 34 1400 3.43 355

09/29/16 10:52–12:22 5 1440 2.77 352

09/29/16 14:52–16:52 9 1410 3.12 347
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approach is fully described in (Albertson et al., 2016); here 
only a brief introduction is included. Following Bayes’s 
rule, the posterior probability density function (PDF) of 
the emission rate Q [kg/h] is (Albertson et al., 2016; Yee, 
2008; Yee, 2012):

 ( )
( ) ( )

( )
| | ,

| , ,
|

y

y

y

P Q I P c Q I
P Q c I

P c I
=  (1)

where cy (in ppm × m) is the cross-plume integrated 
methane mixing ratio. Practically, cy can be estimated 
as cy = ∑c∆x, where ∆x [m] is the distance between the 
geo-referenced mixing ratio data. I is the ancillary infor-
mation, including source information and the prevailing 
meteorological conditions. P (Q|I) is the prior PDF, which 
represents the distribution of Q prior to the observation of 
cy. P (cy|Q, I) is the likelihood function, which is the prob-
ability of observing cy given Q and I. P (cy|I) is the evidence 
term that simply ensures that P (Q|cy, I) integrates to unity.

Before making any measurement, the prior (P (Q|I)) 
is unknown. Thus, a uniform distribution is adopted as 
a non-informative prior (Yee, 2007). After the first sen-
sor pass (with a valid measurement of cy), equation (1) is 
updated recursively such that P (Q|I) is replaced by the 
posterior PDF (P (Q|cy, I)) derived from the previous sensor 
pass (Albertson et al., 2016).
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where j is a counter for successive sensor passes, Qmax and 
Qmin are the upper and lower bound of Q.

All the information provided by the measurement cy 
about the unknown Q is contained in the likelihood func-
tion. Following (Yee, 2008; Yee, 2012) and (Albertson et al., 
2016), the likelihood function is formulated as:
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where ( )M
yc Q  is the modeled cy as a function of the can-

didate emission rate Q. σe [-] is the “error term” of the 
likelihood function, which is a measure of the uncer-
tainty when comparing the modeled ( )M

yc Q  against the 
measurement cy. The parameterization of σe is detailed in 
the Supplemental materials Text S2. When the vehicle’s 
path is perpendicular to the wind direction, the effect 
of plume lateral dispersion vanishes and the modeled 

( )M
yc Q  can be simplified as ( ) QM

y zU
c Q D= , where U– is the 

plume advection speed, and Dz accounts for the plume 
vertical dispersion (Albertson et al., 2016). A common 
form of exp[ ( ) ]sA Bz

z z zD −= , where z [m] is the height of 
the sensor inlet, z̄ [m] is the mean plume height, and A 
[-], B [-], and s [-] are all empirical parameters of atmos-
pheric stability and z̄ (Gryning et al., 1987). In the case 
of a non-perpendicular sensor pass, ( )M

yc Q  can be calcu-
lated by numerically integrating along the vehicle’s path 
(Albertson et al., 2016).

By updating the prior term P (Q|I) with the posterior 
(P (Q|cy, I)) derived from the previous sensor pass, P (Q|cy, I)  

Figure 2: An example of downwind methane plume measurement. A Google Earth representation of an example 
of methane mixing ratios (red bars) measured by the GSV car along its pass around the ammonia fertilizer plant 
located in Fort Dodge, IA. Small methane spikes, which may be caused by unground pipeline leaks and not related to 
emissions from the fertilizer plant, are identified as local emissions. DOI: https://doi.org/10.1525/elementa.358.f2

D
ow

nloaded from
 http://online.ucpress.edu/elem

enta/article-pdf/doi/10.1525/elem
enta.358/434772/358-6107-1-pb.pdf by C

ornell U
niversity user on 24 August 2021

https://doi.org/10.1525/elementa.358.f2


Zhou et al: Estimation of methane emissions from the U.S. ammonia fertilizer 
industry using a mobile sensing approach

Art. 19, page 5 of 12

is calculated recursively to incorporate data collected after 
each pass. After the final sensor pass (the Nth pass), the 
expected emission rate (Qe, in kg/h) and the associated 
uncertainty (σQ, in kg/h) can be quantified as the expec-
tation and standard deviation of the final posterior PDF 
P (Q|cy, I).

This approach considers the part of the facility that is 
related to NG-consumption (e.g. chemical reactors and 
boilers) as a point source, and the emissions are continu-
ous and quasi-steady (i.e. Q is quasi-steady). The point-
source assumption is based on the observation that the 
NG-related equipment is usually clustered within a radius 
of ~100 m from the center region (as visually inspected 
from Google Earth), while the source-to-sensor distances 
are 500 to 2,000 m (Table 1). We considered the point-
source assumption as an added uncertainty in the source 
characterization model, and explicitly included it in the 
σe parametrization (Supplemental materials Text S2). The 
assumption of continuous and quasi-steady emissions 
comes from the premise that NG emissions originate from 
the chemical production and associated fuel combus-
tion processes. These processes are often continuous and 
quasi-steady under normal operational conditions of typi-
cal chemical plants in order to maximize production effi-
ciency (Green and Perry, 1973). Based on this assumption, 
the estimated Qe and σQ (in the unit of kg/h) can be con-
verted into the unit of Gg CH4/yr, considering 340 days 
per year of effective production (i.e. excluding planned 
maintenance and normal outrages) as suggested by previ-
ous reports and surveys (Paul et al., 1977; The Fertilizer 
Institute, 2006; United States Geological Survey, 2017).

NG throughput of ammonia fertilizer plants
To relate methane emissions with operational character-
istics of the ammonia fertilizer plants, we estimated NG 
throughput (T, in Gg/yr), which is the rate of NG con-
sumption by the plant. For most ammonia fertilizer plants 
in the U.S., information about NG throughput is not pub-
licly available. Therefore, we estimated T based on the 
known energy balance for the chemical reactions. Here, 
we assess the sources of NG-consumption for manufactur-
ing fertilizer products at a typical ammonia fertilizer plant 
that uses NG as feedstock (Table 2).

The production of ammonia uses NG both as a feed-
stock and as an energy source. Ammonia is produced 
through the modified Haber-Bosch process, which refers 
to the reaction of nitrogen and hydrogen at a ratio of 1:3 
under elevated temperature, pressure and the presence of 
catalyst (Wood and Cowie, 2004). The nitrogen is supplied 
from air, and the hydrogen is obtained in almost all plants 
in the U.S. from steam reforming of NG (United States 
Geological Survey, 2017). Meanwhile, NG is also used as 
an energy source to sustain this highly energy intensive 
process (Elvers et al., 1989).

The production of urea uses ammonia as a feedstock, 
and NG as an energy source. Urea is produced based on 
the Basaroff process, which includes the synthesis of car-
bamate from ammonia and CO2, and the dehydration of 
carbamate to urea and water (Worrell et al., 2000). The 
synthesis of carbamate is an exothermic reaction and 
requires little energy. However, the dehydration step often 
uses NG as an energy source.

Using ammonia and urea, fertilizer plants can produce 
other products (Table 2). For example, nitric acid (NA) and 
ammonium nitrate (AN) are produced by exothermic reac-
tions, presumably requiring little energy from NG (Worrell 
and Blok, 1994). Urea ammonium nitrate (UAN), diesel 
exhaust fluid (DEF), urea liquor, and aqua ammonia are 
solutions of ammonia, urea, and NA in water. Therefore, 
their production only consumes a negligible amount of 
energy compared to the production of ammonia and urea. 
Thus, we assumed that the majority of NG consumption 
at ammonia fertilizer plants is as a feedstock for ammonia 
production and as an energy source for ammonia and urea 
production.

Given the above-mentioned NG use in ammonia ferti-
lizer plants, we estimated T based on the energy balance:

 N N U U
c

NG

C E C E
T R

E
× + ×

= ×  (4)

where CN [Gg NH3/yr] and CU [Gg Urea/yr] are the annual 
gross production capacities of ammonia and urea produc-
tion capacity, respectively. CN and CU include ammonia 
and urea both sold directly in the market and produced 

Table 2: A list of major chemical products, and their feedstock and energy source in a typical NG-based ammonia 
fertilizer plant in the U.S. (N/A = not applicable). DOI: https://doi.org/10.1525/elementa.358.t2

Chemical Produced Feedstock Energy source

ammonia NG, N2 NG

urea ammonia, CO2 NG

nitric Acid (NA) ammonia, O2, water Exothermic

ammonium Nitrate (AN) ammonia, NA Exothermic

urea Ammonium Nitrate (UAN) ammonia, NA, urea, water N/A

diesel Exhaust Fluid (DEF) urea, water N/A

urea liquor urea, water N/A

aqua ammonia ammonia, water N/A
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as a feedstock for upgraded products (Table 2). Note that 
both CN and CU are adjusted for planned maintenance and 
normal outages; hence they represent production under 
scheduled operating conditions. EN and EU are the energy 
demands for ammonia and urea production, respectively, 
in Terajoule per Gigagram of product produced (TJ/Gg). 
ENG [TJ/Gg] is the energy produced by NG as a fuel, which 
is considered as 52.23 TJ/Gg (Boundy et al., 2011). Follow-
ing U.S. convention, EN, EU, and ENG are all expressed as 
higher heating value (HHV). Rc [%] is the capacity utiliza-
tion rate, which is the percentage of a facility’s production 
capacity that is actually used.

Given that most of the data were collected in the 2016 
field campaign (Table 1), we obtained plant-specific 
CN and CU values from 2016 annual reports published 
by some operating companies (AdvanSix Inc., 2017; 
Agrium Inc., 2017; CF Industries Holdings Inc., 2017; LSB 
Industries Inc., 2017; OCI N. V., 2017; Potash Corporation 
of Saskatchewan Inc., 2017; The Mosaic Company, 2017). 
When 2016 annual reports were not publicly available (e.g. 
operated by privately held companies), CN and CU were 
obtained from the 2016 mineral yearbook published by 
the United States Geological Survey (USGS) (United States 
Geological Survey, 2017) and the International Fertilizer 
Association (IFA) (International Fertilizer Industry 
Association, 2015), respectively. The full lists of CN and CU 
are reported in the Supplemental materials Text S3.

EN, EU, and Rc depend on the manufacturing technology 
and operational performance, which can vary consider-
ably among plants. EN and Rc are reported by only a few 
plants. For the rest, EN and Rc are considered as random 
variables, whose upper and lower limits are defined by the 
max and min of the reported EN and Rc, respectively. This 
is partly validated by the industrial-averaged values of EN 
and Rc reported in the literature (Supplemental materials 
Text S3). To the knowledge of the authors, plant-specific 
EU values are not publicly available. Therefore, we used an 
industrial-averaged EU of 2.8 TJ/Gg (Worrell et al., 2000) 
for all plants. Note that the industrial-averaged EU of 2.8 
TJ/Gg was reported for some U.S. plants in 1994 (Worrell 
et al., 2000), and it is expected to be lower today than it 
was in the early 1990’s due to the technology advance-
ment. However, we find that the estimation of T is not 
sensitive to the selection of EU. This is because the indus-
trial-averaged EU is more than an order of magnitude 
smaller than the industrial-averaged EN (i.e. 37.9 TJ/Gg 
(International Energy Agency, 2007)), and CU is usually 
smaller than CN. Therefore, the use of the industrial-aver-
aged EU of 2.8 TJ/Gg only introduces a small possible error 
in the NG throughput calculation (equation 4).

As discussed above, we considered the main sources of 
uncertainties in calculating T from the determination of 
EN and Rc. Based on annual reports of operating compa-
nies, plant-specific EN (from 34.7 to 40 TJ/Gg) and Rc (from 
0.54 to 1.06) values were estimated for four and six plants, 
respectively (Supplemental materials Text S3). Meanwhile, 
an industrial-averaged EN of 37.9 TJ/Gg and Rc of 0.8 were 
obtained from the International Energy Agency (IEA) and 
USGS reports (International Energy Agency, 2007; United 
States Geological Survey, 2017). Considering the limited 

number of plant-specific EN and Rc values and the associated 
uncertainties, we decided to construct the “best”, “worst”, 
and “nominal” cases when estimating T. The best (worst) 
case for T, which implies the least (the most) amount of NG 
consumption by a plant, was calculated using the lower 
(upper) bound of the reported values for EN and Rc in equa-
tion (4). Meanwhile, the nominal case for T was estimated 
using the industrial-averaged EN and Rc. The full list of gross 
ammonia production capacity (CN), urea production capac-
ity (CU), and the estimated NG throughput under nominal 
(TN), worst (TW), and best (TB) case for NG-based ammonia 
fertilizer plants in the U.S. in 2015–2016 is provided in the 
Supplemental materials Text S3.

Upscale from the sampled ammonia fertilizer plants 
to the whole industry
To upscale the estimated methane emission rates from the 
sampled fertilizer plants to the whole industry, we first 
 calculated the loss rate (LR, in %) of the sampled plants 
following (Zavala-Araiza et al., 2015). LR is defined as the 
ratio between the NG emission rate and the NG through-
put. Considering that around 95% of NG is methane 
(Lavoie et al., 2017), LR can be estimated as:

 
/0.95

100%
Q

LR
T

= ×  (5)

Given the best, worst, and nominal case for T estimation, 
we can calculate the corresponding loss rate for the sam-
pled plants by plugging in different T values in equation 
(5). Since T is in the denominator, the best case of LR 
(least amount of lose rate) will respond to the worst case 
of T (most amount of NG throughput). For each case, the 
uncertainty of LR only comes from the uncertainty of Q.

Assuming that these plants constitute a representative 
sample of the ammonia fertilizer industry, we constructed 
the best, worst, and nominal cases for loss rate represent-
ing the ammonia fertilizer industry, given the best (LRB), 
worst (LRW), and nominal (LRN) loss rate for the six sam-
pled plants. More specifically, the best case for loss rate 
of the whole industry will be the lowest LRB among the 
sampled plants (i.e. best of the best): min( )I

B BLR LR= , and 
the worst case will be the highest of LRW (i.e. worst of the 
worst): max( )I

W WLR LR= . The nominal case will be the aver-
aged LRN: I

N NLR LR= .
We believe the plants surveyed constitute a representa-

tive sample of the whole industry based on three statistics:

•	 The six sampled plants represent more than 25% 
of the total of 23 U.S. NG-based ammonia fertilizer 
plants that was operating in 2016.

•	 Total NG throughput (T) of the sampled plants was 
more than 20% of the total NG throughput of all 
NG-based ammonia fertilizer plants in the U.S. If 
we exclude the plant located in Donaldsonville, LA, 
which is estimated to be the largest NG consumer of 
all NG-based ammonia fertilizer plants in the U.S., NG 
throughput of the sampled plants was around 30% of 
the remaining industry.
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•	 The sampled plants cover a representative portion of all 
ammonia fertilizer plants when ranked according to NG 
consumption, including both large (Verdigris, OK ranked 
the 2nd) and small (Creston, IA ranked 23th) plants.

With the assumption that 95% of NG is methane (Lavoie 
et al., 2017), the methane emissions from the ammonia 
fertilizer industry (QI) under normal operational condi-
tions are:

 0.95 ,I IQ LR T= × ×∑  (6)

where ∑T is the sum of NG throughput of all NG-
based ammonia fertilizer plants in the U.S. For QI, we 
will calculate three cases as well. More specifically, the 
best case ( 0.95 )I

B B BQ LR T= × ×∑  and the worst case 
( 0.95 )I

W W WQ LR T= × ×∑  represent the least and the most 
amount of methane emissions from this industry, respec-
tively. The nominal case ( 0.95 )I

N N NQ LR T= × ×∑ , however, 
is close to the “expected” methane emission scenario from 
this industry.

Results and Discussion
Methane emissions and loss rate from the sampled 
ammonia fertilizer plants
An example of P (Q|cy, I) estimate updating after each pass 
by the GSV car is provided in Figure 3, using data col-
lected at Fort Dodge, IA from Sep. 28th to 29th in 2016. 
As shown in Figure 3a, it is evident that the shape of the 
P (Q|cy, I) “sharpens” after each additional measurement, 
from a relatively flat PDF after the first pass (black dashed 
line) to a much narrower and more defined peak after 
the final pass (black solid line). With the distribution of 
Q estimated from the Bayesian method (i.e. P (cy|Q, I)), we 

calculated the expected emission rates (Qe) and the asso-
ciated uncertainties (σQ). Both Qe and σQ can be derived 
from P (Q|cy, I) after each mobile pass, and are plotted in 
Figure 3b. It is clear that both variables are reduced sig-
nificantly after the first several passes, when P (Q|cy, I) are 
strongly affected by the prior. After ~20 mobile passes, 
both Qe and σQ becomes fairly stable, suggesting that the 
Bayesian inference might have converged.

To evaluate the short-term temporal variability of the 
methane emissions, we calculated P (Q|cy, I) using daily 
data collected downwind from each plant. Despite large 
uncertainties for the emission rate, we find that the esti-
mated Qe ± σQ for the same plant using different daily data 
shows a good overall agreement (Figure 4). This obser-
vation suggests that the daily variability of emissions 
maybe small, which partly support the applicability of the 
Bayesian approach and our conjecture of continuous and 
quasi-steady emissions from those plants.

Inspired by the good agreement from daily results, we 
upscale the estimated hourly emission rates to annual emis-
sions considering 340 days per year of effective production 
(excluding planned maintenance and normal outrages) as 
discussed above. Here, we used all the data collected in each 
plant to derived P (Q|cy, I), and the resulting Qe ± σQ for the 
sampled plants are shown in Table 3. Overall, our estimates 
are consistently higher (i.e. more than two orders of mag-
nitude for most plants) than the facility-reported methane 
emission rates in the U.S. EPA’s Facility Level Information 
on Greenhouse Gas Tools (FLIGHT) database (United States 
Environmental Protection Agency, 2017a), suggesting that 
methane emissions may be significantly underestimated 
by the EPA emission inventory. This finding highlights the 
need for the ammonia fertilizer production industry to bet-
ter understand the source of these emissions.

Figure 3: Emission estimates updated after each pass. (a) The posterior PDF, P(Q|cy, I), updated after each mobile 
pass for the plant in Fort Dodge, IA. P(Q|cy, I) after the first and last pass are highlighted in dash and bold black, 
respectively. (b) The estimated methane emission rate ± uncertainty (Qe ± σQ) derived from P(Q|cy, I) after each mobile 
pass. DOI: https://doi.org/10.1525/elementa.358.f3
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Despite large differences in Qe among these plants, 
the estimated loss rates (LR) are relatively more consist-
ent, except for the facility in Beatrice, NE (Table 3). This 
observation is congruous with our assumption that NG 
emissions from these plants are associated with plant 
operation, and thus proportional to NG throughput. The 
plant located at Creston, IA shows the largest LR among 
all the sampled plants. However, it is accompanied by the 
largest uncertainty (σLR), making it more comparable to 
the LR of other plants.

Methane emission from the ammonia fertilizer 
industry
Based on equation (4), the nominal, worst, and best NG 
consumption of all NG-based ammonia fertilizer plants 
in the U.S. is estimated to be 8,750, 11,389, and 6,144 

Gg/yr (approximately 434, 564, and 305 trillion Btu) in 
2015–2016. As a reference, the MECS reported that the 
ammonia fertilizer industry consumed 383 trillion Btu in 
2014 (Energy Information Administration, 2017), which is 
within the worst-best cases and fairly close to the nomi-
nal estimate, supporting the applicability of equation 
(4) and the underlying assumptions. The expansion of 
several facilities in the 2015–2016 period (e.g. facilities 
in El Dorado, AR (LSB Industries Inc., 2017), Port Neal, IA 
(CF Industries Holdings Inc., 2017; The Mosaic Company, 
2017), and Donaldsonville, LA (CF Industries Holdings 
Inc., 2017) may be responsible for the higher estimate of 
nominal NG consumption relative to the 2014 MECS data.

Using equation (5), we estimate nominal, the worst, and 
the best case of the methane loss rate and the associated 
uncertainty of the ammonia fertilizer industry ( )I I

LRLR σ±  

Figure 4: Emission estimates based on daily measurements. Expected methane emission rates and the associated 
uncertainties (Qe ± σQ), in logarithmic scale, derived from the Bayesian approach using daily data collected at each 
plant. DOI: https://doi.org/10.1525/elementa.358.f4

Table 3: The estimated methane emission (± standard deviation), Qe ± σQ, facility-reported methane emissions (Qf) 
from the U.S. EPA’s Facility Level Information on Greenhouse Gases Tools (FLIGHT) database, and the estimated NG 
loss rate (± standard deviation) under the nominal ( )N

N LRLR σ± , the worst ( )W
W LRLR σ± , and the best cases ( )B

B LRLR σ±  for 
the sampled fertilizer plants. DOI: https://doi.org/10.1525/elementa.358.t3

Facility Qe ± σQ

[kg/hr]
Qe ± σQ

[Gg/yr]
Qf

[Gg/yr]

N
N LRLR ±σ
[%]

W
W LRLR ±σ
[%]

B
B LRLR ±σ
[%]

Enid, OK 213 ±118 1.74 ± 0.97 0.01 0.33 ± 0.18 0.53 ± 0.29 0.23 ± 0.13

Verdigris, OK 290 ± 160 2.37 ± 1.31 0.02 0.37 ± 0.21 0.60 ± 0.33 0.27 ± 0.15

Dodge City, KS 75 ± 45 0.61 ± 0.36 0.004 0.39 ± 0.23 0.63 ± 0.37 0.28 ± 0.17

Beatrice, NE 9 ± 6 0.07 ± 0.05 0.004 0.05 ± 0.03 0.08 ± 0.05 0.03 ± 0.02

Creston, IA 16 ± 10 0.13 ± 0.08 0.00004 0.75 ± 0.47 1.22 ± 0.75 0.54 ± 0.33

Fort Dodge, IA 32 ± 19 0.26 ± 0.15 0.005 0.13 ± 0.08 0.21 ± 0.12 0.09 ± 0.05
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to be 0.34% ± 0.20%, 1.22% ± 0.75%, and 0.03% ± 0.02%, 
respectively. The nominal case is comparable to the loss 
rate estimated from other NG-related industrial sectors, for 
example, 0.42% for U.S. oil and gas production sites (Allen 
et al., 2013), 0.47% for U.S. NG gathering and processing 
operations (Marchese et al., 2015), and ranging from 0.1% 
to 0.42% for NG fired power plants (Lavoie et al., 2017).

Using equation (6), we estimate the nominal, the worst, 
and the best case of methane emissions )( I I

e QQ σ±  from 
the U.S. ammonia fertilizer industry to be approximately 
29 ± 18, 139 ± 85, and 2 ± 1 Gg CH4/yr, respectively. 
Even the best case emissions (2 ± 1 Gg CH4/yr) is signifi-
cantly higher than facility reported methane emissions 
from the U.S. EPA’s FLIGHT database (i.e. 0.2 Gg CH4/yr) 
(United States Environmental Protection Agency, 2017a). 
Comparing against U.S. EPA’s 2016 GHG inventory (United 
States Environmental Protection Agency, 2017b), we find 
that the estimated methane emissions (nominal case) from 
the ammonia fertilizer industry are more than three times 
higher than the reported methane emissions from indus-
trial processes and product use (i.e. around 8 Gg CH4/yr, 
mainly from petrochemical production). As one of a major 
end-user of natural gas systems, it represents about 0.2% 
of methane emissions from the U.S. oil and gas supply 
chain (i.e. 13 ± 2 Tg/yr) under the nominal case estima-
tion (Alvarez et al., 2018). Relative to other major sectors of 
methane emissions in the U.S. (United States Environmental 
Protection Agency, 2017b), such as enteric fermentation 
(6.8 Tg CH4/yr) and landfills (4.3 Tg CH4/yr), methane 
emissions from the ammonia fertilizer industry are quite 
low. Given the small number of ammonia fertilizer plants, 
however, the ammonia fertilizer industry has great poten-
tial for mitigation. As a reference, nominal methane emis-
sions from this industry is almost equivalent to that from 
the entire city of Indianapolis, IN, USA (29 Gg/yr), which 
includes emissions from >6,000 km of natural gas pipeline, 
>30 metering and regulating (M&R) stations, a landfill, and 
a wastewater treatment plant (Lamb et al., 2016).

This finding begins to fill an important knowledge gap, 
industrial emissions of methane from NG end-uses, in the 
U.S. GHG emissions inventory. These results also suggest that 
this industrial process is likely a significantly larger emitter 
of methane than currently reported in the EPA inventory.

Limitations and future directions
This study is the first attempt to evaluate the scale of meth-
ane emissions from the U.S. ammonia fertilizer industry. 
One of the major limitations of this study is the relatively 
small number of sampled plants, which constrains our 
understanding of the variability of NG loss rate among dif-
ferent plants and causes the large range between the upper 
and the lower bound of emissions estimation. Enlarging 
the sample size will be critical for reducing the estimation 
uncertainty. Some plants have relatively poor road access, 
which may mean some emissions were missed in the 
selected facilities and a more complete sampling of the 
industry may require the use of airborne measurements. 
Validation of the adopted Bayesian inference method by 
co-sampling using other methods (e.g. airborne measure-
ments and IR camera) will be very useful for future appli-
cations of mobile monitoring. The estimation of key plant 

information, such as the NG throughput and operational 
schedule, introduced errors and access to empirical data 
could resolve this uncertainty. It is worth noting that the 
limited number of days of observations means we were 
unlikely to capture any temporal dynamics in emissions, 
which we might expect to have a large impact on over-
all emissions rates if the results from other sectors apply 
(Zavala-Araiza et al., 2017). More extensive observations 
are warranted and knowledge of comprehensive routine 
measurements by plant operators would be valuable. A 
relatively modest investment in systematic measurements 
seems likely to result in a positive return on investment 
given that the loss of methane to the atmosphere repre-
sents the loss of a valuable resource.

Data Accessibility Statements
The above-ambient methane mixing ratios and GPS from 
the GSV, the wind data from the meteorological station, 
and the KML files of example plume measurements for 
each plant are available online (https://doi.org/10.15146/
R3WT2N).

Supplemental files
The supplemental files for this article can be found as 
follows:

•	 Text S1. Data quality control. DOI: https://doi.org/10. 
1525/elementa.358.s1

•	 Text S2. The determination of the error term in the 
likelihood function. DOI: https://doi.org/10.1525/
elementa.358.s1

•	 Text S3. Natural gas throughput for U.S. NG-based am-
monia fertilizer plants. DOI: https://doi.org/10.1525/
elementa.358.s1
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